1
|
Sabahi Mohammadi N, Sowti Khiabani M, Ghanbarzadeh B, Rezaei Mokarram R, Tizchang S. Dispersion of halloysite nanotube/lipase nanohybrids as nanofillers into polyvinyl alcohol-sodium alginate cryogel: Characterization and bio-catalytic activity analysis. Int J Biol Macromol 2024; 281:136529. [PMID: 39401624 DOI: 10.1016/j.ijbiomac.2024.136529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
The purpose of this study is to formulate and characterize the cryogels containing halloysite nanotube (HNT)/lipase nanohybrid (NH-cryogel) in comparison to pure cryogels as well as cryogels containing lipase (lipase-cryogel). The cryogels were synthesized using polyvinyl alcohol (PVA) and sodium alginate (SA). The products are tested to explore the influence of the HNT/lipase nanohybride (NH) as nanofillers on the cryogel properties using methods such as swelling degree, water uptake measurement, TGA, XRD, FESEM and FTIR. Additionally, the effects of cryogels on the stability and biocatalytic activities of lipase and NH, were studied and compared to the free lipase to evaluate their potential applications as enzyme carriers. The addition of nanofillers into the cryogel improved is thermal stability. The results implied that NH-cryogel had better enzyme activity than lipase-cryogel and free lipase at different temperatures and pH values. The NH-cryogel residual activity was 85.5 % after ten cycles of reuse while lipase-cryogel showed lower residual activity (60.3 %). Furthermore, the NH-cryogel retained 81.1 % of its residual activity while this was 51.0 % for lipase-cryogel after thirty days of storage. Therefore, the presented results in this study provide a pathway to show that produced nano-composite cryogels could be useful substances for food and pharmaceutical industries applications.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Samira Tizchang
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
2
|
Besharati Vineh M, Poostchi AA, Kordestani D, Qushehbolagh MK, Saboury AA. Mechanically stirred enzymatic membrane reactor containing HRP immobilized on Tau-SiO 2@Fe 3O 4-GO nanocomposite for removal of tetracycline in synthetically concocted wastewater. Biodegradation 2024; 35:407-422. [PMID: 38261084 DOI: 10.1007/s10532-023-10066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
The process of mechanically stirred membrane reactor containing the suspension of horseradish peroxidase (HRP) immobilized on synthesized nanocomposite (Tau-SiO2@Fe3O4-GO) was designed for continuous degradation of tetracycline. The immobilized HRP was characterized in terms of kinetic parameters and catalytic activities as these parameters were improved highly through immobilization. The stability indices including pH and temperature were investigated in parallel. The immobilized HRP was more tolerable to pH changes as compared to free HRP and the optimum temperature obtained at 40 °C. The reusability of HRP was promoted by immobilization as far as 70% of initial activity after ten cycles. The enzymatic degradation of optimum concentration of tetracycline was carried out in batch condition and 100% of tetracycline removed after 30 min. The results also showed that higher concentration of H2O2 exhibited more oxidation of tetracycline. The optimal ratio of HRP/H2O2 was also obtained at 0.005. The simultaneous process including separation and the biocatalytic degradation established in the membrane stirrer reactor concluded that no amount of tetracycline was observed in the permeate stream coming from the membrane after 30 min of operation.
Collapse
Affiliation(s)
| | - Amir Ali Poostchi
- Petrochemical Industries Development Management Company (PIDMCO), P.O. Box 15858-49568, Tehran, Iran
| | | | | | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Tan J, Hu Y, Ding C, Li Y, Gu Y, Li Z, Lin H. Strong adsorption enhanced nitrogen removal from landfill leachate by PVA/CMC/WPU pellets immobilized microorganisms. JOURNAL OF WATER PROCESS ENGINEERING 2024; 63:105480. [DOI: 10.1016/j.jwpe.2024.105480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Galodiya MN, Chakma S. Immobilization of enzymes on functionalized cellulose nanofibrils for bioremediation of antibiotics: Degradation mechanism, kinetics, and thermodynamic study. CHEMOSPHERE 2024; 349:140803. [PMID: 38040249 DOI: 10.1016/j.chemosphere.2023.140803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
The deteriorating environmental conditions due to increasing emerging recalcitrant pollutants raised a severe concern for its remediation. In this study, we have reported antibiotic degradation using free and immobilized HRP. The functionalized cellulose support was utilized for efficient immobilization of HRP. Approximately 13.32 ± 0.52 mg/g enzyme loading was achieved with >99% immobilization efficiency. The higher percentage of immobilization is attributed to the higher surface area and carboxylic groups on the support. The kinetic parameter of immobilized enzymes was Km = 2.99 mM/L for CNF-CA@HRP, which is 3.5-fold more than the Michaelis constant (Km = 0.84794 mM/L) for free HRP. The Vmax of CNF-CA@HRP bioconjugate was 2.36072 mM/min and 0.558254 mM/min for free HRP. The highest degradation of 50, 54.3, and 97% were achieved with enzymatic, sonolysis, and sono-enzymatic with CNF-CA@HRP bioconjugate, respectively. The reaction kinetics analysis revealed that applying ultrasound with an enzymatic process could enhance the reaction rate by 2.7-8.4 times compared to the conventional enzymatic process. Also, ultrasound changes the reaction from diffusion mode to the kinetic regime with a more oriented and fruitful collision between the molecules. The thermodynamic analysis suggested that the system was endothermic and spontaneous. While LC-MS analysis and OTC's degradation mechanism suggest, it mainly involves hydroxylation, secondary alcohol oxidation, dehydration, and decarbonylation. Additionally, the toxicity test confirmed that the sono-enzymatic process helps toward achieving complete mineralization. Further, the reusability of bioconjugate shows that immobilized enzymes are more efficient than the free enzyme.
Collapse
Affiliation(s)
- Manju Nagar Galodiya
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, Madhya Pradesh, India
| | - Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, Madhya Pradesh, India.
| |
Collapse
|
5
|
Mohamed SA, Elsayed AM, Salah HA, Barakat AZ, Bassuiny RI, Abdel-Mageed HM, Abdel-Aty AM. Development of chia gum/alginate-polymer support for horseradish peroxidase immobilization and its application in phenolic removal. Sci Rep 2024; 14:1362. [PMID: 38228654 DOI: 10.1038/s41598-024-51566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
Chia gum's molecular structure with distinctive properties as well as the alginate-based hydrogel's three-dimensionally cross-linked structure can provide a potent matrix for immobilization of enzyme. Herein, chia gum (CG)/alginate (A)-polymeric complex was synthesized and employed as a support material for the immobilization of horseradish peroxidase (HRP). HRP was successfully immobilized on the developed ACG-polymeric support, and the highest immobilization recovery (75%) was observed at 1.0% CG and 2% A, pH 7.0, and 50 units of the enzyme. The structure, morphology, and thermal properties of the prepared ACG-HRP were demonstrated using Fourier Transform Infrared (FTIR), Scanning Electron Microscope, and Thermogravimetric (TGA) analyses. ACG-HRP showed a good reusability (60%) over ten reuses. The immobilized ACG-HRP displayed an acidic pH optimum (6.0), a higher temperature optimum (50 °C), and improved thermal stability (30-50 °C) compared to the soluble HRP at pH 7.0, 40 °C and (30-40 °C), respectively. ACG-HRP has a lower affinity for hydrogen peroxide (H2O2) and guaiacol and a higher oxidizing affinity for a number of phenolic substrates. The ACG-HRP demonstrated greater resistance to heavy metals, isopropanol, urea, Triton X-100, and urea, as well as improved efficiency for eliminating phenol and p-chlorophenol. The developed ACG-polymeric support provided improved enzyme properties, allowed the reuse of the immobilized HRP in 10 cycles, and made it promising for several biotechnological applications.
Collapse
Affiliation(s)
- Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| | | | - Hala A Salah
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amal Z Barakat
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
6
|
Radoor S, Karayil J, Jayakumar A, Kandel DR, Kim JT, Siengchin S, Lee J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr Polym 2024; 323:121339. [PMID: 37940239 DOI: 10.1016/j.carbpol.2023.121339] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 11/10/2023]
Abstract
From the environmental perspective, it is essential to develop cheap, eco-friendly, and highly efficient materials for water and wastewater treatment. In this regard, hydrogels and hydrogel-based composites have been widely employed to mitigate global water pollution as this methodology is simple and free from harmful by-products. Notably, alginate and cellulose, which are natural carbohydrate polymers, have gained great attention for their availability, price competitiveness, excellent biodegradability, biocompatibility, hydrophilicity, and superior physicochemical performance in water treatment. This review outlined the recent progress in developing and applying alginate- and cellulose-based hydrogels to remove various pollutants such as dyes, heavy metals, oils, pharmaceutical contaminants, and pesticides from wastewater streams. This review also highlighted the effects of various physical or chemical methods, such as crosslinking, grafting, the addition of fillers, nanoparticle incorporation, and polymer blending, on the physiochemical and adsorption properties of hydrogels. In addition, this review covered the alginate- and cellulose-based hydrogels' current limitations such as low mechanical performance and poor stability, while presenting strategies to improve the drawbacks of the hydrogels. Lastly, we discussed the prospects and future directions of alginate- and cellulose-based hydrogels. We hope this review provides valuable insights into the efficient preparations and applications of hydrogels.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suchart Siengchin
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
7
|
Chen X, Tian Z, Zhou H, Zhou G, Cheng H. Enhanced Enzymatic Performance of β-Mannanase Immobilized on Calcium Alginate Beads for the Generation of Mannan Oligosaccharides. Foods 2023; 12:3089. [PMID: 37628088 PMCID: PMC10453027 DOI: 10.3390/foods12163089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mannan oligosaccharides (MOSs) are excellent prebiotics that are usually obtained via the enzymatic hydrolysis of mannan. In order to reduce the cost of preparing MOSs, immobilized enzymes that demonstrate good performance, require simple preparation, and are safe, inexpensive, and reusable must be developed urgently. In this study, β-mannanase was immobilized on calcium alginate (CaAlg). Under the optimal conditions of 320 U enzyme addition, 1.6% sodium alginate, 2% CaCl2, and 1 h of immobilization time, the immobilization yield reached 68.3%. The optimum temperature and pH for the immobilized β-mannanase (Man-CaAlg) were 75 °C and 6.0, respectively. The Man-CaAlg exhibited better thermal stability, a high degree of pH stability, and less substrate affinity than free β-mannanase. The Man-CaAlg could be reused eight times and retained 70.34% of its activity; additionally, the Man-CaAlg showed 58.17% activity after 30 days of storage. A total of 7.94 mg/mL of MOSs, with 4.94 mg/mL of mannobiose and 3.00 mg/mL of mannotriose, were generated in the oligosaccharide production assay. It is believed that this convenient and safe strategy has great potential in the important field of the use of immobilized β-mannanase for the production of mannan oligosaccharides.
Collapse
Affiliation(s)
- Xinggang Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artiffcial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Zhuang Tian
- Key Laboratory of Biometallurgy, Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hongbo Zhou
- Key Laboratory of Biometallurgy, Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artiffcial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Haina Cheng
- Key Laboratory of Biometallurgy, Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Liu X, Zhang Q, Li M, Qin S, Zhao Z, Lin B, Ding Y, Xiang Y, Li C. Horseradish peroxidase (HRP) and glucose oxidase (GOX) based dual-enzyme system: Sustainable release of H 2O 2 and its effect on the desirable ping pong bibi degradation mechanism. ENVIRONMENTAL RESEARCH 2023; 229:115979. [PMID: 37119847 DOI: 10.1016/j.envres.2023.115979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/13/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
In this study, an adaptable HRP/GOX-Glu system was established due to the trait, efficient degradation of pollutants in the catalytic process of HRP named the ping-pong bibi mechanism and a sustained release of H2O2 in-situ under the catalysis of glucose oxidase (GOX). Compared with the traditional HRP/H2O2 system, the HRP was more stable in the HRP/GOX-Glu system based on the feature of persistent releasing H2O2 in-situ. Simultaneously, the high valent iron was found out to give a greater contribution to Alizarin Green (AG) removal through ping-pong mechanism, whereas the hydroxyl radical and superoxide free radical generated by Bio-Fenton were also the main active substances for AG degradation. Furthermore, on the basis of effect evaluation of the co-existence of two different degradation mechanisms in the HRP/GOX-Glu system, the degradation pathways of AG were proposed. Moreover, the optimum reaction conditions preferentially triggering ping-pong bibi mechanism instead of Bio-Fenton were determined by single factor analysis and degradation mechanism elaboration. This study would provide a reference for how to give full play to the advantages of ping-pong bibi mechanism in the dual-enzyme system based on HRP to degrade pollutants with high efficiency.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, China
| | - Song Qin
- School of Art and Design, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Ziqi Zhao
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yuwei Ding
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yutong Xiang
- School of Civil Engineering & Architecture, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Chengwei Li
- Hunan Land and Resources Exploration Institute, Changsha, 410001, China
| |
Collapse
|
9
|
Rai SK, Singh A, Kauldhar BS, Yadav SK. Robust nano-enzyme conjugates for the sustainable synthesis of a rare sugar D-tagatose. Int J Biol Macromol 2023; 231:123406. [PMID: 36702217 DOI: 10.1016/j.ijbiomac.2023.123406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
Aim of present study was to develop biological catalysts of L-arabinose isomerase (L-AI) by immobilizing on four different supports such as multiwalled carbon nanotube (MWCNT), graphene oxide (GOx), Santa Barbara Amorphous (SBA-15) and mobile composite matter (MCM-41). Also, comparative analysis of the developed catalysts was performed to evolve the best in terms of transformation efficiency for D-tagatose production. The developed nano-enzyme conjugates (NECs) were characterized using the high resolution transmission electron microscopy (HR-TEM) and elemental analysis was performed by energy dispersive X-ray spectroscopy (EDS). The functional groups were investigated by Fourier transform infra red spectroscopy. Also, the thermo gravimetric analysis (TGA) was employed to plot a thermal degradation weight loss profile of NECs. The conjugated L-AI with MWCNT and GOx were found to be more promising immobilized catalysts due to their ability to provide more surface area. Conversion of D-Galactose to D-Tagatose at moderate temperature and pH was observed to attain the equilibrium level of transformation (~50%). On the contrary, NECs prepared using SBA-15 and MCM-41 as support matrix were unable to reach the equilibrium level of conversion. Additionally, the developed NECs were suitable for reuse in multiple batch cycles. Thus, promising nanotechnology coupled with biocatalysis made the transformation of D-Galactose into D-tagatose more economically sustainable.
Collapse
Affiliation(s)
- Shushil Kumar Rai
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India; Dept. of Microbial Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Aishwarya Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Baljinder Singh Kauldhar
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali, Punjab 140306, India; Dept. of Microbial Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
10
|
Yassin MA, Gad AAM. Decolorization of dye effluents via immobilized glycoprotein peroxidase on post-consumer polystyrene foam. Int J Biol Macromol 2023; 236:124019. [PMID: 36921820 DOI: 10.1016/j.ijbiomac.2023.124019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Development of sustainable approaches to manage industrial wastes such as plastic waste and dye effluents is a major research endeavor, owing to escalating environmental and health concerns arising from discharge of such wastes into water bodies. In this context, this study aims to convert packaging waste of expanded polystyrene foam (EPS) into effective biocatalyst for enzymatic degradation of dye effluent. Briefly, crushed EPS were decorated with amine groups via chlorosulfonation followed by conjugation of branched polyethylenimine. Carbohydrate rich turnip peroxidase (TPOD) was purified to homogeneity from Brassic rapa roots followed by periodate oxidation to introduce reactive dialdehyde groups. Such oxidized TPOD glycoprotein was covalently immobilized on aminated EPS through Schiff base formation. Immobilized TPOD exposed noticeable tolerance toward elevated temperatures (80 °C) that qualifies it as viable biocatalyst for decolorization of dye effluents that is frequently hot. Indeed, immobilized TPOD could successfully decolorize methyl orange (90 %) and crystal violet (96 %) within 2 h. Due to the floating nature of EPS, the immobilized TPOD was simply separated by skimming and reused in fifteen subsequent catalytic cycles. Ultimately, this work demonstrates the conversion of post-consumer EPS into a value-added biocatalyst for the ecofriendly enzymatic treatment of dye effluents.
Collapse
Affiliation(s)
- Mohamed A Yassin
- Packaging Materials Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt; Advanced Materials and Nanotechnology Lab., Center of Excellence, National Research Centre, Cairo, Egypt.
| | - Abdul Aziz M Gad
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
11
|
Cagide C, Marizcurrena JJ, Vallés D, Alvarez B, Castro-Sowinski S. A bacterial cold-active dye-decolorizing peroxidase from an Antarctic Pseudomonas strain. Appl Microbiol Biotechnol 2023; 107:1707-1724. [PMID: 36773063 DOI: 10.1007/s00253-023-12405-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
DyP (dye-decolorizing peroxidase) enzymes are hemeproteins that catalyze the H2O2-dependent oxidation of various molecules and also carry out lignin degradation, albeit with low activity. We identified a dyp gene in the genome of an Antarctic cold-tolerant microbe (Pseudomonas sp. AU10) that codes for a class B DyP. The recombinant protein (rDyP-AU10) was produced using Escherichia coli as a host and purified. We found that rDyP-AU10 is mainly produced as a dimer and has characteristics that resemble psychrophilic enzymes, such as high activity at low temperatures (20 °C) when using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 as substrates, thermo-instability, low content of arginine, and a catalytic pocket surface larger than the DyPs from some mesophilic and thermophilic microbes. We also report the steady-state kinetic parameters of rDyP-AU10 for ABTS, hydroquinone, and ascorbate. Stopped-flow kinetics revealed that Compound I is formed with a rate constant of (2.07 ± 0.09) × 106 M-1 s-1 at pH 5 and that this is the predominant species during turnover. The enzyme decolors dyes and modifies kraft lignin, suggesting that this enzyme may have potential use in bioremediation and in the cellulose and biofuel industries. KEY POINTS: • An Antarctic Pseudomonas strain produces a dye-decolorizing peroxidase. • The recombinant enzyme (rDyP-AU10) was produced in E. coli and purified. • rDyP-AU10 showed high activity at low temperatures. • rDyP-AU10 is potentially useful for biotechnological applications.
Collapse
Affiliation(s)
- Célica Cagide
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Juan José Marizcurrena
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Diego Vallés
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, and Centro de Investigaciones Biomédicas, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
12
|
Gu Y, Li S, Li M, Wang X, Liu Y, Shi K, Bai X, Yao Q, Wu Z, Yao H. Recent advances in g-C 3N 4-based photo-enzyme catalysts for degrading organic pollutants. RSC Adv 2023; 13:937-947. [PMID: 36686928 PMCID: PMC9811494 DOI: 10.1039/d2ra06994f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, photocatalytic reactions have shown great potential in degrading organic pollutants because of their simple operation and no secondary pollution. Graphitic carbon nitride (g-C3N4) is one of the most frequently used photocatalyst materials in the field of photocatalysis because it is a form of photocatalytic material with facile synthesis, no metal, visible light response, and strong stability. Enzyme-catalyzed degradation has received extensive attention due to its broad selectivity, high efficiency, and environmental friendliness. Horseradish peroxidase (HRP), one of several oxidoreductases utilized for pollutant degradation, has a wide range of applications due to its mild reaction conditions and high stability. Exploring efficient platforms for immobilizing g-C3N4 and HRP to develop photo-enzyme-coupled catalysis is an attractive practical topic. The coupling effect of g-C3N4 and HRP improves the carrier separation efficiency and generates more active species, which finally realize the solar-driven non-selective destruction of organic pollutants. We describe the alteration of g-C3N4 and the immobilization of HRP in detail in this study, and we outline recent developments in the photo-enzyme coupling of g-C3N4 and HRP.
Collapse
Affiliation(s)
- Yaohua Gu
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical UniversityYinchuan 750004P. R. China
| | - Siao Li
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical UniversityYinchuan 750004P. R. China
| | - Mingming Li
- Urology Surgery, General Hospital of Ningxia Medical UniversityYinchuan 750004P. R. China
| | - Xinyu Wang
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical UniversityYinchuan 750004P. R. China
| | - Ying Liu
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical UniversityYinchuan 750004P. R. China
| | - Keren Shi
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia UniversityYinchuan 750021P. R. China
| | - Xiaoyan Bai
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical UniversityYinchuan 750004P. R. China
| | - Qing Yao
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical UniversityYinchuan 750004P. R. China
| | - Zhiqiang Wu
- College of Chemistry and Chemical Engineering, Ningxia Normal UniversityGuyuan 756000P. R. China
| | - Huiqin Yao
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical UniversityYinchuan 750004P. R. China
| |
Collapse
|
13
|
Novel Fe0 Embedded Alginate Beads and Coated with CuO-Fe3O4 as a Sustainable Catalyst for Photo-Fenton Degradation of Oxytetracycline in Wastewater. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Kalsoom U, Khalid N, Ibrahim A, Ashraf SS, Bhatti HN, Ahsan Z, Zdarta J, Bilal M. Biocatalytic degradation of reactive blue 221 and direct blue 297 dyes by horseradish peroxidase immobilized on iron oxide nanoparticles with improved kinetic and thermodynamic characteristics. CHEMOSPHERE 2023; 312:137095. [PMID: 36334735 DOI: 10.1016/j.chemosphere.2022.137095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/14/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
In present study, we describe the biodegradation of direct blue (DB) 297 and reactive blue (RB) 221 by immobilizing horseradish peroxidase (HRP) isolated from fresh leaves of Moringa Oliefera on iron oxide nanoparticles. Iron oxide nanoparticles were synthesized by co-precipitation method and showed a maximum immobilization efficiency of 87%. The surface topography of iron oxide nanoparticles was envisaged by scanning electron microscopy (SEM), results showed that magnetic nanoparticles (MNPs) were in the form of aggregates having size of 1 μm. Furthermore, immobilization was confirmed via functional group identification performed by Fourier transformed infrared spectroscopy (FTIR). Immobilization phenomena displaced the optimum temperature from 35 °C to 50 °C moreover, pH optima were altered from 5.0 to 7.0. Vmax and Km for free and immobilized HRP, were 303 U/mg and 1.66 mM and 312 U/mg and 1.94 mM, respectively. Enzymatic thermodynamic measurements (ΔH*, ΔS*, Ea, ΔG*) were also evaluated for immobilized HRP and its free counterpart. Optimum degradation of reactive blue (RB) and direct blue (DB) 297 with free and immobilized HRP was observed at pH 5 and at temperature 40 °C respectively. The removal efficiency of DB 297 and RB 221 with free HRP was 75% and 86% while with immobilized HRP was 81% and 92% respectively. Furthermore, biodegradation of reactive blue (RB) 221 and direct blue (DB) 297 with immobilized and free biocatalyst was also investigated by Fourier transform infrared spectroscopy (FTIR) by identification of groups involved in dye degradation. FTIR results confirmed the 100% degradation of dyes. Immobilized HRP retained significant catalytic activity after five consecutive cycles of dye degradation. In conclusion, Fe3O4 nanoparticles are promising and environmentally friendly media for enzyme immobilization. Moreover, immobilized HRP showed more thermal stability, pH stability and higher dye degradation efficiency as compared to free HRP. Furthermore, the immobilized HRP, economically more convenient and easily removable from reaction media. Owing to its thermal stability, ease of separation from reaction media and reusability, the magnetically separatable immobilized HRP can be exploited successfully for treatment of dye contaminated textile effluents.
Collapse
Affiliation(s)
- Umme Kalsoom
- Department of Chemistry, Government College Women University Faisalabad, Pakistan.
| | - Nasira Khalid
- Department of Chemistry, Government College Women University Faisalabad, Pakistan
| | - Affaf Ibrahim
- Department of Chemistry, Government College Women University Faisalabad, Pakistan
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Zainab Ahsan
- Department of Chemistry, Government College Women University Faisalabad, Pakistan
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60695, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60695, Poznan, Poland.
| |
Collapse
|
15
|
Liu JJ, Kim JG, Kim HB, Abeysinghe S, Lin YW, Baek K. Covalent immobilizing horseradish peroxidase on electrochemically-functionalized biochar for phenol removal. CHEMOSPHERE 2023; 312:137218. [PMID: 36370757 DOI: 10.1016/j.chemosphere.2022.137218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Enzyme-based biocatalytic treatment has been known as an effective measure to biologically degrade organic pollutants. Advantageously, enzymes could be immobilized on solid supports, and such fact enables reuse/prolong the enzymatic capability. It could be of great importance to functionalize a support material for enhancing the immobilization efficiency/stability of enzymes. As such, this study laid great emphasis on covalent bonding to immobilize horseradish peroxidase (HRP) on a functionalized rice straw biochar with glutaraldehyde (GA) as a crosslinker. Biochar was pretreated by the electrochemical method and the acid treatment respectively to enrich the oxygen-containing functional groups. These led to the enhanced immobilizing ability of biochar. The HRP immobilized on the electrochemically-functionalized biochar (HRP-EBC) showed three times as much enzyme activity as the HRP directly adsorbed onto biochar. The HRP immobilized on the acid-functionalized biochar (HRP-ABC) showed activity similar to that of HRP-EBC. It was concluded that both the (acid/electrochemical) pretreatments are effective to enhance enzyme immobilization. Nevertheless, the electrochemical functionalized method of biochar is chemical oxidant-free, and one important lesson from a series of tests was that the pretreatment of biochar through the electrochemical method could be more environmentally benign. Moreover, employing HRP-EBC could be beneficial from a perspective of a real environmental practice considering its higher pH, thermal stability, and good reusability. 80% of phenol was degraded in 1 h in the presence of HRP-EBC when pH was 7.0 and a ratio of H2O2 to phenol was 1:1.5.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabukdo, Republic of Korea; School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Jong-Gook Kim
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabukdo, Republic of Korea
| | - Hye-Bin Kim
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabukdo, Republic of Korea
| | - Shakya Abeysinghe
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabukdo, Republic of Korea
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Kitae Baek
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabukdo, Republic of Korea.
| |
Collapse
|
16
|
Sharma P, Bano A, Singh SP, Sharma S, Xia C, Nadda AK, Lam SS, Tong YW. Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. CHEMOSPHERE 2022; 306:135538. [PMID: 35792210 DOI: 10.1016/j.chemosphere.2022.135538] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have become a major concern to human health and the environment due to rapid industrialization and urbanization. Traditional treatment measures for removing toxic substances from the environment have largely failed, and thus development and advancement in newer remediation techniques are of utmost importance. Rising environmental pollution with HMs and PAHs prompted the research on microbes and the development of genetically engineered microbes (GEMs) for reducing pollution via the bioremediation process. The enzymes produced from a variety of microbes can effectively treat a range of pollutants, but evolutionary trends revealed that various emerging pollutants are resistant to microbial or enzymatic degradation. Naturally, existing microbes can be engineered using various techniques including, gene engineering, directed evolution, protein engineering, media engineering, strain engineering, cell wall modifications, rationale hybrid design, and encapsulation or immobilization process. The immobilization of microbes and enzymes using a variety of nanomaterials, membranes, and supports with high specificity toward the emerging pollutants is also an effective strategy to capture and treat the pollutants. The current review focuses on successful bioremediation techniques and approaches that make use of GEMs or engineered enzymes. Such engineered microbes are more potent than natural strains and have greater degradative capacities, as well as rapid adaptation to various pollutants as substrates or co-metabolizers. The future for the implementation of genetic engineering to produce such organisms for the benefit of the environment andpublic health is indeed long and valuable.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Ambreen Bano
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, UP, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Dehua Tubao New Decoration Material Co., Ltd., Huzhou, Zhejiang 313200, China
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
17
|
Zhao Z, Ren D, Zhuang M, Wang Z, Zhang X, Zhang S, Chen W. Degradation of 2,4-DCP by the immobilized laccase on the carrier of sodium alginate-sodium carboxymethyl cellulose. Bioprocess Biosyst Eng 2022; 45:1739-1751. [PMID: 36121508 DOI: 10.1007/s00449-022-02783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/08/2022] [Indexed: 12/07/2022]
Abstract
In this paper, sodium alginate-sodium carboxymethyl cellulose (SA-CMC) composite material was used as a carrier, and sodium alginate-embedded laccase (Lac@SC) was prepared by traditional embedding method. After that, ethylene glycol diglycidyl ether (EGDE) and glutaraldehyde (GLU) were used as cross-linking agents, two different cross-linking-embedded co-immobilized laccases (Lac@SCG and Lac@SCE) were innovatively prepared, respectively, and then these immobilized laccases were characterized by SEM, FT-IR and XRD, and the stability of the three immobilized laccases was explored. In addition, the effects of different factors on the removal of 2,4-DCP by immobilized laccase were studied, and the degradation kinetic models of three immobilized laccases on 2,4-DCP were summarized, the possible degradation pathways of pollutants were also given. Experimental results showed that compared to free laccase, the pH stability, thermal stability and storage stability of immobilized laccase were greatly improved. These immobilized laccases could maintain high activity at pH3~6, 45~55 °C. Lac@SCG had the best storage stability. After 30 days of storage, the relative enzyme activity was still more than 40%. Lac@SC had good reusability, the relative enzyme activity was still more than 50% after 5 uses. In the degradation of 2,4-DCP, all three immobilized laccases showed good performance, when Lac@SCE was at pH5, 35 °C, 25 h, the removal rate of 2,4-DCP could reach 95.2%; When at 45 °C, Lac@SC had the highest degradation rate which reach to 94%; At 45 °C, the degradation rate of Lac@SCG reached 83.2%.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China. .,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China.
| | - Mengjuan Zhuang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| |
Collapse
|
18
|
Kamal S, Rehman S, Bibi I, Akhter N, Amir R, Alsanie WF, Iqbal HMN. Graphene oxide/chitosan composites as novel support to provide high yield and stable formulations of pectinase for industrial applications. Int J Biol Macromol 2022; 220:683-691. [PMID: 35987366 DOI: 10.1016/j.ijbiomac.2022.08.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
An extracellular pectinase from a mixed consortium of Bacillus sp. (BSP) was immobilized onto graphene oxide/chitosan composite (GO/CS) through covalent binding to enhance its recycling and operational stability features. Different parameters were optimized, including cross-linker concentration (%), time, pH, and GO/CS-pectinase ratios. GO/CS-pectinase was further characterized by FT-IR and XRD. The activity of GO/CS-pectinase was reached up to 804 μmolmin-1 with an immobilization efficiency of 80.64 ± 1.15 % under optimum conditions. GO/CS-pectinase exhibited a 3.0-folds higher half-life (t1/2) than free pectinase at 50, 55, and 60 °C, respectively. The Vmax and KM values of GO/CS-pectinase were found to be nearly equal to the free pectinase indicating that conformational flexibility was retained. Kd, t1/2, ∆G*, ∆H*, and ∆S* of both free pectinase and GO/CS-pectinase was 0.0339 & 0.0721 min-1, 9.62 and 40.44 min, 81.35, 90.72 kJmol-1, 47.098 & 63.635 kJmol-1, -102.86 & -81.340 Jmole-1 K-1. SEM morphological analysis further confirmed the successful binding of pectinase with GO/CS, which retained about 92 % of its original catalytic activity after ten consecutive reaction cycles. Finally, GO/CS-pectinase was employed for guava juice clarification which exhibited the turbidity reduction up to 81 % after 75 min of treatment.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad, Pakistan.
| | - Saima Rehman
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Ismat Bibi
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Akhter
- College of Allied Health Professionals, Faculty of Medical Sciences, Government College University Faisalabad, Pakistan
| | - Rija Amir
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
19
|
Li W, Bilal M, Singh AK, Sher F, Ashraf SS, Franco M, Américo-Pinheiro JHP, Iqbal HMN. Broadening the Scope of Biocatalysis Engineering by Tailoring Enzyme Microenvironment: A Review. Catal Letters 2022. [DOI: 10.1007/s10562-022-04065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Khalid N, Kalsoom U, Ahsan Z, Bilal M. Non-magnetic and magnetically responsive support materials immobilized peroxidases for biocatalytic degradation of emerging dye pollutants-A review. Int J Biol Macromol 2022; 207:387-401. [PMID: 35278508 DOI: 10.1016/j.ijbiomac.2022.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/07/2022]
Abstract
In recent years, the removal of hazardous pollutants from many industries has become a significant challenge for mankind as a growing number of contaminants, including a wide range of organic pollutants, synthetic dyes, and polycyclic aromatic hydrocarbons (PAHs), have inevitably led to an increased anthropogenic impact on the biosphere. Due to the complex aromatic structure, most synthetic dyes show resistance to degrade by the classical approaches, such as coagulation, flotation, adsorption, membrane process, and reverse osmosis. Enzyme-assisted biodegradation of pollutants offers an eco-friendlier and cost-effective alternative to remediate dyes, dyes-based effluents, other toxins, etc. Various plant and microbial oxidoreductase (Horseradish and manganese peroxidase) have recently received more attention for degrading and detoxifying a wide range of dyes either by opening the aromatic ring structure or by precipitation due to their high activity under milder conditions, high substrate specificity, and biodegradable nature. To enhance the efficiency, stability and recyclability, enzymes were immobilized on various support media such as sodium alginate, agarose, chitin/chitosan, polyvinyl alcohol, polyacrylamide, macroporous exchange resins, hydrophobic sol-gels, and nanoporous silica gel, including magnetically separatable media. Among various types of magnetic nanoparticles (MNPs), iron oxide magnetic nanoparticles, such as hematite, magnetite, and maghemite, have gained great attention due to their properties like small size, superparamagnetism, high surface area to volume ratio, and ease of separation for repeated cycles of uses. These carriers can be separated easily and rapidly from the reaction medium by an external magnetic field without being subjected to mechanical stress than centrifugation or filtration. Various methods have been employed for immobilizing oxidoreductase on different media, such as adsorption, covalent binding, entrapment, and encapsulation using different cross-linking agents. Compared to the free enzyme, insolubilized enzymes reduce production costs by enzyme reusability, tolerance to unfavorable environmental conditions, and high catalytic stability. Here, we review various immobilization methods and biocatalytic degradation of emerging dye pollutants, focusing on various non-magnetically and magnetically responsive supports to immobilize peroxidases. Conclusively, magnetically separatable peroxidases show more stability towards extreme temperature and pH conditions and can be used for repeated cycles than free and non-magnetically separatable peroxidase.
Collapse
Affiliation(s)
- Nasira Khalid
- Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Umme Kalsoom
- Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan.
| | - Zainab Ahsan
- Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| |
Collapse
|
21
|
Khan S, Naushad M, Govarthanan M, Iqbal J, Alfadul SM. Emerging contaminants of high concern for the environment: Current trends and future research. ENVIRONMENTAL RESEARCH 2022; 207:112609. [PMID: 34968428 DOI: 10.1016/j.envres.2021.112609] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/11/2023]
Abstract
Wastewater is contaminated water that must be treated before it may be transferred into other rivers and lakes in order to prevent further groundwater pollution. Over the last decade, research has been conducted on a wide variety of contaminants, but the emerging contaminants are those caused primarily by micropollutants, endocrine disruptors (EDs), pesticides, pharmaceuticals, hormones, and toxins, as well as industrially-related synthetic dyes and dye-containing hazardous pollutants. Most emerging pollutants did not have established guidelines, but even at low concentrations they could have harmful effects on humans and aquatic organisms. In order to combat the above ecological threats, huge efforts have been done with a view to boosting the effectiveness of remediation procedures or developing new techniques for the detection, quantification and efficiency of the samples. The increase of interest in biotechnology and environmental engineering gives an opportunity for the development of more innovative ways to water treatment remediation. The purpose of this article is to provide an overview of emerging sources of contaminants, detection technologies, and treatment strategies. The goal of this review is to evaluate adsorption as a method for treating emerging pollutants, as well as sophisticated and cost-effective approaches for treating emerging contaminants.
Collapse
Affiliation(s)
- Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Sulaiman M Alfadul
- King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| |
Collapse
|
22
|
Tang X, Yu C, Lei Y, Wang Z, Wang C, Wang J. A novel chitosan-urea encapsulated material for persulfate slow-release to degrade organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128083. [PMID: 34923382 DOI: 10.1016/j.jhazmat.2021.128083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
A novel eco-friendly material (CS-U@PS) for persulfate slow-release to effectively degrade organic pollutants (methyl orange and pyrene) was synthesized using chitosan and urea as the encapsulated framework materials via an emulsion cross-linking method for the first time. The obtained CS-U@PS exhibits spherical shapes with a uniform size of approximately 2-3 µm according to the particle-size distribution and SEM image results. The slow-release mechanism was proposed through a kinetics model study and the Ritger-Peppas model fit well (r2 = 0.9699) to indicate that the slow-release process is non-Fickian diffusion. The influences of urea and PS dosages and oxidative conditions on methyl orange degradation were studied, and all the results suggested that urea played an important role in PS slow-release and can also catalyze the activation of PS by iron to further produce radicals and improve the removal efficiency of pollutants. A pyrene removal rate of 90.53% was achieved in aqueous solutions and an above 80% removal rate was obtained in weakly acidic or neutral soil environments by CS-U@PS activated by Fe2+ with citric acid as the chelating agent. Therefore, the fabricated slow-release oxidation materials exhibit application potential for the remediation of organic polluted groundwater and soil.
Collapse
Affiliation(s)
- Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Congya Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yuanyuan Lei
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Zhen Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jingang Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
23
|
Liao Q, Rong H, Zhao M, Luo H, Chu Z, Wang R. Strong adsorption properties and mechanism of action with regard to tetracycline adsorption of double-network polyvinyl alcohol-copper alginate gel beads. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126863. [PMID: 34416684 DOI: 10.1016/j.jhazmat.2021.126863] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
In the present study, glutaraldehyde was used as a hydrophobic modifier to crosslink polyvinyl alcohol (PVA), and copper ion was immobilized by sodium alginate (SA). Polyvinyl alcohol-copper alginate (PVA-CA) gel beads were prepared by a one-step process, and were used to adsorb and remove tetracycline (TC) from an aqueous solution. The beads were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) measurement, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The adsorption experiment showed that the optimal pH value of the beads was 5, and that their adsorption met pseudo-second-order kinetic and Langmuir isothermal models. The adsorption thermodynamics experiment showed that the adsorption process was spontaneous and endothermic. Under optimal adsorption conditions, the maximum adsorption capacity for TC of the beads was 231.431 mg/g, which was much higher than that of a single copper alginate matrix. After 5 adsorption-desorption cycles, the adsorption capacity remained high. FTIR and X-ray photoelectron spectroscopy (XPS) revealed that the cation bonding bridge reaction was the main driving force behind the adsorption mechanism. Compared with other reported adsorption materials, the PVA-CA gel beads have high adsorption capacity, a simple preparation process, and excellent recovery performance.
Collapse
Affiliation(s)
- Quan Liao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huayong Luo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhaorui Chu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Randeng Wang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
24
|
Production of d-tagatose in packed bed reactor containing an immobilized l-arabinose isomerase on alginate support. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Immobilization of a peroxidase from Moringa oleifera Lam. roots (MoPOX) on chitosan beads enhanced the decolorization of textile dyes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Ahsan Z, Kalsoom U, Bhatti HN, Aftab K, Khalid N, Bilal M. Enzyme-assisted bioremediation approach for synthetic dyes and polycyclic aromatic hydrocarbons degradation. J Basic Microbiol 2021; 61:960-981. [PMID: 34608659 DOI: 10.1002/jobm.202100218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Environmental protection from emerging pollutants has become a significant challenge for mankind as an increasing number of contaminants, including synthetic dyes and polycyclic aromatic hydrocarbons (PAHs), represent a serious risk to ecological and environmental balance. Most synthetic dyes have complex aromatic structures and are resistant to degrade by classical approaches, such as physical and chemical processes, including adsorption, chemical coagulation, flocculation, ion exchange, membrane separation, froth flotation, and reverse osmosis. Enzymes-assisted catalytic transformation of pollutants has become a potential alternative to classical methods because of their ability to react with complex compounds, a quick degradation rate, and producing less harmful by-products. Plant peroxidases, and microbial laccase and lignin-degrading peroxidases (manganese and lignin peroxidase) have gained significant attention for treating aromatic waste due to their capability of oxidizing and detoxifying a wide range of recalcitrant xenobiotics, including PAHs and synthetic dyes. Peroxidases being efficient biocatalysts detoxify an array of toxic compounds by simple free-radical mechanism resulting in the formation of oxidized and depolymerized products of significantly reduced toxicity. Moreover, it is an ecofriendly and economically favorable approach towards the biodegradation of recalcitrant and toxic industrial waste. Among microbial and plant peroxidases, bacterial enzymes have broad substrate specificity and can transform a wide range of recalcitrant substrates. Ligninolytic enzymes oxidize the aromatic ring into quinones and acids by producing free hydroxyl radicals instead of dihydrodiols and mineralize aromatic hydrocarbon in combination with cytochrome P450, monooxygenases, and epoxide hydrolases. In the review, an attempt has been made to provide detailed knowledge about the availability of inexpensive peroxidases sources, their mechanism of action, and degradation potential. The present review summarizes the exploitation of peroxidases from plants, bacteria, and fungus (manganese peroxidase, lignin peroxidase, and laccases) for detoxification and degradation of textile dyes as well as PAHs. Conclusively, peroxidases have great potential to react with almost all classes of synthetic dyes and most PAHs due to broad substrate specificity and transformed them into less harmful metabolites.
Collapse
Affiliation(s)
- Zainab Ahsan
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Umme Kalsoom
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Haq N Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Kiran Aftab
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nasira Khalid
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
27
|
Immobilization of β-galactosidase by halloysite-adsorption and entrapment in a cellulose nanocrystals matrix. Biochim Biophys Acta Gen Subj 2021; 1865:129896. [PMID: 33774147 DOI: 10.1016/j.bbagen.2021.129896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Immobilization allows easy recovery and reuse of enzymes in industrial processes. In addition, it may enhance enzyme stability, allowing prolonged use. A simple and novel method of immobilizing β-galactosidase is reported. Effects of immobilization on the enzyme characteristics are explained. β-Galactosidase is well established in dairy processing and has emerging applications in novel syntheses. METHODS β-Galactosidase was immobilized by physical adsorption on halloysite, an aluminosilicate nanomaterial. Optimal conditions for adsorption were identified. The optimally prepared halloysite-adsorbed enzyme was then entrapped in a porous matrix of nanocrystals of sulfated bacterial cellulose, to further enhance stability. RESULTS Under optimal conditions, 89.5% of the available protein was adsorbed per mg of halloysite. The most active and stable final immobilized biocatalyst had 1 part by mass of the enzyme-supporting halloysite particles mixed with 2 parts of cellulose nanocrystals. Immobilization raised the optimal pH of the catalyst to 7.5 (from 6.0 for the native enzyme) and temperature to 55 °C (40 °C for the native enzyme). During storage at 25 °C, the immobilized enzyme retained 75.8% of initial activity after 60 days compared to 29.2% retained by the free enzyme. CONCLUSION The immobilization method developed in this work enhanced enzyme stability during catalysis and storage. Up to 12 cycles of repeated use of the catalyst became feasible. GENERAL SIGNIFICANCE The simple and rapid immobilization strategy of this work is broadly applicable to enzymes used in diverse bioconversions.
Collapse
|
28
|
Wang F, Xu Z, Wang C, Guo Z, Yuan Z, Kang H, Li J, Lu F, Liu Y. Biochemical characterization of a tyrosinase from Bacillus aryabhattai and its application. Int J Biol Macromol 2021; 176:37-46. [PMID: 33571594 DOI: 10.1016/j.ijbiomac.2021.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/05/2023]
Abstract
Although lots of tyrosinases have been isolated from bacteria, few studies are focused on tyrosinases from Bacillus sp.. In this study, a tyrosinase from B. aryabhattai TCCC 111983 (TYR) was functionally expressed, purified, and then biochemically characterized. The recombinant tyrosinase (rTYR) presented a good catalytic activity in a broad temperature and pH range, retaining over 60% of the relative activity at 30 °C-90 °C and 45% at pH 3.0 to 10.0. Especially, rTYR exhibited 20% of its maximum activity at 0 °C, and it also showed a variable stability towards different effectors. It presented high tolerance towards salinity and chloride, retaining 81% of its original activity in 2 M NaCl. Kinetic parameters indicated that rTYR displayed a relatively good affinity for both l-tyrosine and l-DOPA. Additionally, rTYR demonstrated remarkable advantages on efficient decolorizing azo and anthraquinonic food dyes (carmine and erythrosin), and more five industrial dyes with or without mediators in acidic, neutral, and alkaline conditions. As the first report on the tyrosinase from B. aryabhattai, the aforementioned results indicated that rTYR would be potential for food industrial applications.
Collapse
Affiliation(s)
- Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zehua Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chen Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zehui Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhaoting Yuan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hongwei Kang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
29
|
Mohammadi NS, Khiabani MS, Ghanbarzadeh B, Mokarram RR. Improvement of lipase biochemical properties via a two-step immobilization method: Adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. J Biotechnol 2020; 323:189-202. [PMID: 32861701 DOI: 10.1016/j.jbiotec.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/03/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022]
Abstract
In this study, the factors affecting lipase adsorption onto SiO2 nanoparticles including SiO2 nanoparticles amounts (8, 19 and 30 mg/mL), lipase concentrations (30, 90 and 150 μg/mL), adsorption temperatures (5, 20 and 35 °C) and adsorption times (1, 12.5 and 24 h) were optimized using central composite design. The optimal conditions were determined as a SiO2 nanoparticles amount of 8.5-14 mg/ml, a lipase concentration of 106-116 μg/mL, an adsorption temperature of 20 °C and an adsorption time of 12.5 h, which resulted in a specific activity and immobilization efficiency of 20,000 (U/g protein) and 60 %, respectively. The lipase adsorbed under optimal conditions (SiO2-lipase) was entrapped in a PVA/Alg hydrogel, successfully. FESEM and FTIR confirmed the two-step method of lipase immobilization. The entrapped SiO2-lipase retained 76.5 % of its initial activity after 30 days of storage at 4 °C while adsorbed and free lipase retained only 43.4 % and 13.7 %, respectively. SiO2-lipase activity decreased to 34.43 % after 10 cycles of use, while the entrapped SiO2-lipase retained about 64.59 % of its initial activity. Compared to free lipase, the Km values increased and decreased for SiO2-lipase and entrapped SiO2-lipase, respectively. Vmax value increased for both SiO2-lipase and entrapped SiO2-lipase.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
30
|
Vineh MB, Saboury AA, Poostchi AA, Ghasemi A. Biodegradation of phenol and dyes with horseradish peroxidase covalently immobilized on functionalized RGO-SiO 2 nanocomposite. Int J Biol Macromol 2020; 164:4403-4414. [PMID: 32931826 DOI: 10.1016/j.ijbiomac.2020.09.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 01/06/2023]
Abstract
Horseradish peroxidase (HRP) was immobilized onto a functionalized reduced graphene oxide-SiO2 through the covalent bonding process. By using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR), the formed nanocomposites were characterized. The kinetic parameters including the catalytic constant, kcat, and the catalytic efficiency, kcat/Km, increased 5.5 and 6 times, respectively, after immobilization. The circular dichroism analysis demonstrated that the α-helical content increased from 39% to 46% after immobilization. The immobilization improved the reusability of HRP as 70% of initial activity retained after 10 cycles. Due to the buffering effect, the immobilized HRP was less sensitive to pH changes as compared to the free HRP. At temperature 40 °C and during 90 min, the immobilized HRP retained 90% of the initial activity while 70% of initial activity remained for the free HRP. After 35-day storage, no reduction in the activity was observed for the immobilized HRP. The removal efficiency for phenol concentration (2500 mg/L) obtained 100% and 50% for the immobilized and free HRP, respectively. The results showed that the immobilized HRP promoted the dyes decolorization from 2-fold until 26-fold as compared to the free HRP. The decolorization efficiencies reached 100% for most dyes in the case of immobilized HRP.
Collapse
Affiliation(s)
- Monireh Besharati Vineh
- Young Researchers and Elite Club, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran.
| | - Amir Ali Poostchi
- Petrochemical Industries Development Management Company (PIDMCO), P.O. Box 15858-49568, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
31
|
Wang YJ, Xu KZ, Ma H, Liao XR, Guo G, Tian F, Guan ZB. Recombinant Horseradish Peroxidase C1A Immobilized on Hydrogel Matrix for Dye Decolorization and Its Mechanism on Acid Blue 129 Decolorization. Appl Biochem Biotechnol 2020; 192:861-880. [DOI: 10.1007/s12010-020-03377-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022]
|
32
|
Purification, Biochemical Characterization, and Facile Immobilization of Laccase from Sphingobacterium ksn-11 and its Application in Transformation of Diclofenac. Appl Biochem Biotechnol 2020; 192:831-844. [PMID: 32601857 DOI: 10.1007/s12010-020-03371-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
An extracellular laccase enzyme secreted from Sphingobacterium ksn-11 was purified to electrophoretic homogeneity, showing a molecular weight of 90 kDa. The purified enzyme was monomeric in nature confirmed by sodium dodecyl gel electrophoresis. The optimum temperature and pH were found to be 40 °C and 4.5 respectively. The enzyme showed highest substrate specificity for 2,2 azino-bis (ethylthiozoline-6-sulfonate) (ABTS), followed by syringaldazine. The Km value for ABTS was 2.12 mM with a Vmax value of 33.33 U/mg which was higher when compared with syringaldazine and guaiacol substrates. Sodium azide and EDTA inhibited the activity by 30%, whereas presence of Ca2+ and iron increased activity by 50%. The purified enzyme was immobilized in sodium alginate-silicon dioxide-polyvinyl alcohol beads and evaluated for diclofenac transformation studies. LC-MS analysis confirmed that immobilized laccase transformed diclofenac to 4-OH diclofenac after 4 h of incubation. 45 % of diclofenac was able to transform even at 3rd cycle of immobilized laccase use. Therefore, immobilized laccase can be used to transform or degrade several recalcitrant compounds from industrial effluents.
Collapse
|
33
|
Ultra-Thin 2D CuO Nanosheet for HRP Immobilization Supported by Encapsulation in a Polymer Matrix: Characterization and Dye Degradation. Catal Letters 2020. [DOI: 10.1007/s10562-020-03289-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Immobilization of Alkaline Protease From Bacillus brevis Using Ca-Alginate Entrapment Strategy for Improved Catalytic Stability, Silver Recovery, and Dehairing Potentialities. Catal Letters 2020. [DOI: 10.1007/s10562-020-03268-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Nanocapsulation of horseradish peroxidase (HRP) enhances enzymatic performance in removing phenolic compounds. Int J Biol Macromol 2020; 150:814-822. [DOI: 10.1016/j.ijbiomac.2020.02.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
36
|
Physical–chemical analysis and kinetics of the magnetic biocatalyst for 2,3,6,-trimethylphenol oxidation. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01762-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Yao CL, Lin CC, Chu IM, Lai YT. Development of a Surfactant-Containing Process to Improve the Removal Efficiency of Phenol and Control the Molecular Weight of Synthetic Phenolic Polymers Using Horseradish Peroxidase in an Aqueous System. Appl Biochem Biotechnol 2020; 191:45-58. [PMID: 31940119 DOI: 10.1007/s12010-020-03245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/08/2020] [Indexed: 11/25/2022]
Abstract
To reduce phenolic pollutants in the environment, many countries have imposed firm restrictions on industrial wastewater discharge. In addition, the current industrial process of phenolic resin production uses phenol and formaldehyde as the reactants to perform a polycondensation reaction. Due to the toxicity of formaldehyde and phenolic pollutants, the main purpose of this research was to design a green process using horseradish peroxidase (HRP) enzymatic polymerization to remove phenols and to produce formaldehyde-free phenolic polymers. In this study, the optimal reaction conditions, such as reaction temperature, pH, initial phenol concentration and initial ratio of phenol, and H2O2, were examined. Then, the parameters of the enzyme kinetics were determined. To solve the restriction of enzyme inactivation, several nonionic surfactants were selected to improve the phenol removal efficiency, and the optimal operation conditions in a surfactant-containing system were also confirmed. Importantly, the molecular weight of the synthetic phenolic polymers could be controlled by adjusting the ratio of phenol and H2O2. The content of biphenols in the products was almost undetectable. Collectively, a green chemistry process was proposed in this study and would benefit the treatment of phenol-containing wastewater and the production of formaldehyde-free phenolic resin in the future.
Collapse
Affiliation(s)
- Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Che-Chi Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Ting Lai
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung road, Chung-Li District, Taoyuan City, 32003, Taiwan
| |
Collapse
|
38
|
Shakerian F, Zhao J, Li SP. Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants - A review. CHEMOSPHERE 2020; 239:124716. [PMID: 31521938 DOI: 10.1016/j.chemosphere.2019.124716] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 05/05/2023]
Abstract
During the past several years, abundant progresses has been made in the development of immobilized oxidative enzymes with focus on finding new support materials, improving the immobilization methods and their applications. Nowadays, immobilized oxidative enzymes are broadly accepted as a green way to face the challenge of high amounts of micropollutants in nature. Among all oxidative enzymes, laccases and horseradish peroxidase were used frequently in recent years as they are general oxidative enzymes with ability to oxidize various types of compounds. Immobilized laccase or horseradish peroxidase are showed better stability, and reusability as well as easy separation from reaction mixture that make them more favorable and economic in compared to free enzymes. However, additional improvements are still essential such as: development of the new materials for immobilization with higher capacity, easy preparation, and cheaper price. Moreover, immobilization methods are still need improving to become more efficient and avoid enzyme wasting during immobilization and enzyme leakage through working cycles.
Collapse
Affiliation(s)
- Farid Shakerian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
39
|
Bilal M, Iqbal HMN. Microbial Peroxidases and Their Unique Catalytic Potentialities to Degrade Environmentally Related Pollutants. MICROORGANISMS FOR SUSTAINABILITY 2020. [DOI: 10.1007/978-981-15-2679-4_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Wang PH, Chang YR, Lee DJ. Structure for shape stable poly(vinyl alcohol) hydrogel under pH shock. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnol Adv 2019; 37:107401. [DOI: 10.1016/j.biotechadv.2019.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
|
42
|
Wang PH, Chang YR, Lee DJ. Shape stable poly(vinyl alcohol) and alginate cross-linked hydrogel with borate anions under dry–rewet cycles. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Maryskova M, Rysova M, Novotny V, Sevcu A. Polyamide-Laccase Nanofiber Membrane for Degradation of Endocrine-Disrupting Bisphenol A, 17α-ethinylestradiol, and Triclosan. Polymers (Basel) 2019; 11:polym11101560. [PMID: 31557869 PMCID: PMC6835364 DOI: 10.3390/polym11101560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 01/20/2023] Open
Abstract
Contamination of potable water by endocrine disrupting chemicals (EDCs) is a growing problem worldwide. One of the possible treatments is the utilization of laccase enzyme catalyzing oxidation of phenolic structures of EDC when anchored in a polymeric nanofiber membrane. Previous studies failed to develop a membrane with a sufficiently active enzyme, or the immobilization process was too complicated and time-consuming. Here, we established an elegant method for immobilizing Trametes versicolor laccase onto polyamide 6 nanofibers (PA6-laccase) via adsorption and glutaraldehyde crosslinking, promoting high enzyme activity and easier applicability in water treatment technology. This simple and inexpensive immobilization ensures both repeated use, with over 88% of initial activity retained after five ABTS catalytic cycles, and enhanced storage stability. PA6-laccase was highly effective in degrading a 50-µM EDC mixture, with only 7% of bisphenol A, 2% of 17α-ethinylestradiol, and 30% of triclosan remaining after a 24-h catalytic process. The PA6-laccase membrane can lead to the improvement of novel technologies for controlling of EDC contamination in potable water.
Collapse
Affiliation(s)
- Milena Maryskova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic.
| | - Miroslava Rysova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic.
| | - Vit Novotny
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic.
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic.
| |
Collapse
|
44
|
Mohammadi M, Khakbaz Heshmati M, Sarabandi K, Fathi M, Lim LT, Hamishehkar H. Activated alginate-montmorillonite beads as an efficient carrier for pectinase immobilization. Int J Biol Macromol 2019; 137:253-260. [DOI: 10.1016/j.ijbiomac.2019.06.236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/03/2023]
|
45
|
Bilal M, Iqbal HMN. Tailoring Multipurpose Biocatalysts via Protein Engineering Approaches: A Review. Catal Letters 2019; 149:2204-2217. [DOI: 10.1007/s10562-019-02821-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023]
|
46
|
Zhao Y, Liu S, Feng Y, Bilal M. Development and Optimization of Attapulgite Clay Based Microencapsulation for Lactic Acid Bacteria by Response Surface Methodology. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2019-0085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AbstractLactic acid bacteria (LAB), screened and purified from the fermented yogurt, were microencapsulated in sodium alginate (SA) and attapulgite composite microcapsules by external gelation to increase their viability and stability. Surface characterization by scanning electron microscope clearly evidenced a high number of the LAB embedded in SA/attapulgite composite microcapsules than SA counterparts due to a more cohesive structure, and biocompatible microenvironment. SA/attapulgite and CaCl2/attapulgite composites analysis revealed a better embedding effect of attapulgite blend with SA solvent compared with attapulgite mixed with CaCl2. Influence of three major factors including SA, calcium chloride, and attapulgite concentration on LAB embedding rate were optimized by “single factor strategy” as well as response surface methodology (RSM). Optimal conditions of these factors obtained by RSM were SA (1.03 %), Attapulgite (0.28 %), and CaCl2 concentration (1.17 %). The related embedding rate was predicted as 87.1369 %, and the actual measured value was 91.24 % by experiments using the optimal conditions. In conclusion, the results revealed that LAB microencapsulation in the SA and attapulgite composite might display noteworthy protection against the gastrointestinal environment.
Collapse
Affiliation(s)
- Yuping Zhao
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| | - Shuai Liu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| | - Yunqi Feng
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| | - Muhammad Bilal
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian223003, China
| |
Collapse
|
47
|
Chen S, Hu J, Shi J, Wang M, Guo Y, Li M, Duo J, Deng T. Composite hydrogel particles encapsulated ammonium molybdophosphate for efficiently cesium selective removal and enrichment from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:694-704. [PMID: 30897489 DOI: 10.1016/j.jhazmat.2019.03.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
A novel ammonium molybdophosphate (AMP)/ polyvinyl alcohol (PVA)/ sodium alginate (SA) composite hydrogel (APS) was prepared for Cs+ removal and enrichment from radioactive wastewater. Batch experiments with the subject of AMP concentration, pH value, initial Cs+ concentration, contact time, temperature, competing ions were investigated. The results showed this APS hydrogel with high permeability and stability could effectively adsorb Cs+ at widely broad pH value range and low Cs+ concentration within a short time. Adsorption thermodynamic parameters indicated the endothermic and spontaneous nature of the adsorption process, and the Lagergren pseudo-second order model was found to exhibit the best correlation with the adsorption results. Equilibrium data was better described by the Langmuir isotherm equation, and the maximum adsorption capacity of APS hydrogel calculated was in consistent with the experimental results. Furthermore, the APS hydrogel could be easily reused at least five times without obvious decrease in absorption activity and selectivity using ammonia nitrate as the eluent, and what's more, the Cs+ concentration in eluent was approximately concentrated for 2 times after single cycle. All the results suggest that the environmental friendly and low-cost APS hydrogel could be used as effective and selective material for Cs+ removal and enrichment from wastewater.
Collapse
Affiliation(s)
- Shangqing Chen
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiayin Hu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jian Shi
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Mengxue Wang
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yafei Guo
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Mingli Li
- Central Laboratory of Tibet Autonomous Region Bureau of Geological & Mineral Resources, Tibet, 850033, China
| | - Ji Duo
- Central Laboratory of Tibet Autonomous Region Bureau of Geological & Mineral Resources, Tibet, 850033, China
| | - Tianlong Deng
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
48
|
Bilal M, Iqbal HMN. Naturally-derived biopolymers: Potential platforms for enzyme immobilization. Int J Biol Macromol 2019; 130:462-482. [PMID: 30825566 DOI: 10.1016/j.ijbiomac.2019.02.152] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 02/08/2023]
Abstract
Naturally-derived biopolymers such as alginate, chitosan, cellulose, agarose, guar gum/guaran, agar, carrageenan, gelatin, dextran, xanthan, and pectins, etc. have appealed significant attention over the past several years owing to their natural abundance and availability all over the years, around the globe. In addition, their versatile properties such as non-toxicity, biocompatibility, biodegradability, flexibility, renewability, and the availability of numerous reactive sites offer significant functionalities with multipurpose applications. At present, intensive research efforts have been focused on engineering enzymes using natural biopolymers as novel support/composite materials for diverse applications in biomedical, environmental, pharmaceutical, food and biofuel/energy sectors. Immobilization appears as a straightforward and promising approach to developing biocatalysts with improved catalytic properties as compared to their free counterparts. Biopolymers-assisted enzymes are more stable, robust, and recoverable than that of free forms, and can be employed for continuous biocatalytic reactions. The present review highlights the recent developments and use of biopolymers and their advanced composites as support carriers for the immobilization of a variety of different enzymes to develop biocatalysts with desired catalytic activity and stability characteristics for emerging applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
49
|
Bilal M, Cui J, Iqbal HMN. Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis. Int J Biol Macromol 2019; 130:186-196. [PMID: 30817963 DOI: 10.1016/j.ijbiomac.2019.02.141] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 02/08/2023]
Abstract
Enzymes as green industrial biocatalysts have become a powerful norm that offers several advantages over traditional catalytic agents with regard to process efficiency, reusability, sustainability, and overall cost-effective ratio. However, enzymes obtained from natural origins are often engineered/tailored since their native forms do not fulfill the acute need for the industrial application. Revolutionary developments in protein engineering provide excellent opportunities for designing and constructing novel industrial biocatalysts with improved functional properties including catalytic activity, stability, substrate specificity, and reaction product inhibition. Momentum in enzyme immobilization has enabled robustness and optimal functions in extreme industrial environments, such as high temperature or organic solvents. The emergence of multi-enzyme catalytic cascade based on a combination of biocatalysts presents multifarious opportunities in biosynthesis, biocatalysis, and biotransformation. This review focuses on the emerging and state-of-the-art enzyme engineering trends and approaches to constructing innovative nano- and microstructured biocatalysts with enhanced catalytic activity and stability features requisite for industrial exploitation. Continuous key developments in this direction together with protein engineering in unique ways might offer ever-increasing opportunities for future biocatalysis-based industrial bioprocesses.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
50
|
Rasheed T, Nabeel F, Bilal M, Iqbal HM. Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019; 19:101154. [DOI: 10.1016/j.bcab.2019.101154] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|