1
|
Chen W, Ma X, Jin W, Cheng H, Xu G, Wen H, Xu P. Shellfish polysaccharides: A comprehensive review of extraction, purification, structural characterization, and beneficial health effects. Int J Biol Macromol 2024; 279:135190. [PMID: 39216565 DOI: 10.1016/j.ijbiomac.2024.135190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global food systems are currently facing great challenges, such as food sources, food safety, and environmental crises. Alternative nutritional resources have been proposed as part of the solution to meeting future global food demand. In the natural resources, shellfish are the major component of global aquatic animals. Although most studies focus on the allergy, toxin, and contamination of shellfish, it is also a delicious food to the human diet rich in proteins, polysaccharides, minerals, and omega-3. Among the functional ingredients, shellfish polysaccharides possess nutritional and medicinal values that arouse the great interest of researchers. The selection of the extraction approach and the experimental condition are the key factors that influence the extraction efficiency of shellfish polysaccharides. Importantly, the purification of crude polysaccharides comprises the enrichment of shellfish polysaccharides and isolation of fractions, also resulting in various structural characteristics and physicochemical properties. Chemical modification is also an efficient method to further improve the biological activities of shellfish polysaccharides. This review summarizes the extraction, purification, structural characterization, and chemical modification methods for shellfish polysaccharides. Additionally, the beneficial health effects of shellfish polysaccharides are highlighted, with an emphasis on their potential mechanism. Finally, current challenges and perspectives on shellfish polysaccharides are also spotlighted.
Collapse
Affiliation(s)
- Wanwen Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Yu C, Zhu H, Fang Y, Qiu Y, Lei P, Xu H, Zhang Q, Li S. Efficient conversion of cane molasses into Tremella fuciformis polysaccharides with enhanced bioactivity through repeated batch culture. Int J Biol Macromol 2024; 264:130536. [PMID: 38432273 DOI: 10.1016/j.ijbiomac.2024.130536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Tremella fuciformis polysaccharide (TFPS) is a natural mushroom mucopolysaccharide widely used in health foods, medical care, cosmetic and surgical materials. In this study, we developed an efficient strategy for the repeated batch production of highly bioactive TFPS from the agro-industrial residue cane molasses. Cane molasses contained 39.92 % sucrose (w/w), 6.36 % fructose and 3.53 % glucose, all of which could be utilized by T. fuciformis spores, whereas, the TFPS production efficiency only reached 0.74 g/L/d. Corn cobs proved to be the best immobilized carrier that could tightly absorb spores and significantly shorten the fermentation lag period. The average yield of TFPS in eight repeated batch culture was 5.52 g/L with a production efficiency of 2.04 g/L/d. The average fermentation cycle after optimization was reduced by 61.61 % compared with the initial conditions. Compared to glucose as a carbon source, cane molasses significantly increased the proportion of low-molecular-weight TFPS (TFPS-2) in total polysaccharides from 3.54 % to 17.25 % (w/w). Moreover, TFPS-2 exhibited potent antioxidant capacity against four free radicals (O2-, ABTS+, OH, and DPPH). In conclusion, this study lays the foundation for the efficient conversion of cane molasses and production of TFPS with high bioactivity.
Collapse
Affiliation(s)
- Caiyuan Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Haipeng Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yan Fang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Liu Y, Zhang Y, Mei N, Li W, Yang T, Xie J. Three acidic polysaccharides derived from sour jujube seeds protect intestinal epithelial barrier function in LPS induced Caco-2 cell inflammation model. Int J Biol Macromol 2023; 240:124435. [PMID: 37062376 DOI: 10.1016/j.ijbiomac.2023.124435] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/18/2023]
Abstract
Normal intestinal epithelial barrier function plays a key role in the prevention of many diseases such as infectious enteritis, inflammatory bowel disease, obesity, etc. In this study, three novel acidic polysaccharides ZY-2, ZY-3 and ZY-4 were isolated from sour jujube (Ziziphus jujuba Mill. var. Spinosa) seeds and purified by DEAE Sephrose Fast Flow gel. The molecular weight of ZY-2, ZY-3 and ZY-4 was 7.76 kDa, 10.71 kDa and 8.31 kDa respectively, mainly composed of different proportions of mannose, rhamnose, glucose, glucuronic acid, galacturonic acid, galactose, xylose and arabinose. 1H NMR and Congo red experiment results showed that the three polysaccharides mainly contained both α-type and β-type glycosidic bonds with obvious triple helix structural traits. The polysaccharides could up-regulate the expression levels of occludin and ZO-1 in LPS-induced inflammation Caco-2 cells, and reduce IL-6, IL-8, IL-1β and TNF-α significantly. In conclusion, the acidic polysaccharides from sour jujube seeds exhibited great potential in protection intestinal epithelial barrier function through anti-inflammatory effects.
Collapse
Affiliation(s)
- Ying Liu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yanqing Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Nanju Mei
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wei Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Tan Yang
- School of Chinese Materia Medica, Tianjin University of Chinese Medicine, Tianjin 301617, China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Ma J, Chen X, Zhang L, Ma L, Li J, Li J, Zang J. The stability and absorption of naturally occurring cAMP by its weak interactions with jujube polysaccharides were greatly improved. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Bai C, Chen R, Tan L, Bai H, Tian L, Lu J, Gao M, Sun H, Chi Y. Effects of multi-frequency ultrasonic on the physicochemical properties and bioactivities of polysaccharides from different parts of ginseng. Int J Biol Macromol 2022; 206:896-910. [PMID: 35318082 DOI: 10.1016/j.ijbiomac.2022.03.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
The effect of multi-frequency ultrasonic extraction (MUE) on the yields, physicochemical properties, antioxidant and α-glucosidase inhibitory activities of polysaccharides (GPs) from different parts of ginseng were compared. Results demonstrated that yields of polysaccharides from different parts were found to vary significantly differences, in the order of roots (M-GRPs) > flowers (M-GFPs) > leaves (M-GLPs). Compared with heat reflux extraction, MUE not only increased the yield of GPs by up to 9.14%-210.87%, with higher uronic acid content (UAC: increased by 4.99%-53.48%), total phenolics content (TPC: increased by 7.60% to 42.61%), total flavonoids content (TFC: increased by 2.52%-5.45%), and lower molecular weight (Mw: reduced by 6.51%- 33.08%) and protein content (PC: reduced by 5.15%-8.95%), but also improved their functional properties and bioactivities. All six purified polysaccharides extracted by MUE were acidic pyran polysaccharide with different monosaccharide composition, possessed remarkable antioxidant and α-glucosidase inhibitory activities. Especially, M-GFP-1 exhibited the highest bioactivities, illustrated that the activities were highly correlated with UAC and TPC, Mw, and triple helical structure. These results indicate that MUE was an efficient technique for improving yields, physicochemical and functional properties and enhancing biological activities of polysaccharide.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Li Tan
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ming Gao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yu Chi
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
6
|
Zhou Y, Li B, Wang L. Effects of different extracts on lipid oxidation and quality characteristics of spiced pork trotter. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering Jilin University Changchun People’s Republic of China
| | - Bin Li
- College of Food Science and Engineering Jilin University Changchun People’s Republic of China
| | - Lu Wang
- College of Food Science and Engineering Jilin University Changchun People’s Republic of China
| |
Collapse
|
7
|
Zhu Y, Li J, Ma J, Lin Z, Lu X, Xiong Q, Qian Y, Yuan J, Ding S, Huang S, Chen J. An effective, green and mild deproteinization method for polysaccharides of Ruditapes philippinarum by attapulgite-based silk fibroin composite aerogel. Int J Biol Macromol 2021; 182:343-353. [PMID: 33794241 DOI: 10.1016/j.ijbiomac.2021.03.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
A large amount of protein impurity severely restricts the application of polysaccharides of Ruditapes philippinarum (PRP) in food and medicine. Moreover, the traditional Sevag deproteinization method always involves organic reagents. The purpose of this paper was to develop an effective, green and mild deproteinization method from PRP by attapulgite-based silk fibroin composite aerogel (ASA). Firstly, ASA was synthesized and applied to remove protein from PRP. Secondly, the deproteinization parameters were optimized with selectivity coefficient as index as follows: dose of ASA 1% and pH 7.0. Under these conditions, deproteinization ratio (Dr%), polysaccharide recovery ratio (Rr%) and selectivity coefficient (Kc) reached 79.44 ± 1.87%, 95.81 ± 2.95% and 18.95 ± 1.55, respectively. Next, the feasibility of ASA method was evaluated. As a result, ASA method not only achieved higher deproteinization efficiency in less time compared with Sevag method, but also retained structure and antioxidant activity of polysaccharides. ASA was also proven with recycling ability and could be reused more than five times. Furthermore, it was found that protein adsorption on ASA was better fitted by pseudo second-order kinetic and Freundlich model. Taking together, the data implied that ASA method would be promising of deproteinization from PRP suitable for polysaccharides processing.
Collapse
Affiliation(s)
- Yong Zhu
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China; Guangzhou University of Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangzhou 510006, PR China
| | - Jiandong Li
- Department of Imaging, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Jingrui Ma
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Zilong Lin
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Xiao Lu
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Qingping Xiong
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China; Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Yunhua Qian
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Jun Yuan
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China; Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Shijie Ding
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Song Huang
- Guangzhou University of Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangzhou 510006, PR China.
| | - Jing Chen
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an 223003, PR China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, PR China.
| |
Collapse
|
8
|
Li Y, Ban L, Meng S, Huang L, Sun N, Yang H, Wang Y, Wang L. Bioactivities of crude polysaccharide extracted from fermented soybean curd residue by Cordyceps militaris. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1875874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Yiting Li
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Litong Ban
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Shili Meng
- Department of Life Science and Bioengineering, Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Liang Huang
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Ning Sun
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Hongpeng Yang
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Yu Wang
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Linbo Wang
- Department of Life Science and Bioengineering, Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Chen N, Zhang H, Zong X, Li S, Wang J, Wang Y, Jin M. Polysaccharides from Auricularia auricula: Preparation, structural features and biological activities. Carbohydr Polym 2020; 247:116750. [DOI: 10.1016/j.carbpol.2020.116750] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
10
|
Yuan J, Li H, Tao W, Han Q, Dong H, Zhang J, Jing Y, Wang Y, Xiong Q, Xu T. An effective method for extracting anthocyanins from blueberry based on freeze-ultrasonic thawing technology. ULTRASONICS SONOCHEMISTRY 2020; 68:105192. [PMID: 32485626 DOI: 10.1016/j.ultsonch.2020.105192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023]
Abstract
The aim of this study was to develop an effective method for extracting anthocyanins from blueberry Vaccinium spp. (ABVS) using freeze-ultrasonic thawing technology (FUTE). Various parameters including freezing time, ultrasonic time, ultrasonic temperature and liquid-solid ratio were optimized by a single-factor design and multiple response surface methodology. The amounts of extracted anthocyanin and cyanidin-3-O-glucoside were measured by UV and HPLC respectively. The maximum yield of anthocyanins was achieved by freezing the samples for 5.43 min in liquid nitrogen at the liquid-solid ratio of 24.07:1 mL/g, followed by ultrasonic thawing at 41.64 °C for 23.56 min. The yield and antioxidant effects of ABVS extracted using FUTE, ultrasound-assisted extraction (UAE) and freeze-thawing extraction (FTE) were compared in order to determine the overall efficacy of FUTE. In addition to the higher content, FUTE extracted ABVS showed greater ability to scavenge DPPH·, ABTS+ and superoxide anions, and inhibit lipid peroxidation compared to the ABVS extracted by UAE or FTE. The reducing power of the FUTE-derived ABVS was intermediate between that of the UAE and FTE samples. Taken together, FUTE can rapidly and effectively extract ABVS and retain its antioxidant capacity.
Collapse
Affiliation(s)
- Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Hailun Li
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, PR China
| | - Weili Tao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Qian Han
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Huiqing Dong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Jin Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Yanming Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China.
| | - Tingting Xu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China.
| |
Collapse
|
11
|
Han X, Bai B, Zhou Q, Niu J, Yuan J, Zhang H, Jia J, Zhao W, Chen H. Dietary supplementation with polysaccharides from Ziziphus Jujuba cv. Pozao intervenes in immune response via regulating peripheral immunity and intestinal barrier function in cyclophosphamide-induced mice. Food Funct 2020; 11:5992-6006. [PMID: 32697211 DOI: 10.1039/d0fo00008f] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ziziphus Jujuba cv. Pozao has been consumed as a traditional fruit with regional characteristics in China for a long time; however, fewer studies on polysaccharides from Ziziphus Jujuba cv. Pozao (JP) have been documented. This study aimed to evaluate the effect of oral administration of JP on cyclophosphamide-induced ICR mice for 28 days. The results showed that oral administration of JP could significantly improve the lymphocyte proliferation in the spleen and decrease the proportion of CD3+ and CD4+ and the ratio of CD4+/CD8+ in cyclophosphamide-induced mice in a dose-dependent manner. JP treatment also increased the levels of IL-2, IL-4, IL-10, IFN-γ, and TNF-α in serum and the intestine, and the improvement effects were proportional to the dose of JP. Similarly, JP significantly increased the levels of IgA and SIgA, as well as the expressions of Claudin-1 and Occludin in the intestine. Particularly, the expressions of Claudin-1 and Occludin were the best in the M-JP group. Furthermore, JP positively regulated the gut microbiota as indicated by the enriched microbiota diversity. At the phylum level, the relative abundance of Firmicutes was significantly decreased by JP, while that of Bacteroidetes was increased by JP treatment. More importantly, the ratio of Firmicutes/Bacteroidetes was significantly increased. And a high dose of JP is the most effective. At the genus level, the abundances of the Bacteroidales-S24-7-group, Lachnospiraceae, Alloprevotella, Alistipes and Bacteroides were increased by JP treatment. These results provided evidence for the regulating effect of JP on the peripheral immunity and intestinal barrier function in cyclophosphamide-induced hypoimmune mice.
Collapse
Affiliation(s)
- Xue Han
- Department of Nutritional and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen X, Zhang H, Du W, Qian L, Xu Y, Huang Y, Xiong Q, Li H, Yuan J. Comparison of different extraction methods for polysaccharides from Crataegus pinnatifida Bunge. Int J Biol Macromol 2020; 150:1011-1019. [DOI: 10.1016/j.ijbiomac.2019.11.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023]
|
13
|
Ji X, Hou C, Yan Y, Shi M, Liu Y. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. Int J Biol Macromol 2020; 149:1008-1018. [DOI: 10.1016/j.ijbiomac.2020.02.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/24/2023]
|
14
|
Effect of enzyme-assisted extraction on the physicochemical properties and bioactive potential of lotus leaf polysaccharides. Int J Biol Macromol 2020; 153:169-179. [PMID: 32105695 DOI: 10.1016/j.ijbiomac.2020.02.252] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/02/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022]
Abstract
Lotus leaf polysaccharides were extracted by enzyme-assisted extraction using α-amylase (LLEP-A), cellulose (LLEP-C), pectinase (LLEP-P) or protease (LLEP-PR). Their physicochemical properties and immunostimulatory activities were compared with those of hot-water extracted polysaccharides (LLWP). HPAEC-PDA and HPSEC-RI profiles indicated that variations in their molecular weight patterns and chemical compositions. Moreover, their effects on proliferation, phagocytic activity, and cytokine production in macrophages could be ordered as LLEP-P > LLEP-C > LLEP-A > LLWP > LLEP-PR, suggesting that LLEP-P by pectinase-assisted extraction was the most potent enhancer of macrophage activation. LLEP-P was further purified by gel filtration, and the main fraction (LLEP-P-І) was obtained to elucidate the structural and functional properties. LLEP-P-І (14.63 × 103 g/mol) mainly consisted of rhamnose, arabinose, galactose, and galacturonic acid at molar percentages of 15.5:15.8:20.1:32.8. FT-IR spectra indicated the predominant acidic and esterified form, suggesting the pectic-like structure. Above all, LLEP-P-І exerted greater stimulation effects on NO and cytokines production and the phagocytic activity in macrophages. Transcriptome analysis also demonstrated that LLEP-P and LLEP-P-І could upregulate macrophage immune response genes, including cytokines, chemokines, and interferon via TLR and JAK-STAT signaling. Thus, these results suggest that pectinase application is most suitable to obtain immunostimulatory polysaccharides from lotus leaves.
Collapse
|
15
|
Yuan J, Yan X, Chen X, Jiang X, Ye K, Xiong Q, Kong J, Huang Y, Jiang C, Xu T, Xie G. A mild and efficient extraction method for polysaccharides from Sinonovacula constricta and study of their structural characteristic and antioxidant activities. Int J Biol Macromol 2019; 143:913-921. [PMID: 31678104 DOI: 10.1016/j.ijbiomac.2019.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
The aim of this paper is to develop a mild and efficient extraction method for polysaccharides from Sinonovacula constricta (SCP) using enzyme extraction, and analyze the structural characteristics and antioxidant activities of the two purified polysaccharide fractions (SCP-1 and SCP-2). Firstly, enzyme extraction conditions were optimized, and the conditions were found to be, as follows: enzymolysis time 173.0 min, pH 8.2, enzymolysis temperature 50.0 ℃ and enzyme content 4.0%. Comparison between enzymatic extraction and water extraction was obtained from visual, UV-visible and IR spectrum images. The results clearly indicate that there is no significant difference between them with regard to the composition of the SCP fraction, but the polysaccharide content produced by enzymatic extraction is higher. Then, the physicochemical properties and structural characteristics of SCP-1 and SCP-2 were investigated using FT-TR, UV, GC and HPGPC. The carbohydrate content, sulfuric radicals and uronic acids of the two fractions were detected. Both SCP-1 and SCP-2 were mainly consisted of glucose, but their molecular weights were different. In addition, compared the Fe2+ chelating activity, ABTS+ radical and superoxide radical scavenging activity, and lipid peroxidation inhibition activity of SCP-1 and SCP-2, it turned out that SCP-2 had stronger antioxidant activity than SCP-1.
Collapse
Affiliation(s)
- Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China; Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Xiaoteng Yan
- Huai'an Second People's Hospital, Huai'an 223002, Jiangsu, PR China
| | - Xing Chen
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China; Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Xinqi Jiang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Keqi Ye
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China; Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Jing Kong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Yange Huang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Changxing Jiang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Tingting Xu
- Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China.
| | - Guoyong Xie
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, PR China; Department of Resources Science of Traditional Chinese Medicines, State Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China.
| |
Collapse
|
16
|
Chen W, Jia Z, Zhu J, Zou Y, Huang G, Hong Y. Optimization of ultrasonic-assisted enzymatic extraction of polysaccharides from thick-shell mussel (Mytilus coruscus) and their antioxidant activities. Int J Biol Macromol 2019; 140:1116-1125. [PMID: 31425762 DOI: 10.1016/j.ijbiomac.2019.08.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
Abstract
This study aimed to obtain the purified fractions of Mytilus coruscus polysaccharides (MCPs) and investigate their antioxidant activities. MCPs were prepared through ultrasonic-assisted enzymatic extraction optimized by employing the response surface methodology. A single-factor experiment was conducted using the Box-Behnken design to determine the optimum extraction conditions of MCPs. The ultrasonic power was 60 W, liquid-to-material ratio was 30 mL/g, extraction time was 36 min, extraction temperature was 64 °C, enzyme concentration was 3.2%, and polysaccharide extraction yield was 12.86% ± 0.12%. A novel polysaccharide (MCP1-2) was obtained after the purification with AB-8 macroporous resin, DEAE Sepharose Fast Flow, and Sepharose CL-6B column. The molecular weight of MCP1-2 was estimated to be 134.9 kDa according to high-performance gel permeation chromatography. High-pressure liquid-phase chromatography results showed that MCP1-2 contained mannose, rhamnose, glucuronic acid, glucose, galactose, and L-Fuc at a molar ratio of 1.53:1:4.83:81.82:2.36:1.51. Infrared and NMR spectroscopies confirmed that MCP1-2 possessed α- and β- configurations. The antioxidant activities of MCP1-2 were investigated in vitro, and the results showed that MCP1-2 had good antioxidant activity and can be used as a natural antioxidant in food.
Collapse
Affiliation(s)
- Wenwei Chen
- College of Life Sciences, China Jiliang University, Hangzhou, China; National & Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, Hangzhou, China.
| | - Zhenbao Jia
- College of Life Sciences, China Jiliang University, Hangzhou, China; National & Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, Hangzhou, China
| | - Jiajie Zhu
- College of Life Sciences, China Jiliang University, Hangzhou, China; National & Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, Hangzhou, China
| | - Yiran Zou
- College of Life Sciences, China Jiliang University, Hangzhou, China; National & Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, Hangzhou, China
| | - Guangrong Huang
- College of Life Sciences, China Jiliang University, Hangzhou, China; National & Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, Hangzhou, China
| | - Yao Hong
- Zhejiang Marine Development Research Institute, Zhoushan, China
| |
Collapse
|
17
|
Xiong Q, Song Z, Hu W, Liang J, Jing Y, He L, Huang S, Wang X, Hou S, Xu T, Chen J, Zhang D, Shi Y, Li H, Li S. Methods of extraction, separation, purification, structural characterization for polysaccharides from aquatic animals and their major pharmacological activities. Crit Rev Food Sci Nutr 2018; 60:48-63. [PMID: 30285473 DOI: 10.1080/10408398.2018.1512472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The further development of fishery resources is a hotspot in the development of the fishery industry. However, how to develop aquatic animal resources deeply is a key point to be solved in the fishery industry. Over the past decades, numerous aquatic animals have gained great attention in the development and utilization of their bioactive molecules which are of therapeutic applications as nutraceuticals and pharmaceuticals. Recent research revealed that aquatic animals are composed of many vital moieties, such as polysaccharides and proteins, which provide health benefits beyond basic nutrition. In particular, aquatic animal polysaccharides are gaining worldwide popularity owing to their high content, ease of extraction, specific structure, few side effects, prominent therapeutic potential and incorporation in functional foods and dietary supplements. Thus, tremendous research on the isolation, identification and bioactivities of polysaccharides has been carried out. This review presents comprehensive viewpoints on extraction, separation, purification, structural characterization and bioactivity of various polysaccharides from aquatic animals, such as sea cucumber, abalone, oyster and mussels. In addition, this review profiled a brief knowledge on both current challenges and future scope in aquatic animal polysaccharides field. The review will be a direction of deep processing in fishery resources, which is a hotspot, but technical bottleneck. Furthermore, the review could be served as a useful reference material for further investigation, production and application of polysaccharides from aquatic animals in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingping Xiong
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China.,Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China.,Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhuoyue Song
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Weihui Hu
- Division of Life Science, Center for Chinese Medicine, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Jian Liang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Lian He
- School of Nursing, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, PR China
| | - Song Huang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Xiaoli Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Shaozhen Hou
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Tingting Xu
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Jing Chen
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Danyan Zhang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yingying Shi
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Hailun Li
- Nephrological Department, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, PR China
| | - Shijie Li
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|