1
|
Zhu K, Wang X, Weng Y, Mao G, Bao Y, Lou J, Wu S, Jin W, Tang L. Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway. Cardiovasc Drugs Ther 2024; 38:69-78. [PMID: 36194354 DOI: 10.1007/s10557-022-07383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Sulfated galactofucan (SWZ-4), which was extracted from Sargassum thunbergii, has recently been reported to show anti-inflammatory and anticancer properties. The present study aimed to evaluate whether SWZ-4 attenuates atherosclerosis in apolipoprotein E-knockout (ApoE-KO) mice by suppressing the inflammatory response through the TLR4/MyD88/NF-κB signaling pathway. METHODS Male ApoE-KO mice were fed with a high-fat diet for 16 weeks and intraperitoneally injected with SWZ-4. RAW246.7 cells were treated with lipopolysaccharide (LPS) and SWZ-4. Atherosclerotic lesions were measured by Sudan IV and oil red O staining. Serum lipid profiles, inflammatory cytokines, and mRNA and protein expression levels were evaluated. RESULTS SWZ-4 decreased serum TNF-α, IL-6 and IL-1 levels, but did not reduce blood lipid profiles. SWZ-4 downregulated the mRNA and protein expression of TLR4 and MyD88, reduced the phosphorylation of p65, and attenuated atherosclerosis in the ApoE-KO mice (p < 0.01). In LPS-stimulated RAW 264.7 cells, SWZ-4 inhibited proinflammatory cytokine production and the mRNA expression of TLR4, MyD88, and p65 and reduced the protein expression of TLR4 and MyD88 and the phosphorylation of p65 (p < 0.01). CONCLUSION These results suggest that SWZ-4 may exert an anti-inflammatory effect on ApoE-KO atherosclerotic mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway in macrophages and therefore may be a treatment for atherosclerosis.
Collapse
Affiliation(s)
- Kefu Zhu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Xihao Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Shaoze Wu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China.
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
2
|
Zhang W, Zhang Y, Li B, Guo H, Dou X, Lu K, Feng Y. High-performance corrosion resistance of chemically-reinforced chitosan as ecofriendly inhibitor for mild steel. Bioelectrochemistry 2023; 150:108330. [PMID: 36446197 DOI: 10.1016/j.bioelechem.2022.108330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Finding new cost-effective and environmentally friendly anti-corrosion materials is a never-ending task. The present study is to prepare a new formulation based on chitosan derivatives with different degrees of substitution (chitosan-5-HMF) as an efficient green corrosion inhibitor to protect mild steel against corrosion in 1 M HCl. The inhibition performance of chitosan-5-HMF was determined by electrochemical tests coupled with theoretical study like as molecular dynamics (MD) simulations to assess the reactivity and adsorption mechanisms between chitosan-5-HMF and Fe. The obtained results revealed that chitosan-5-HMF3 performs excellently inhibition performance where its inhibition efficiency reached 97.01% at 200 mg/L, and it acted as an anode-based mixed inhibitor. SEM and contact angle analysis showed the formation of compact chitosan-5-HMF film on the steel surface. Molecular dynamic simulations also manifested that chitosan-5-HMF was absorbed more strongly on the metal surface in a parallel mode.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
| | - Yuxia Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Benzhe Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Hanyu Guo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiangyu Dou
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
| | - Yuanyuan Feng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
3
|
Getachew AT, Holdt SL, Meyer AS, Jacobsen C. Effect of Extraction Temperature on Pressurized Liquid Extraction of Bioactive Compounds from Fucus vesiculosus. Mar Drugs 2022; 20:263. [PMID: 35447936 PMCID: PMC9028048 DOI: 10.3390/md20040263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
This study was aimed at investigating the effect of low polarity water (LPW) on the extraction of bioactive compounds from Fucus vesiculosus and to examine the influence of temperature on the extraction yield, total phenolic content, crude alginate, fucoidan content, and antioxidant activity. The extractions were performed at the temperature range of 120-200 °C with 10 °C increments, and the extraction yield increased linearly with the increasing extraction temperature, with the highest yields at 170-200 °C and with the maximum extraction yield (25.99 ± 2.22%) at 190 °C. The total phenolic content also increased with increasing temperature. The extracts showed a high antioxidant activity, measured with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radicals scavenging and metal-chelating activities of 0.14 mg/mL and 1.39 mg/mL, respectively. The highest yield of alginate and crude fucoidan were found at 140 °C and 160 °C, respectively. The alginate and crude fucoidan contents of the extract were 2.13% and 22.3%, respectively. This study showed that the extraction of bioactive compounds from seaweed could be selectively maximized by controlling the polarity of an environmentally friendly solvent.
Collapse
Affiliation(s)
- Adane Tilahun Getachew
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.T.G.); (S.L.H.)
| | - Susan Løvstad Holdt
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.T.G.); (S.L.H.)
| | - Anne Strunge Meyer
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Søltofts Plads 221, 2800 Kongens Lyngby, Denmark;
| | - Charlotte Jacobsen
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.T.G.); (S.L.H.)
| |
Collapse
|
4
|
Zhang W, Li C, Wang W, Li B, Liu X, Liu Y, Guo H, Chen S, Feng Y. Laminarin and sodium molybdate as efficient sustainable inhibitor for Q235 steel in sodium chloride solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Gao Y, Li Y, Niu Y, Ju H, Chen R, Li B, Song X, Song L. Chemical Characterization, Antitumor, and Immune-Enhancing Activities of Polysaccharide from Sargassum pallidum. Molecules 2021; 26:7559. [PMID: 34946640 PMCID: PMC8709291 DOI: 10.3390/molecules26247559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Searching for natural products with antitumor and immune-enhancing activities is an important aspect of cancer research. Sargassum pallidum is an edible brown alga that has been used in Chinese traditional medicine for the treatment of tumors. However, the purification and application of its active components are still insufficient. In the present study, the polysaccharides from S. pallidum (SPPs) with antitumor and immune-enhancing activities were isolated and purified, and five polysaccharide fractions (SPP-0.3, SPP-0.5, SPP-0.7, SPP-1, and SPP-2) were obtained. The ratio of total saccharides, monosaccharide composition, and sulfated contents was determined, and their structures were analyzed by Fourier transform infrared spectroscopy. Moreover, bioactivity analysis showed that all five fractions had significant antitumor activity against three types of cancer cells (A549, HepG2, and B16), and can induce cancer cell apoptosis. In addition, the results indicated that SPPs can enhance the proliferation of immune cells and improve the expression levels of serum cytokines (IL-6, IL-1β, iNOS, and TNF-α). SPP-0.7 was identified as the most active fraction and selected for further purification, and its physicochemical properties and antitumor mechanism were further analyzed. Transcriptome sequencing result showed that SPP-0.7 can significantly induce the cell apoptosis, cytokine secretion, and cellular stress response process, and inhibit the normal physiological processes of cancer cells. Overall, SPPs and SPP-0.7 may be suitable for use as potential candidate agents for cancer therapy.
Collapse
Affiliation(s)
- Yi Gao
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (B.L.)
| | - Yizhen Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Yunze Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Hao Ju
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Ran Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Bin Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (B.L.)
| | - Xiyun Song
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266042, China
| |
Collapse
|
6
|
Chen X, Ni L, Fu X, Wang L, Duan D, Huang L, Xu J, Gao X. Molecular Mechanism of Anti-Inflammatory Activities of a Novel Sulfated Galactofucan from Saccharina japonica. Mar Drugs 2021; 19:md19080430. [PMID: 34436269 PMCID: PMC8398701 DOI: 10.3390/md19080430] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Seaweed of Saccharina japonica is the most abundantly cultured brown seaweed in the world, and has been consumed in the food industry due to its nutrition and the unique properties of its polysaccharides. In this study, fucoidan (LJNF3), purified from S. japonica, was found to be a novel sulfated galactofucan, with the monosaccharide of only fucose and galactose in a ratio of 79.22:20.78, and with an 11.36% content of sulfate groups. NMR spectroscopy showed that LJNF3 consists of (1→3)-α-l-fucopyranosyl-4-SO3 residues and (1→6)-β-d-galactopyranose units. The molecular mechanism of the anti-inflammatory effect in RAW264.7 demonstrated that LJNF3 reduced the production of nitric oxide (NO), and down-regulated the expression of MAPK (including p38, ENK and JNK) and NF-κB (including p65 and IKKα/IKKβ) signaling pathways. In a zebrafish experiment assay, LJNF3 showed a significantly protective effect, by reducing the cell death rate, inhibiting NO to 59.43%, and decreasing about 40% of reactive oxygen species. This study indicated that LJNF3, which only consisted of fucose and galactose, had the potential to be developed in the biomedical, food and cosmetic industries.
Collapse
Affiliation(s)
- Xiaodan Chen
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Liying Ni
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Xiaoting Fu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
- Correspondence: ; Tel.: +86-532-8203-2182; Fax: +86-532-8203-2389
| | - Lei Wang
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Delin Duan
- State Key Lab of Seaweed Bioactive Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., 1th Daxueyuan Road, Qingdao 266400, China;
- CAS and Shandong Province Key Lab of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071, China
| | - Luqiang Huang
- Key Laboratory of Special Marine Bio-Resources Sustainable Utilization of Fujian Province, College of Life Science, Fujian Normal University, Fuzhou 350108, China;
| | - Jiachao Xu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Xin Gao
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| |
Collapse
|
7
|
Structural analysis of a glucoglucuronan derived from laminarin and the mechanisms of its anti-lung cancer activity. Int J Biol Macromol 2020; 163:776-787. [DOI: 10.1016/j.ijbiomac.2020.07.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
|
8
|
Jin W, Fang Q, Jiang D, Li T, Wei B, Sun J, Zhang W, Zhang Z, Zhang F, Linhardt RJ, Wang H, Zhong W. Structural characteristics and anti-complement activities of polysaccharides from Sargassum hemiphyllum. Glycoconj J 2020; 37:553-563. [PMID: 32617856 DOI: 10.1007/s10719-020-09928-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
Abstract
Three polysaccharides (SH-1, SH-2 and SH-3) were purified from a brown macroalgea, Sargassum hemiphyllum. The autohydrolysis products from each polysaccharide were separated to three fractions (S fractions as oligomers, L fractions as low molecular weight polysaccharides and H fractions as high molecular weight polysaccharides). Mass spectroscopy of S fractions (SH-1-S, SH-2-S and SH-3-S) showed that these three polymers all contained short stretches of sulfated fucose. The structures of L fractions (SH-1-L, SH-2-L and SH-3-L) were determined by nuclear magnetic resonance (NMR). SH-1-L was composed of two units, unit A (sulfated galactofucan) and unit B (sulfated xylo-glucuronomannan). Unit A contained a backbone of (1, 6-linked β-D-Gal) n1, (1, 3-linked 4-sulfated α-L-Fuc) n2, (1, 3-linked 2, 4-di-sulfated α-L-Fuc) n3, (1, 4-linked α-L-Fuc) n4 and (1, 3-linked β-D-Gal) n5, accompanied by some branches, such as sulfated fuco-oligomers, sulfated galacto-oligomers or sulfated galacto-fuco-oligomers. And unit B consisted of alternating 1, 4-linked β-D-glucuronic acid (GlcA) and 1, 2-linked α-D-mannose (Man) with the Man residues randomly sulfated at C6 or branched with xylose (Xyl) at C3. Both SH-2-L and SH-3-L were composed of unit A and their difference was attributed to the ratio of n1: n2: n3: n4: n5. Based on monosaccharide analysis, we hypothesize that both SH-1-H and SH-2-H contained unit A and unit B while SH-3-H had a structure similar to SH-3-L. An assessment of anti-complement activities showed that the sulfated galactofucan had higher activities than sulfated galacto-fuco-xylo-glucuronomannan. These results suggest that the sulfated galactofucans might be a good candidate for anti-complement drugs.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Qiufu Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Di Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Tongtong Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881, Kingston, RI, USA
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 20878, Bethesda, MD, USA
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, 313000, Huzhou, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China.
| |
Collapse
|
9
|
Nguyen TT, Mikkelsen MD, Tran VHN, Trang VTD, Rhein-Knudsen N, Holck J, Rasin AB, Cao HTT, Van TTT, Meyer AS. Enzyme-Assisted Fucoidan Extraction from Brown Macroalgae Fucus distichus subsp. evanescens and Saccharina latissima. Mar Drugs 2020; 18:E296. [PMID: 32498331 PMCID: PMC7344474 DOI: 10.3390/md18060296] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Fucoidans from brown macroalgae (brown seaweeds) have different structures and many interesting bioactivities. Fucoidans are classically extracted from brown seaweeds by hot acidic extraction. Here, we report a new targeted enzyme-assisted methodology for fucoidan extraction from brown seaweeds. This enzyme-assisted extraction protocol involves a one-step combined use of a commercial cellulase preparation (Cellic®CTec2) and an alginate lyase from Sphingomonas sp. (SALy), reaction at pH 6.0, 40 °C, removal of non-fucoidan polysaccharides by Ca2+ precipitation, and ethanol-precipitation of crude fucoidan. The workability of this method is demonstrated for fucoidan extraction from Fucus distichus subsp. evanescens (basionym Fucus evanescens) and Saccharina latissima as compared with mild acidic extraction. The crude fucoidans resulting directly from the enzyme-assisted method contained considerable amounts of low molecular weight alginate, but this residual alginate was effectively removed by an additional ion-exchange chromatographic step to yield pure fucoidans (as confirmed by 1H NMR). The fucoidan yields that were obtained by the enzymatic method were comparable to the chemically extracted yields for both F. evanescens and S. latissima, but the molecular sizes of the fucoidans were significantly larger with enzyme-assisted extraction. The molecular weight distribution of the fucoidan fractions was 400 to 800 kDa for F. evanescens and 300 to 800 kDa for S. latissima, whereas the molecular weights of the corresponding chemically extracted fucoidans from these seaweeds were 10-100 kDa and 50-100 kDa, respectively. Enzyme-assisted extraction represents a new gentle strategy for fucoidan extraction and it provides new opportunities for obtaining high yields of native fucoidan structures from brown macroalgae.
Collapse
Affiliation(s)
- Thuan Thi Nguyen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| | - Vy Ha Nguyen Tran
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Vo Thi Dieu Trang
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Nanna Rhein-Knudsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| | - Anton B. Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| |
Collapse
|
10
|
Bao Y, He X, Wu W, Wang S, Dai J, Zhang Z, Jin W, Yan J, Mao G. Sulfated galactofucan from Sargassum thunbergii induces senescence in human lung cancer A549 cells. Food Funct 2020; 11:4785-4792. [PMID: 32421130 DOI: 10.1039/d0fo00699h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isolated compounds from Sargassum thunbergii (S. thunbergii) have shown to exhibit diverse biological activities, including anti-cancer activity. In this study, we examined the effect of sulfated galactofucan (SWZ-4-H), which was successfully isolated from S. thunbergii, and its underlying mechanism on human lung cancer (LC) A549 cell growth in vitro and in vivo. In vitro experiment indicated that SWZ-4-H decreased cell growth and number in a dose-dependent manner (P < 0.05 vs. control). Besides, cells treated with SWZ-4-H had irregular morphology, including increased cell volumes, and large nuclei, which suggested senescence-like changes. Moreover, SWZ-4-H increased senescence-related β-galactosidase (SA-β-Gal) staining in a dose-dependent manner; however, while lower (1 mg mL-1) concentration induced mainly senescence without causing cell death, higher dosage (3 mg mL-1) induced both senescence and cell death. The effect of SWZ-4-H was further confirmed by analyzing the expression of p53, p21, p16, and Rb (p-RB); SWZ-4-H significantly increased the expression of p53, p21, and p16 and decreased phosphorylated Rb (p-RB) in a dose-dependent manner. Moreover, in vivo experiment showed that SWZ-4-H significantly reduced the tumor volume without affecting the body weight. To sum up, our data indicated that SWZ-4-H could induce lung cancer senescence by regulating p53, p21, p16, and p-Rb, thus providing a novel perspective on anti-cancer mechanisms of SWZ-4-H in human lung cancer A549 cells.
Collapse
Affiliation(s)
- Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jin W, Tang H, Zhang J, Wei B, Sun J, Zhang W, Zhang F, Wang H, Linhardt RJ, Zhong W. Structural analysis of a novel sulfated galacto-fuco-xylo-glucurono-mannan from Sargassum fusiforme and its anti-lung cancer activity. Int J Biol Macromol 2020; 149:450-458. [PMID: 32004605 DOI: 10.1016/j.ijbiomac.2020.01.275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Polysaccharide (HFSGF) was purified from Sargassum fusiforme. Autohydrolysis and gel column chromatography were performed to fractionate HFSGF into three components (HFSGF-S, HFSGF-L and HFSGF-H). Compositional analysis, mass spectrometry and nuclear magnetic resonance spectroscopy were used to elucidate the structural features of HFSGF. HFSGF-S was a mixture of sulfated galacto-fuco-oligomers, from the branches terminal ends; in HFSGF-L, the branches of HFSGF, was a sulfated galactofucan, containing a backbone of 1,3-linked α-L-fucan sulfated at C2/4 and/or C4 and interspersed with galactose (Gal); and in HFSGF-H, the backbone of HFSGF, was composed of alternating 1,2-linked α-D-mannose (Man) and 1,4-linked β-D-glucuronic acid (GlcA), branched with sulfated galactofucan or sulfated fucan, 1,3-linked α-L-fucan sulfated at C2/4 and/or C4 and partly interspersed with Gal. Some fucose (Fuc) residues were also partially branched with xylose (Xyl). The anti-lung cancer activities of HFSGF-L and HFSGF-H against human lung cancer A549 cells in vitro and A549 xenograft tumor growth in vivo were determined. HFSGF-H had higher activity in vitro (IC50 ~12 mg/mL for 24 h) and in vivo (tumor inhibition ~51%.) than HFSGF-L, indicating that HFSGF-H might be a leading compound for a potential new therapeutics for the treatment of lung cancer.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinmei Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20878, USA
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
12
|
Luo D, Wang Z, Nie K. Structural characterization of a novel polysaccharide from Sargassum thunbergii and its antioxidant and anti-inflammation effects. PLoS One 2019; 14:e0223198. [PMID: 31584975 PMCID: PMC6777832 DOI: 10.1371/journal.pone.0223198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/16/2019] [Indexed: 01/04/2023] Open
Abstract
A novel polysaccharide STSP-I was isolated and purified from Sargassum thunbergii. Its structure and bioactivity were studied using gas chromatography (GC), fourier transform infrared spectroscopy (FTIR), periodate oxidation-smith degradation, partial acid hydrolysis, methylation-GC-MS, nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), radicals scavenging assays and anti-inflammatory assays. STSP-I was consisted of fucose and galactose with a molar ratio of 1.2:1, and its mass was 373 kDa. The main structural components of STSP-I were →4)-α-D-Galp-(1→ and →3)-β-L-Fucp-(1→, STSP-I was a non-branched polysaccharide, and TEM further revealed the existence of entangled chains and linear forms. Compared with Vitamin C (Vc), STSP-I showed a higher scavenging effect of superoxide radical (EC50 = 0.22 mg/mL) and an equivalent scavenging effect of hydroxyl radical (EC50 = 0.88 mg/mL). STSP-I also exhibited good inhibitory effects of TNF-α, IL-6 and COX-2 mRNA expressions in LPS-stimulated RAW 264.7 mouse macrophage cells, and the inhibitory effects were more than 91% at the concentrations of 75 and 150 μg/ml. The results indicate that the polysaccharide STSP-I from S. thunbergii with the linear structure may serve as potential antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Dianhui Luo
- Department of Bioengineering and Biotechnology, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, People’s Republic of China
| | - Zhaojing Wang
- Department of Bioengineering and Biotechnology, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, People’s Republic of China
| | - Kaiying Nie
- Department of Bioengineering and Biotechnology, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, People’s Republic of China
| |
Collapse
|
13
|
Jin W, Wu W, Tang H, Wei B, Wang H, Sun J, Zhang W, Zhong W. Structure Analysis and Anti-Tumor and Anti-Angiogenic Activities of Sulfated Galactofucan Extracted from Sargassum thunbergii. Mar Drugs 2019; 17:E52. [PMID: 30641954 PMCID: PMC6356460 DOI: 10.3390/md17010052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/26/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022] Open
Abstract
Sulfated galactofucan (ST-2) was obtained from Sargassum thunbergii. It was then desulfated to obtain ST-2-DS, and autohydrolyzed and precipitated by ethanol to obtain the supernatant (ST-2-S) and precipitate (ST-2-C). ST-2-C was further fractionated by gel chromatography into two fractions, ST-2-H (high molecular weight) and ST-2-L (low molecular weight). Mass spectrometry (MS) of ST-2-DS was performed to elucidate the backbone of ST-2. It was shown that ST-2-DS contained a backbone of alternating galactopyranose residues (Gal)n (n ≤ 3) and fucopyranose residues (Fuc)n. In addition, ST-2-S was also determined by MS to elucidate the branches of ST-2. It was suggested that sulfated fuco-oligomers might be the branches of ST-2. Compared to the NMR spectra of ST-2-H, the spectra of ST-2-L was more recognizable. It was shown that ST-2-L contain a backbone of (Gal)n and (Fuc)n, sulfated mainly at C4 of Fuc, and interspersed with galactose (the linkages were likely to be 1→2 and 1→6). Therefore, ST-2 might contain a backbone of (Gal)n (n ≤ 3) and (Fuc)n. The sulfation pattern was mainly at C4 of fucopyranose and partially at C4 of galactopyranose, and the branches were mainly sulfated fuco-oligomers. Finally, the anti-tumor and anti-angiogenic activities of ST-2 and its derivates were determined. It was shown that the low molecular-weight sulfated galactofucan, with higher fucose content, had better anti-angiogenic and anti-tumor activities.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wanli Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20878, USA.
| | - Wenjing Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|