1
|
Wiezel GA, Oliveira IS, Ferreira IG, Bordon KCF, Arantes EC. Hyperglycosylation impairs the inhibitory activity of rCdtPLI2, the first recombinant beta-phospholipase A 2 inhibitor. Int J Biol Macromol 2024; 280:135581. [PMID: 39270892 DOI: 10.1016/j.ijbiomac.2024.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Crotoxin, a phospholipase A2 (PLA2) complex and the major Crotalus venom component, is responsible for the main symptoms described in crotalic snakebite envenomings and a key target for PLA2 inhibitors (PLIs). PLIs comprise the alpha, beta and gamma families, and, due to a lack of reports on beta-PLIs, this study aimed to heterologously express CdtPLI2 from Crotalus durissus terrificus venom gland to improve the knowledge of the neglected beta-PLI family. Thereby, recombinant CdtPLI2 (rCdtPLI2) was produced in the eukaryotic Pichia pastoris system to keep some native post-translational modifications. rCdtPLI2 (~41 kDa) presents both N- and O-linked glycans. Alpha-mannosidase digested-rCdtPLI2 (1 mol) strongly inhibited (73%) CB-Cdc catalytic activity (5 moles), demonstrating that glycosylations performed by P. pastoris affect rCdtPLI2 action. Digested-rCdtPLI2 also inhibited PLA2s from diverse Brazilian snake venoms. Furthermore, rCdtPLI2 (1 mol) abolished the catalytic activity of Lmr-PLA2 (5 moles) and reduced the CTx-Cdc (5 moles) enzyme activity by 65%, suppressing basic and acidic snake venom PLA2s. Additionally, crotalic antivenom did not recognize rCdtPLI2, suggesting a lack of neutralization by antivenom antibodies. These findings demonstrate that studying snake venom components may reveal interesting novel molecules to be studied in the snakebite treatment and help to understand these underexplored inhibitors.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Karla C F Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Campos PC, Oliveira HCD, Ortolani PL, Amaral de Melo L, Fontes MRM, Fortes-Dias CL. Mapping possible interaction sites for crotoxin in CNF, a gamma PLA 2 inhibitor from Crotalus durissus terrificus rattle snake, using SPOT synthesis. Toxicon 2023; 234:107267. [PMID: 37661064 DOI: 10.1016/j.toxicon.2023.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Phospholipases A2 (PLA2s) are main components of snake venoms. Several snake species possess endogenous PLA2 inhibitors in their circulating blood, which are generally known as sbPLIs (an acronym for snake blood phospholipase A2inhibitors). The sbPLIs are categorized in three classes (alpha, beta or gamma) depending on the existence of distinguishing protein domains in their structure. The Crotalus durrissus terrificus venom has a highly neurotoxic PLA2 - crotoxin (CTX) - in its composition and the self-protection of the snake is mainly ensured by a sbγPLI named CNF (standing for Crotalusneutralizing factor). In an attempt to find smaller molecules able to inhibit the catalytic activity of CTX, in the present study we used linear peptide arrays to identify CNF segments possibly involved in the interaction with the toxin. Five reacting segments were identified as possible interacting regions. The target peptides were synthesized and located in the in silico CNF structure. Although all of them are exposed to the solvent, high concentrations were needed to inhibit the PLA2 activity of the whole venom or CTX. Limitations of the methodology employed and particular characteristics of CTX inhibition by CNF are discussed.
Collapse
Affiliation(s)
- Patricia Cota Campos
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Hamine Cristina de Oliveira
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Paula Ladeira Ortolani
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Lutiana Amaral de Melo
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente, São Paulo, Brazil
| | | |
Collapse
|
3
|
Lian Q, Zhong L, Fu K, Ji Y, Zhang X, Liu C, Huang C. Hepatic inhibitors expression profiling of venom-challenged Sinonatrix annularis and antidotal activities. Biomed Pharmacother 2022; 156:113900. [DOI: 10.1016/j.biopha.2022.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022] Open
|
4
|
Fortes-Dias CL, Macedo DHF, Barbosa RP, Souza-Silva G, Ortolani PL. Identification and characterization of the first endogenous phospholipase A 2 inhibitor from a non-venomous tropical snake, Boa constrictor (Serpentes: Boidae). J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190044. [PMID: 32231698 PMCID: PMC7092641 DOI: 10.1590/1678-9199-jvatitd-2019-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Endogenous phospholipase A2 inhibitors from snake blood (sbPLIs) have been isolated from several species around the world, with the primary function of self-protection against the action of toxic phospholipases A2. In American snakes, sbPLIs were solely described in pit vipers, in which the natural protection role is justified. In this study, we described a sbPLI in Boa constrictor (popularly known as jiboia), a non-venomous snake species from America. Methods PLA2 inhibitory activity was tested in the blood plasma of B. constrictor using C. d. terrificus venom as the enzyme source. Antibodies developed against CNF, a sbγPLI from Crotalus durissus terrificus, were used to investigate the presence of homologues in the blood plasma of B. constrictor. A CNF-like molecule with a PLA2 inhibitory activity was purified by column chromatography. The encoding gene for the inhibitor was cloned from B. constrictor liver tissue. The DNA fragment was cloned, purified and sequenced. The deduced primary sequence of interest was aligned with known sbγPLIs from the literature. Results The blood plasma of B. constrictor displayed PLA2 inhibitory activity. A CNF-like molecule (named BcNF) was identified and purified from the blood plasma of B. constrictor. Basic properties such as molecular mass, composing amino acids, and pI were comparable, but BcNF displayed reduced specific activity in PLA2 inhibition. BcNF showed highest identity scores (ISs) with sbγPLIs from pit vipers from Latin America (90-100%), followed by gamma inhibitors from Asian viperid (80-90%). ISs below 70% were obtained for BcNF and non-venomous species from Asia. Conclusion A functional sbγPLI (BcNF) was described in the blood plasma of B. constrictor. BcNF displayed higher primary identity with sbγPLIs from Viperidae than to sbγPLIs from non-venomous species from Asia. The physiological role played by sbγPLIs in non-venomous snake species remains to be understood. Further investigation is needed.
Collapse
Affiliation(s)
- Consuelo L Fortes-Dias
- Research & Development Center, Ezequiel Dias Foundation (FUNED), Belo Horizonte, MG, Brazil
| | | | | | - Gabriel Souza-Silva
- Research & Development Center, Ezequiel Dias Foundation (FUNED), Belo Horizonte, MG, Brazil
| | - Paula Ladeira Ortolani
- Research & Development Center, Ezequiel Dias Foundation (FUNED), Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Sobrinho J, Francisco A, Simões-Silva R, Kayano A, Ruiz Diaz JA, Garay AG, Arruda A, Ferreira A, Santos A, Luiz M, Teles C, Pereira S, Zanchi F, Calderon L, Zuliani J, Soares A. Antimyotoxic Activity of Synthetic Peptides Derived from Bothrops atrox Snake Gamma Phospholipase A2 Inhibitor Selected by Virtual Screening. Curr Top Med Chem 2019; 19:1952-1961. [DOI: 10.2174/1568026619666190725102812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/13/2019] [Accepted: 07/04/2019] [Indexed: 11/22/2022]
Abstract
Background:
Several studies have aimed to identify molecules that inhibit the toxic actions
of snake venom phospholipases A2 (PLA2s). Studies carried out with PLA2 inhibitors (PLIs) have been
shown to be efficient in this assignment.
Objective:
This work aimed to analyze the interaction of peptides derived from Bothrops atrox PLIγ
(atPLIγ) with a PLA2 and to evaluate the ability of these peptides to reduce phospholipase and myotoxic
activities.
Methods:
Peptides were subjected to molecular docking with a homologous Lys49 PLA2 from B. atrox
venom modeled by homology. Phospholipase activity neutralization assay was performed with BthTX-II
and different ratios of the peptides. A catalytically active and an inactive PLA2 were purified from the B.
atrox venom and used together in the in vitro myotoxic activity neutralization experiments with the peptides.
Results:
The peptides interacted with amino acids near the PLA2 hydrophobic channel and the loop that
would be bound to calcium in Asp49 PLA2. They were able to reduce phospholipase activity and peptides
DFCHNV and ATHEE reached the highest reduction levels, being these two peptides the best that
also interacted in the in silico experiments. The peptides reduced the myotubes cell damage with a highlight
for the DFCHNV peptide, which reduced by about 65%. It has been suggested that myotoxic activity
reduction is related to the sites occupied in the PLA2 structure, which could corroborate the results
observed in molecular docking.
Conclusion:
This study should contribute to the investigation of the potential of PLIs to inhibit the toxic
effects of PLA2s.
Collapse
Affiliation(s)
- J.C. Sobrinho
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Brazil
| | - A.F. Francisco
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Brazil
| | - R. Simões-Silva
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Brazil
| | - A.M. Kayano
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Brazil
| | - J.J. Alfonso Ruiz Diaz
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Brazil
| | - A.F. Gomez Garay
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Brazil
| | - A. Arruda
- Laboratório de Engenharia de Anticorpos, Fiocruz Rondônia, Porto Velho-RO, Brazil
| | - A.S. Ferreira
- Laboratório da Plataforma de Bioensaios de Malária e Leishmaniose, Fiocruz Rondônia, Porto Velho-RO, Brazil
| | - A.P.A. Santos
- Laboratório da Plataforma de Bioensaios de Malária e Leishmaniose, Fiocruz Rondônia, Porto Velho-RO, Brazil
| | - M.B. Luiz
- Laboratório de Engenharia de Anticorpos, Fiocruz Rondônia, Porto Velho-RO, Brazil
| | - C.B.G. Teles
- Laboratório da Plataforma de Bioensaios de Malária e Leishmaniose, Fiocruz Rondônia, Porto Velho-RO, Brazil
| | - S.S. Pereira
- Laboratório de Engenharia de Anticorpos, Fiocruz Rondônia, Porto Velho-RO, Brazil
| | - F.B. Zanchi
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Brazil
| | - L.A. Calderon
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Brazil
| | - J.P. Zuliani
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Brazil
| | - A.M. Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Brazil
| |
Collapse
|
6
|
Sun S, Zhang D, Zhang J, Huang C, Xiong Y. High activity chimeric snake gamma-type phospholipase A2 inhibitor created by DNA shuffling. Toxicon 2018; 153:32-38. [DOI: 10.1016/j.toxicon.2018.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
|
7
|
Serino-Silva C, Morais-Zani K, Hikari Toyama M, Toyama DDO, Gaeta HH, Rodrigues CFB, Aguiar WDS, Tashima AK, Grego KF, Tanaka-Azevedo AM. Purification and characterization of the first γ-phospholipase inhibitor (γPLI) from Bothrops jararaca snake serum. PLoS One 2018; 13:e0193105. [PMID: 29505564 PMCID: PMC5837083 DOI: 10.1371/journal.pone.0193105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/05/2018] [Indexed: 11/25/2022] Open
Abstract
Phospholipases A2 (PLA2) are enzymes acting on the cell membrane phospholipids resulting in fatty acids and lysophospholipids and deconstructing the cell membrane. This protein is commonly found in snake venoms, causing tissue inflammation in the affected area. Evidence indicates that snakes have natural resistance to their own venom due to protective properties in plasma, that inhibit the action of proteins present in their venom. Given that, this study aimed to purify and characterize a γPLI from Bothrops jararaca serum, named γBjPLI. PLA2 inhibitor was isolated using two chromatographic steps: an ion exchange column (DEAE), followed by an affinity column (crotoxin coupled to a CNBr-activated Sepharose resin). The purity and biochemical characterization of the isolated protein were analyzed by RP-HPLC, SEC, SDS-PAGE, circular dichroism and mass spectrometry. The ability to inhibit PLA2 was determined by enzymatic activity, neutralization of paw edema and myonecrosis. The protein purity was confirmed by RP-HPLC and SEC, whilst an apparent molecular mass of 25 kDa and 20 kDa was obtained by SDS-PAGE, under reducing and non-reducing conditions, respectively. According to mass spectrometry analysis, this protein showed 72% and 68% of coverage when aligned to amino acid sequences of two proteins already described as PLIs. Thus, the inhibitory activity of enzymatic, edema and myonecrotic activities by γBjPLI suggests a role of this inhibitor for protection of these snakes against self-envenomation.
Collapse
Affiliation(s)
- Caroline Serino-Silva
- Interunidades em Biotecnologia, Universidade de São Paulo - Instituto de Pesquisas Tecnológicas - Instituto Butantan, São Paulo, São Paulo, Brasil.,Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Karen Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Marcos Hikari Toyama
- Instituto de Biociências do Litoral Paulista, Universidade Estadual Paulista, São Vicente, São Paulo, Brasil
| | - Daniela de Oliveira Toyama
- Instituto de Biociências do Litoral Paulista, Universidade Estadual Paulista, São Vicente, São Paulo, Brasil
| | - Henrique Hessel Gaeta
- Instituto de Biociências do Litoral Paulista, Universidade Estadual Paulista, São Vicente, São Paulo, Brasil
| | - Caroline Fabri Bittencourt Rodrigues
- Interunidades em Biotecnologia, Universidade de São Paulo - Instituto de Pesquisas Tecnológicas - Instituto Butantan, São Paulo, São Paulo, Brasil.,Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Wéslei da Silva Aguiar
- Interunidades em Biotecnologia, Universidade de São Paulo - Instituto de Pesquisas Tecnológicas - Instituto Butantan, São Paulo, São Paulo, Brasil
| | | | | | | |
Collapse
|