1
|
Zhu H, Xu G. Electrochemical biosensors for dopamine. Clin Chim Acta 2025; 566:120039. [PMID: 39550057 DOI: 10.1016/j.cca.2024.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Dopamine (DA), a key catecholamine, plays a pivotal role in the regulation of human cognition and emotions. It has profound effects on the hormonal, memory, and cardiovascular systems. Anomalies like Alzheimer's, Parkinson's, schizophrenia, and senile dementia are linked to abnormal DA levels. Consequently, the precise determination of DA levels in biological systems is critical for the accurate diagnosis and treatment of these disorders. Among all analytical techniques, electrochemical studies provide the most selective and highly sensitive methods for detecting DA in biological samples. Ascorbic acid and uric acid are two examples of small biomolecules that can obstruct the detection of DA in biological fluids. To address this issue, numerous attempts have been made to modify bare electrodes to separate the signals of these substances and enhance the electrocatalytic activity towards DA. Various surface modifiers, including coatings, conducting polymers, ionic liquids, nanomaterials, and inorganic complexes, have been employed in the modification process. Despite the reported success in DA detection using electrochemical sensors, many of these approaches are deemed too complex and costly for real-world applications. Therefore, this review aims to provide an overview of DA electrochemical biosensors that are practical for real-world applications.
Collapse
Affiliation(s)
- Hang Zhu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, Fujian 351100, China.
| | - Guifen Xu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China
| |
Collapse
|
2
|
Vafadar A, Vosough P, Alashti SK, Taghizadeh S, Savardashtaki A. Biosensors for the detection of celiac disease. Clin Chim Acta 2024; 567:120092. [PMID: 39681227 DOI: 10.1016/j.cca.2024.120092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Celiac disease (CeD) is an autoimmune disorder triggered by sensitivity to gluten, a protein complex found in wheat, barley, and rye. Gliadins, a component of gluten, are proteins that trigger an immune response in individuals with CeD, primarily affecting the small intestine's inner lining. Despite a 1-1.5% prevalence, only 24% of cases are diagnosed due to non-specific symptoms. Screening is advised for high-risk groups, including first-degree relatives and type 1 diabetes patients. The accurate diagnosis of this condition and the assessment of the patient's response to the current treatment - a lifelong gluten-free diet - necessitate using dependable, swift, sensitive, specific, uncomplicated, and affordable analytical methods. Detecting CeD biomarkers in whole blood, serum, or plasma provides a non-invasive approach that serves as an ideal initial diagnostic step. Biosensors offer a novel and alternative way for CeD detection, began emerging in 2007, and hold promise for clinical and point-of-care applications. This review explores the use of biomarker-based diagnostic approaches for CeD, with a focus on biosensors. It delves into the progress of biosensors for CeD diagnosis, identifying trends and challenges in this evolving field. Key biomarkers are highlighted, offering insights into the evolving landscape of biosensors in CeD detection.
Collapse
Affiliation(s)
- Asma Vafadar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Khalili Alashti
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Dumitriu C, Pandele AM, Mîndroiu MV, Lazar OA, Popp A, Enachescu M, Buica GO. Electrochemical detection of anti-tissue transglutaminase antibody using quantum dots-doped polypyrrole-modified electrode. Mikrochim Acta 2024; 191:543. [PMID: 39153033 PMCID: PMC11330391 DOI: 10.1007/s00604-024-06620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
A nanohybrid-modified glassy carbon electrode based on conducting polypyrrole doped with carbon quantum dots (QDs) was developed and used for the electrochemical detection of anti-tissue transglutaminase (anti-tTG) antibodies. To improve the polypyrrole conductivity, carrier mobility, and carrier concentration, four types of carbon nanoparticles were tested. Furthermore, a polypyrrole-modified electrode doped with QDs was functionalized with a PAMAM dendrimer and transglutaminase 2 protein by cross-linking with N-hydroxysuccinimide (NHS)/N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). The steps of electrode surface modification were surveyed via electrochemical measurements (differential pulse voltammetry (DPV), impedance spectroscopy, and X-ray photoelectron spectroscopy (XPS)). The surface characteristics were observed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and contact angle measurements. The obtained modified electrode exhibited good stability and repeatability. DPV between - 0.1 and 0.6 V (vs. Ag/AgCl 3 M KCl reference electrode) was used to evaluate the electrochemical alterations that occur after the antibody interacts with the antigen (transglutaminase 2 protein), for which the limit of detection was 0.79 U/mL. Without the use of a secondary label, (anti-tTG) antibodies may be detected at low concentrations because of these modified electrode features.
Collapse
Affiliation(s)
- Cristina Dumitriu
- National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania
| | - Andreea Madalina Pandele
- National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania
| | - Mihaela Vasilica Mîndroiu
- National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania
| | - Oana-Andreea Lazar
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania
| | - Alina Popp
- National Institute for Mother and Child Health "Alessandrescu-Rusescu", 120 Lacul Tei Boulevard, Sector 2, 020395, Bucharest, Romania
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050094, Bucharest, Romania
| | - George-Octavian Buica
- National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, Sector 6, 060042, Bucharest, Romania.
| |
Collapse
|
4
|
Jiang J, Luo L, Ying N, Wu S, Ji J, Su H, Li X, Zeng D. Electrochemical biosensor based on PAMAM functionalized MXene nanoplatform for detection of folate receptor. Bioelectrochemistry 2024; 156:108627. [PMID: 38142545 DOI: 10.1016/j.bioelechem.2023.108627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
The level of folate receptor (FR) has become one of the independent factors for measuring human tumor diseases. The precise quantification of FR is helpful for the early diagnosis and subsequent treatment of tumors. The modification of electrodes is a key issue in ensuring and enhancing the electrochemical biosensing ability. In this study, we in-situ synthesized a nanocomposite material with excellent conductivity and stability by grafting first-generation poly(amidoamine) dendrimers onto the MXene (Ti3C2TX) as the immobilized matrix (PAMAM@MXene). An electrochemical sensor was developed for FR monitor by loading the PAMAM@MXene on screen-printed carbon electrodes (SPCEs). Scanning electron microscopy (SEM) supported the effective synthesis of PAMAM@MXene. Under optimal conditions, the prepared sensor achieved the quantification of FR with a wide range of concentrations from 10 ng/mL to 1000 ng/mL with a detection limit (LOD) of 5.6 ng/mL. It also exhibited satisfactory selectivity, reproducibility, and stability, which provided the possibility for expanding new pathways in the detection of clinical FR.
Collapse
Affiliation(s)
- Jiayi Jiang
- University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shu Wu
- University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Jun Ji
- University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Haoyuan Su
- University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xiaoou Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
5
|
Teniou A, Rhouati A, Marty JL. Recent Advances in Biosensors for Diagnosis of Autoimmune Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:1510. [PMID: 38475046 DOI: 10.3390/s24051510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Over the last decade, autoimmune diseases (ADs) have undergone a significant increase because of genetic and/or environmental factors; therefore, their simple and fast diagnosis is of high importance. The conventional diagnostic techniques for ADs require tedious sample preparation, sophisticated instruments, a dedicated laboratory, and qualified personnel. For these reasons, biosensors could represent a useful alternative to these methods. Biosensors are considered to be promising tools that can be used in clinical analysis for an early diagnosis due to their high sensitivity, simplicity, low cost, possible miniaturization (POCT), and potential ability for real-time analysis. In this review, recently developed biosensors for the detection of autoimmune disease biomarkers are discussed. In the first part, we focus on the main AD biomarkers and the current methods of their detection. Then, we discuss the principles and different types of biosensors. Finally, we overview the characteristics of biosensors based on different bioreceptors reported in the literature.
Collapse
Affiliation(s)
- Ahlem Teniou
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine 25100, Algeria
| | - Amina Rhouati
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine 25100, Algeria
| | - Jean-Louis Marty
- Laboratoire BAE, Université de Perpignan through Domitia, 66860 Perpignan, France
| |
Collapse
|
6
|
Palaniyandi T, B K, Prabhakaran P, Viswanathan S, Rahaman Abdul Wahab M, Natarajan S, Kumar Kaliya Moorthy S, Kumarasamy S. Nanosensors for the diagnosis and therapy of neurodegenerative disorders and inflammatory bowel disease. Acta Histochem 2023; 125:151997. [PMID: 36682145 DOI: 10.1016/j.acthis.2023.151997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
One of the areas of science which has immensely advanced in the recent years is nanotechnology. This area broadly revolves around matter at scales between 1 and 100 nm, where peculiar phenomena make way for cutting-edge applications. Today, nanotechnology has a daily impact on human life with numerous and varied possible advantages. Nanosensors are one of the products of nanotechnology and any sensor that uses nanoscale phenomena qualifies to be known as a nanosensor. Nanosensors have proven very useful in a number of sectors including medical applications, food quality analysis and agricultural controlling process, etc. One of the major human healthcare applications of nanosensors is for disease diagnosis. With the aid of nanosensors, numerous neurodegenerative disorders and inflammatory diseases are commonly identified and treated of late. Alzheimer's disease (AD) and inflammatory bowel disease fall under the categories of neurodegenerative illnesses and inflammatory diseases. There are more than 20 million cases of (AD) making it the most prevalent neurological condition globally and "inflammatory bowel disease" (IBD) refers to a variety of conditions that cause persistent inflammation of the digestive tract. Here we present a comprehensive account on the utility of nanosensors for the diagnosis and treatment of (AD) and (IBD).
Collapse
Affiliation(s)
- Thirunavukkarsu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India; Department of Anatomy, Biomedical Reseach Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Kanagavalli B
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Pranav Prabhakaran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Sudhakar Natarajan
- ICMR - National Institute for Research in Tuberculosis (NIRT), Chetpet, Chennai, Tamil Nadu, India
| | - Senthil Kumar Kaliya Moorthy
- Department of electronics and communication engineering, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Saravanan Kumarasamy
- Department of electrical and electronics engineering, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| |
Collapse
|
7
|
Kumar H, Valko M, Alomar SY, Alwasel SH, Cruz-Martins N, Kuča K, Kumar D. Electrochemical immunosensor for the detection of colistin in chicken liver. 3 Biotech 2022; 12:190. [PMID: 35910287 PMCID: PMC9325936 DOI: 10.1007/s13205-022-03252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/03/2022] [Indexed: 11/25/2022] Open
Abstract
An innovative amperometric immunosensor has been developed to detect antibiotic colistin from the chicken liver. Colistin is a antibacterial peptide that has been barred for human consumption, but it is being commonly used as a veterinary drug, and as a feed additive for livestock. In the present work, an immunosensor was developed by immobilizing an anti-colistin Ab onto the CNF/AuNPs surface of the screen-printed electrode. The sensor records electrochemical response in the chicken liver spiked with colistin with CV. Additionally, the characterization of electrode surface was done with FE-SEM, FTIR, and EIS at each step of fabrication. The lower LOD was 0.89 μgKg-1, with a R 2 of 0.901 using CV. Further validation of the immunosensor was conducted using commercial chicken liver samples, by comparing the results to those obtained using traditional methods. The fabricated immunosensor showed high specificity towards colistin, which remained stable for 6 months but with a 13% loss in the initial CV current.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Marian Valko
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, 81237 Bratislava, Slovakia
- Zoology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Suliman Y. Alomar
- Zoology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Saleh H. Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD Portugal
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18071 Granada, Spain
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| |
Collapse
|
8
|
Ultrasensitive early detection of insulin antibody employing novel electrochemical nano-biosensor based on controllable electro-fabrication process. Talanta 2022; 238:122947. [PMID: 34857352 DOI: 10.1016/j.talanta.2021.122947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
An ultrasensitive novel electrochemical nano-biosensor for rapid detection of insulin antibodies against diabetes antigens was developed in this research. The presence of insulin antibodies has been demonstrated to be a strong predictor for the development of type 1 diabetes in individuals who do not have diabetes but are genetically predisposed. The proposed nano-biosensor fabrication process was based on the optimized sequential electropolymerization of polyaniline and electrodeposition of gold nanoparticles on the surface of the functionalized gold electrode. The morphological and chemical characterization of the modified electrode was studied by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and micro Raman spectroscopy. Moreover, the role of each component in the modification of the electrode was studied by electrochemical methods systematically. After immobilizing insulin antigen and blocking with bovine serum albumin, the nano-biosensor was used for determining different concentrations of insulin antibody under the optimal conditions. This nano-biosensor could respond to insulin antibody with a linear calibration range from 0.001 ng ml-1 to 1000 ng ml-1 with the detection limit of 0.017 pg ml-1 and 0.034 pg ml-1 and selectivity of 18.544 μA ng-1 ml.cm-2 and 31.808 μA ng-1 ml.cm-2 via differential pulse voltammetry and square wave voltammetry, respectively. This novel nano-biosensor exhibited a short response time, high sensitivity, and good reproducibility. It was successfully used in determining the insulin antibody in human samples with a standard error of less than 0.178. Therefore, the nano-biosensor has the potential for the application of early detection of type 1 diabetes. To our best knowledge, label-free electrochemical detection of insulin antibody based on immunosensor is developed for the first time.
Collapse
|
9
|
Longo S, De Leo L, Not T, Ugo P. Nanoelectrode ensemble immunosensor platform for the anodic detection of anti-tissue transglutaminase isotype IgA. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Singh A, Sharma A, Ahmed A, Sundramoorthy AK, Furukawa H, Arya S, Khosla A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. BIOSENSORS 2021; 11:336. [PMID: 34562926 PMCID: PMC8472208 DOI: 10.3390/bios11090336] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 05/11/2023]
Abstract
The electrochemical biosensors are a class of biosensors which convert biological information such as analyte concentration that is a biological recognition element (biochemical receptor) into current or voltage. Electrochemical biosensors depict propitious diagnostic technology which can detect biomarkers in body fluids such as sweat, blood, feces, or urine. Combinations of suitable immobilization techniques with effective transducers give rise to an efficient biosensor. They have been employed in the food industry, medical sciences, defense, studying plant biology, etc. While sensing complex structures and entities, a large data is obtained, and it becomes difficult to manually interpret all the data. Machine learning helps in interpreting large sensing data. In the case of biosensors, the presence of impurity affects the performance of the sensor and machine learning helps in removing signals obtained from the contaminants to obtain a high sensitivity. In this review, we discuss different types of biosensors along with their applications and the benefits of machine learning. This is followed by a discussion on the challenges, missing gaps in the knowledge, and solutions in the field of electrochemical biosensors. This review aims to serve as a valuable resource for scientists and engineers entering the interdisciplinary field of electrochemical biosensors. Furthermore, this review provides insight into the type of electrochemical biosensors, their applications, the importance of machine learning (ML) in biosensing, and challenges and future outlook.
Collapse
Affiliation(s)
- Anoop Singh
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Asha Sharma
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Aamir Ahmed
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Ashok K. Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Hidemitsu Furukawa
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan;
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Ajit Khosla
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan;
| |
Collapse
|
11
|
Gold Nanoparticles: Multifaceted Roles in the Management of Autoimmune Disorders. Biomolecules 2021; 11:biom11091289. [PMID: 34572503 PMCID: PMC8470500 DOI: 10.3390/biom11091289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Gold nanoparticles (GNPs) have been recently applied for various diagnostic and therapeutic purposes. The unique properties of these nanoparticles (NPs), such as relative ease of synthesis in various sizes, shapes and charges, stability, high drug-loading capacity and relative availability for modification accompanied by non-cytotoxicity and biocompatibility, make them an ideal field of research in bio-nanotechnology. Moreover, their potential to alleviate various inflammatory factors, nitrite species, and reactive oxygen production and the capacity to deliver therapeutic agents has attracted attention for further studies in inflammatory and autoimmune disorders. Furthermore, the characteristics of GNPs and surface modification can modulate their toxicity, biodistribution, biocompatibility, and effects. This review discusses in vitro and in vivo effects of GNPs and their functionalized forms in managing various autoimmune disorders (Ads) such as rheumatoid arthritis, type 1 diabetes, and multiple sclerosis.
Collapse
|
12
|
Sokolov AV, Limareva LV, Iliasov PV, Gribkova OV, Sustretov AS. Methods of Encapsulation of Biomacromolecules and Living Cells. Prospects of Using Metal–Organic Frameworks. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [PMCID: PMC8141827 DOI: 10.1134/s1070428021040011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The review discusses different methods of encapsulation and biomineralization of macromolecules and living cells. Main advantages and disadvantages of most commonly used carriers, matrices, and materials for immobilization of proteins, enzymes, nucleic acids, and living cells are briefly surveyed. Examples of delivery vehicles for multifunctional encapsulation of protein-like substances are presented. Particular attention is paid to prospects of using metal–organic frameworks in medicine and biotechnology.
Collapse
Affiliation(s)
- A. V. Sokolov
- Institute of Experimental Medicine and Biotechnologies, Samara State Medical University, Ministry of Health of the Russian Federation, 443099 Samara, Russia
| | - L. V. Limareva
- Institute of Experimental Medicine and Biotechnologies, Samara State Medical University, Ministry of Health of the Russian Federation, 443099 Samara, Russia
| | - P. V. Iliasov
- Institute of Experimental Medicine and Biotechnologies, Samara State Medical University, Ministry of Health of the Russian Federation, 443099 Samara, Russia
| | - O. V. Gribkova
- Institute of Experimental Medicine and Biotechnologies, Samara State Medical University, Ministry of Health of the Russian Federation, 443099 Samara, Russia
| | - A. S. Sustretov
- Institute of Experimental Medicine and Biotechnologies, Samara State Medical University, Ministry of Health of the Russian Federation, 443099 Samara, Russia
| |
Collapse
|
13
|
Kumar H, Chen BH, Kuca K, Nepovimova E, Kaushal A, Nagraik R, Bhatia SK, Dhanjal DS, Kumar V, Kumar A, Upadhyay NK, Verma R, Kumar D. Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review. Animals (Basel) 2020; 10:E1892. [PMID: 33081121 PMCID: PMC7602861 DOI: 10.3390/ani10101892] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detection.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram-122413, Haryana, India;
| | - Rupak Nagraik
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea;
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Anil Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Navneet Kumar Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India;
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| |
Collapse
|
14
|
Kala D, Gupta S, Nagraik R, Verma V, Thakur A, Kaushal A. Diagnosis of scrub typhus: recent advancements and challenges. 3 Biotech 2020; 10:396. [PMID: 32834918 PMCID: PMC7431554 DOI: 10.1007/s13205-020-02389-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Scrub typhus is a mite-borne, acute febrile illness caused by the bacterium Orientia tsutsugamushi. It is a re-emerging infectious disease of the tsutsugamushi triangle. Scrub typhus is transmitted through bites of contaminated chiggers (larval stage). Diagnosis of scrub typhus is challenging as its symptoms mimic with other acute febrile illnesses. Several methods are effectual for diagnosis of scrub typhus that includes enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay (IFA), immunochromatographic test (ICT), Weil-Felix, polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP). Weil-Felix test was initially used for the diagnosis of scrub typhus in underdeveloped countries but not preferred due to a lack of both specificity and sensitivity. Other immuno-based methods like IFA and ELISA are most outrank for detection of scrub typhus due to their higher sensitivity and specificity, but not vigorous to lay bare the infection at early stages and need the convalescent sampling for verification of positive samples. On another deed, PCR based methods becoming acceptable over era due to its dexterity of early-stage diagnosis with higher specificity and sensitivity but lack its applicability in circumstances of scrub typhus due to the variegated genetic makeup of Orientia tsutsugamushi among its serotypes. The present review focused on various detection methods along with their advantages and disadvantages used in the diagnosis of scrub typhus. A comparison between available methods of diagnosis with challenges in the detection of scrub typhus is also summarized.
Collapse
Affiliation(s)
- Deepak Kala
- Amity Center of Nanotechnology, Amity University, Haryana, 122413 India
| | | | | | | | - Atul Thakur
- Amity Center of Nanotechnology, Amity University, Haryana, 122413 India
| | - Ankur Kaushal
- Amity Center of Nanotechnology, Amity University, Haryana, 122413 India
| |
Collapse
|
15
|
Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens. SENSORS 2020; 20:s20071966. [PMID: 32244581 PMCID: PMC7181077 DOI: 10.3390/s20071966] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
The intake of microbial-contaminated food poses severe health issues due to the outbreaks of stern food-borne diseases. Therefore, there is a need for precise detection and identification of pathogenic microbes and toxins in food to prevent these concerns. Thus, understanding the concept of biosensing has enabled researchers to develop nanobiosensors with different nanomaterials and composites to improve the sensitivity as well as the specificity of pathogen detection. The application of nanomaterials has enabled researchers to use advanced technologies in biosensors for the transfer of signals to enhance their efficiency and sensitivity. Nanomaterials like carbon nanotubes, magnetic and gold, dendrimers, graphene nanomaterials and quantum dots are predominantly used for developing biosensors with improved specificity and sensitivity of detection due to their exclusive chemical, magnetic, mechanical, optical and physical properties. All nanoparticles and new composites used in biosensors need to be classified and categorized for their enhanced performance, quick detection, and unobtrusive and effective use in foodborne analysis. Hence, this review intends to summarize the different sensing methods used in foodborne pathogen detection, their design, working principle and advances in sensing systems.
Collapse
|
16
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
17
|
Mansuriya BD, Altintas Z. Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E96. [PMID: 31878102 PMCID: PMC6982008 DOI: 10.3390/ma13010096] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
In the area of biomedicine, research for designing electrochemical sensors has evolved over the past decade, since it is crucial to selectively quantify biomarkers or pathogens in clinical samples for the efficacious diagnosis and/or treatment of various diseases. To fulfil the demand of rapid, specific, economic, and easy detection of such biomolecules in ultralow amounts, numerous nanomaterials have been explored to effectively enhance the sensitivity, selectivity, and reproducibility of immunosensors. Graphene quantum dots (GQDs) have garnered tremendous attention in immunosensor development, owing to their special attributes such as large surface area, excellent biocompatibility, quantum confinement, edge effects, and abundant sites for chemical modification. Besides these distinct features, GQDs acquire peroxidase (POD)-mimicking electro-catalytic activity, and hence, they can replace horseradish peroxidase (HRP)-based systems to conduct facile, quick, and inexpensive label-free immunoassays. The chief motive of this review article is to summarize and focus on the recent advances in GQD-based electrochemical immunosensors for the early and rapid detection of cancer, cardiovascular disorders, and pathogenic diseases. Moreover, the underlying principles of electrochemical immunosensing techniques are also highlighted. These GQD immunosensors are ubiquitous in biomedical diagnosis and conducive for miniaturization, encouraging low-cost disease diagnostics in developing nations using point-of-care testing (POCT) and similar allusive techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
18
|
Gheybi H, Sattari S, Soleimani K, Adeli M. Graphene-dendritic polymer hybrids: synthesis, properties, and applications. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01817-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Ghorbani F, Abbaszadeh H, Mehdizadeh A, Ebrahimi-Warkiani M, Rashidi MR, Yousefi M. Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review. Mikrochim Acta 2019; 186:838. [DOI: 10.1007/s00604-019-3844-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
|
20
|
Pseudomonas fluorescens: a potential food spoiler and challenges and advances in its detection. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01501-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
21
|
Hepatitis E: Current Status in India and Other Asian Countries. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
22
|
Habtamu HB, Not T, De Leo L, Longo S, Moretto LM, Ugo P. Electrochemical Immunosensor Based on Nanoelectrode Ensembles for the Serological Analysis of IgG-type Tissue Transglutaminase. SENSORS 2019; 19:s19051233. [PMID: 30862087 PMCID: PMC6427579 DOI: 10.3390/s19051233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/17/2022]
Abstract
Celiac disease (CD) is a gluten-dependent autoimmune disorder affecting a significant percentage of the general population, with increasing incidence particularly for children. Reliable analytical methods suitable for the serological diagnosis of the disorder are urgently required for performing both the early diagnosis and the follow-up of a patient adhering to a gluten-free diet. Herein we report on the preparation and application of a novel electrochemical immunosensor based on the use of ensembles of gold nanoelectrodes (NEEs) for the detection of anti-tissue transglutaminase (anti-tTG), which is considered one reliable serological marker for CD. To this end, we take advantage of the composite nature of the nanostructured surface of membrane-templated NEEs by functionalizing the polycarbonate surface of the track-etched membrane with tissue transglutaminase. Incubation of the functionalized NEE in anti-tTG samples results in the capture of the anti-tTG antibody. Confirmation of the recognition event is achieved by incubating the NEE with a secondary antibody labelled with horseradish peroxidase (HRP): in the presence of H2O2 as substrate and hydroquinone as redox mediator, an electrocatalytic current is indeed generated whose increment is proportional to the amount of anti-tTG captured from the sample. The optimized sensor allows a detection limit of 1.8 ng mL−1, with satisfactory selectivity and reproducibility. Analysis of serum samples from 28 individuals, some healthy and some affected by CD, furnished analytical results comparable with those achieved by classical fluoroenzyme immunoassay (FEIA). We note that the NEE-based immunosensor developed here detects the IgG isotype of anti-tTG, while FEIA detects the IgA isotype, which is not a suitable diagnostic marker for IgA-deficient patients.
Collapse
Affiliation(s)
- Henok B Habtamu
- Department of Molecular Sciences and Nanosystems, University Ca'Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy.
| | - Tarcisio Not
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", 34100 Trieste, Italy.
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy.
| | - Luigina De Leo
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", 34100 Trieste, Italy.
| | - Sara Longo
- Department of Molecular Sciences and Nanosystems, University Ca'Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy.
| | - Ligia M Moretto
- Department of Molecular Sciences and Nanosystems, University Ca'Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy.
| | - Paolo Ugo
- Department of Molecular Sciences and Nanosystems, University Ca'Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy.
| |
Collapse
|
23
|
Electrochemical Biosensors as Potential Diagnostic Devices for Autoimmune Diseases. BIOSENSORS-BASEL 2019; 9:bios9010038. [PMID: 30836674 PMCID: PMC6468465 DOI: 10.3390/bios9010038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/17/2019] [Accepted: 02/27/2019] [Indexed: 01/19/2023]
Abstract
An important class of biosensors is immunosensors, affinity biosensors that are based on the specific interaction between antibodies and antigens. They are classified in four classes based on the type of employed transducer: electrochemical, optical, microgravimetric, and thermometric and depending on the type of recognition elements, antibodies, aptamers, microRNAs and recently peptides are integrating parts. Those analytical devices are able to detect peptides, antibodies and proteins in various sample matrices, without many steps of sample pretreatment. Their high sensitivity, low cost and the easy integration in point of care devices assuring portability are attracting features that justify the increasing interest in their development. The use of nanomaterials, simultaneous multianalyte detection and integration on platforms to form point-of-care devices are promising tools that can be used in clinical analysis for early diagnosis and therapy monitoring in several pathologies. Taking into account the growing incidence of autoimmune disease and the importance of early diagnosis, electrochemical biosensors could represent a viable alternative to currently used diagnosis methods. Some relevant examples of electrochemical assays for autoimmune disease diagnosis developed in the last several years based on antigens, antibodies and peptides as receptors were gathered and will be discussed further.
Collapse
|
24
|
Abstract
Celiac disease (CD) is a T cell-mediated inflammatory autoimmune disorder of the upper small intestine caused by the ingestion of gluten. It is increasingly recognized as a global problem by experts and societies. The diagnosis of CD is of crucial importance because its delay strongly affects patient's health and quality of life. The diagnosis of CD is, however, complex and requires reliable, sensitive, specific, rapid, simple, and cost-effective, as well-as non-invasive analytical tools. There is also a high demand to develop simple point-of-care (POC) tests for non-specialists at home or in doctors' offices. Analytical techniques are now moving toward the development of fast, more simple, non-invasive, and POC analyses. The present review focuses on recent advances of CD biomarker detection in body fluids, concerning CD specific autoantibody detection in blood and saliva using electrochemical, optic-fiber, and piezoelectric biosensors and POC finger-prick tests, and identifying CD characteristic volatile organic compounds (VOCs) in urine and feces.
Collapse
|
25
|
Gupta S, Kaushal A, Kumar A, Kumar D. Recent advances in biosensors for diagnosis of celiac disease: A review. Biotechnol Bioeng 2018; 116:444-451. [PMID: 30516838 DOI: 10.1002/bit.26856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/13/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
Celiac disease (CD) is an intestinal issue activated by the inappropriate immune reaction towards gluten protein of wheat, rye, barley, oats, and autoantigen, tissue transglutaminase. Regardless of the accessibility of immunochemical conventions for research facility analysis of CD, there is as yet a need of speedier, less expensive, and simpler devices for diagnosing CD. This review concentrates on progresses in biosensors for diagnosing CD in perspective of the scaled down hardware, multianalyte discovery and low sample volume necessity. Various recently developed biosensors in this field are presented.
Collapse
Affiliation(s)
- Shagun Gupta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Ankur Kaushal
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India.,Department of Molecular Biosensor lab, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Ashok Kumar
- Department of Molecular Biosensor lab, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| |
Collapse
|
26
|
Nanni PI, González‐López A, Nunez‐Bajo E, Madrid RE, Fernández‐Abedul MT. Staple‐Based Paper Electrochemical Platform for Celiac Disease Diagnosis. ChemElectroChem 2018. [DOI: 10.1002/celc.201800743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Paula I. Nanni
- Departamento de Química Física y AnalíticaUniversidad de Oviedo 33006 Oviedo Spain
- Inst. Superior de Investigaciones Biológicas (INSIBIO)CONICET-UNT 4000 – S.M. de Tucumán Argentina
- Lab. de Medios e InterfacesDepartamento de BioingenieríaFACET, UNT 4000 – S. M. de Tucumán Argentina
| | | | - Estefanía Nunez‐Bajo
- Departamento de Química Física y AnalíticaUniversidad de Oviedo 33006 Oviedo Spain
| | - Rossana E. Madrid
- Inst. Superior de Investigaciones Biológicas (INSIBIO)CONICET-UNT 4000 – S.M. de Tucumán Argentina
- Lab. de Medios e InterfacesDepartamento de BioingenieríaFACET, UNT 4000 – S. M. de Tucumán Argentina
| | | |
Collapse
|
27
|
Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnology 2018; 16:75. [PMID: 30243292 PMCID: PMC6150956 DOI: 10.1186/s12951-018-0400-z] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022] Open
Abstract
Graphene's unique physical structure, as well as its chemical and electrical properties, make it ideal for use in sensor technologies. In the past years, novel sensing platforms have been proposed with pristine and modified graphene with nanoparticles and polymers. Several of these platforms were used to immobilize biomolecules, such as antibodies, DNA, and enzymes to create highly sensitive and selective biosensors. Strategies to attach these biomolecules onto the surface of graphene have been employed based on its chemical composition. These methods include covalent bonding, such as the coupling of the biomolecules via the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide reactions, and physisorption. In the literature, several detection methods are employed; however, the most common is electrochemical. The main reason for researchers to use this detection approach is because this method is simple, rapid and presents good sensitivity. These biosensors can be particularly useful in life sciences and medicine since in clinical practice, biosensors with high sensitivity and specificity can significantly enhance patient care, early diagnosis of diseases and pathogen detection. In this review, we will present the research conducted with antibodies, DNA molecules and, enzymes to develop biosensors that use graphene and its derivatives as scaffolds to produce effective biosensors able to detect and identify a variety of diseases, pathogens, and biomolecules linked to diseases.
Collapse
Affiliation(s)
- Janire Peña-Bahamonde
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Hang N. Nguyen
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Sofia K. Fanourakis
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Debora F. Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| |
Collapse
|
28
|
Biosensors for Non-Invasive Detection of Celiac Disease Biomarkers in Body Fluids. BIOSENSORS-BASEL 2018; 8:bios8020055. [PMID: 29914179 PMCID: PMC6023018 DOI: 10.3390/bios8020055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 01/10/2023]
Abstract
Celiac disease is a chronic gluten-initiated autoimmune disorder that predominantly damages the mucosa of the small intestine in genetically-susceptible individuals. It affects a large and increasing number of the world’s population. The diagnosis of this disease and monitoring the response of patients to the therapy, which is currently a life-long gluten-free diet, require the application of reliable, rapid, sensitive, selective, simple, and cost-effective analytical tools. Celiac disease biomarker detection in full blood, serum, or plasma offers a non-invasive way to do this and is well-suited to being the first step of diagnosis. Biosensors provide a novel and alternative way to perform conventional techniques in biomarker sensing, in which electrode material and architecture play important roles in achieving sensitive, selective, and stable detection. There are many opportunities to build and modify biosensor platforms using various materials and detection methods, and the aim of the present review is to summarize developments in this field.
Collapse
|