1
|
Tousson E, El-Sayed IET, Elsharkawy HN, Ahmed AS. Ameliorating and Therapeutic Impact of Curcumin Nanoparticles Against Aluminum Oxide Nanoparticles Induced Kidney Toxicity, DNA Damage, Oxidative Stress, PCNA and TNFα Alteration in Male Rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:5140-5149. [PMID: 39105312 DOI: 10.1002/tox.24392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Aluminum oxide nanoparticles (Al2O3 NPs) are among the most extensively utilized nanoparticles in nanotechnology and that have negative impacts on the environment. Therefore, the intention of this work is to investigate the protective and therapeutic effects of curcumin in nanoform (Cur NPs) against Al2O3 NPs induced kidney toxicity, oxidative stress, DNA damage, and changes in necrosis factor alpha (TNFα) and proliferating cell nuclear antigen (PCNA) expressions in male rats. Fifty healthy adult male were divided into five groups [G1, control; G2, received 50 mg/kg/day for 4 weeks of Cur NPs orally; G3, received 6 mg/kg BW orally for 4 weeks of Al2O3 NPs; G4, (Cur NPs + Al2O3 NPs) received Cur NPs and Al2O3 NPs at a dose similar to G2 and G3, respectively for 4 weeks; G5, (Al2O3 NPs + Cur NPs) received Al2O3 NPs at a dose similar to G3 for 4 weeks then received Cur NPs at a dose similar to G2 for another 4 weeks]. Current results revealed that Al2O3 NPs induced a significant elevation in serum urea, creatinine, chloride, calcium, kidney malondialdehyde (MDA), DNA damage, injury, TNFα and PCNA expressions and a significant depletion in serum potassium, kidney superoxide dismutase (SOD), glutathione (GSH) as compared to control. On the other hand, treatments of Al2O3 NPs with Cur NPs induced modulation in all altered parameters and improved kidney functions and structure, with best results for the Al2O3 NPs + Cur NPs than Cur NPs + Al2O3 NPs. In conclusion, Cur NPs has the capacity to mitigate the renal toxicity induced by Al2O3 NPs in male albino rats.
Collapse
Affiliation(s)
- Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ibrahim E T El-Sayed
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin EI-Kom, Egypt
| | | | - Amira S Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Jafarisani M, Hashemi SA, Faridi N, Mousavi MF, Bathaie SZ. Cadmium nanocluster as a safe nanocarrier: biodistribution in BALB/c mice and application to carry crocin to breast cancer cell lines. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:522-542. [PMID: 38966182 PMCID: PMC11220307 DOI: 10.37349/etat.2024.00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 07/06/2024] Open
Abstract
Aim Metal nanoclusters are emerging nanomaterials applicable for drug delivery. Here, the toxicity and oxidative stress induction of divalent cationic cadmium (Cd2+) was compared with a Cd in the form of nanocluster. Then, it was used for targeted drug delivery into breast cancer cell lines. Methods Using a green chemistry route, a Cd nanocluster (Cd-NC) was synthesized based on bovine serum albumin. After characterization, its genotoxicity and oxidative stress induction were studied in both in vitro and in vivo. After that, it was conjugated with hyaluronic acid (HA). The efficiency of hyaloronized-Cd-CN (HA-Cd-NC) for loading and releasing crocin (Cro), an anticancer phytochemical, was studied. Finally, it was applied for cell death induction in a panel of breast cancer cell lines. Results The comet assay results indicated that, unlike Cd2+ and potassium permanganate (KMnO4), no genotoxicity and oxidative stress was induced by Cd-NC in vitro. Then, the pharmacokinetics of this Cd-NC was studied in vivo. The data showed that Cd-NC has accumulated in the liver and excreted from the feces of mice. Unlike Cd2+, no toxicity and oxidative stress were induced by this Cd-NC in animal tissues. Then, the Cd-NC was targeted toward breast cancer cells by adding HA, a ligand for the CD44 cell surface receptor. After that, Cro was loaded on HA-Cd-NC and it was used for the treatment of a panel of human breast cancer cell lines with varying degrees of CD44. The half-maximal drug inhibitory concentration (IC50) of Cro was significantly decreased when it was loaded on HA-Cd-NC, especially in MDA-MB-468 with a higher degree of CD44 at the surface. These results indicate the higher toxicity of Cro toward breast cancers when carried out by HA-Cd-NC. Conclusions The Cd-NC was completely safe and is a promising candidate for delivering anticancer drugs/phytochemicals into the targeted breast tumors.
Collapse
Affiliation(s)
- Moslem Jafarisani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| | - S. Ali Hashemi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| | - Mir F. Mousavi
- Institute for Natural Products and Medicinal Plants (INPMP), Tarbiat Modares University (TMU), Tehran 14155-331, Iran
- Department of Chemistry, Faculty of basic Sciences, Tarbiat Modares University (TMU), Tehran 14115-175, Iran
| | - S. Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
- Institute for Natural Products and Medicinal Plants (INPMP), Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| |
Collapse
|
3
|
Sugeçti S, Akbayrak S, Büyükgüzel E, Büyükgüzel K. Ecotoxicological Effects of Titanium Aluminum Carbide Composites on Biochemical and Metabolic Parameters of Galleria mellonella. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:52. [PMID: 37776340 DOI: 10.1007/s00128-023-03807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Metal composites have been extensively used in various fields such as automotive industry, medicine and pharmacy. However, the high exposure of these chemicals may have an adverse effect on the living organisms. In this study, the effect of titanium aluminum carbide (Ti3AlC2) on the model organism Galleria mellonella was investigated. The change in the metabolic enzymes such as alanine transferase, aspartate transferase, gamma-glutamyl transferase, lactate dehydrogenase, amylase, creatine kinase, alkaline phosphatase in the hemolymph of G. mellonella which was exposed to Ti3AlC2 was determined. The contents of the bilirubin, albumin, uric acid and the total protein were also measured after the Ti3AlC2 exposure on the model organism. The results of our study clearly indicate that Ti3AlC2 has adverse effects on the model organism G. mellonella.
Collapse
Affiliation(s)
- Serkan Sugeçti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.
| | - Serdar Akbayrak
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Ender Büyükgüzel
- Department of Molecular Biology and Genetic, Science and Art Faculty, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Kemal Büyükgüzel
- Department of Biology, Science and Art Faculty, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
4
|
Li H, Dai W, Xiao L, Sun L, He L. Biopolymer-Based Nanosystems: Potential Novel Carriers for Kidney Drug Delivery. Pharmaceutics 2023; 15:2150. [PMID: 37631364 PMCID: PMC10459991 DOI: 10.3390/pharmaceutics15082150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Kidney disease has become a serious public health problem throughout the world, and its treatment and management constitute a huge global economic burden. Currently, the main clinical treatments are not sufficient to cure kidney diseases. During its development, nanotechnology has shown unprecedented potential for application to kidney diseases. However, nanotechnology has disadvantages such as high cost and poor bioavailability. In contrast, biopolymers are not only widely available but also highly bioavailable. Therefore, biopolymer-based nanosystems offer new promising solutions for the treatment of kidney diseases. This paper reviews the biopolymer-based nanosystems that have been used for renal diseases and describes strategies for the specific, targeted delivery of drugs to the kidney as well as the physicochemical properties of the nanoparticles that affect the targeting success.
Collapse
Affiliation(s)
| | | | | | | | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (H.L.)
| |
Collapse
|
5
|
Alburaidi BS, Alsenaidy AM, Al Hasan M, Siddiqi NJ, Alrokayan SH, Odeibat HA, Abdulnasir AJ, Khan HA. Comparative evaluation of cadmium-induced oxidative stress in camel and bovine erythrocytes. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022. [DOI: 10.1016/j.jksus.2021.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Liu P, Zhao Y, Wang S, Xing H, Dong WF. Effect of combined exposure to silica nanoparticles and cadmium chloride on female zebrafish ovaries. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103720. [PMID: 34332080 DOI: 10.1016/j.etap.2021.103720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Silica nanoparticles (SiNPs) and cadmium chloride (CdCl2) are two important environmental pollutants. In previous research, found that SiNPs in zebrafish larvae can amplify the cardiovascular damage caused by cadmium. Whether SiNPs in the ovaries can amplify the adverse effects of cadmium on the zebrafish ovaries is worth studying problem. In this study, sexually mature female zebrafish were used as model organisms and exposed to 1 μmol/L CdCl2 and/or 25 μg/mL SiNPs for 30 days. The results showed that the structure and function of ovaries in the sole and combined exposure groups changed significantly, resulting in reduced ovarian quality, decreased number of mature oocytes, and the development of malformed offspring. A deep-sequencing analysis showed that organisms' lipid metabolism and transportation, estrogen metabolism, and response to the maturation, meiosis, and vitellogenin synthesis of oocytes were significantly affected by single exposure or combined exposure. These findings provide further insights into the harm of cooperation of CdCl2 and/or SiNPs to the aquatic ecosystems.
Collapse
Affiliation(s)
- Pai Liu
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Yeming Zhao
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Sheng Wang
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Hao Xing
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Wen-Fei Dong
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China.
| |
Collapse
|
7
|
Araya-Sibaja AM, Wilhelm K, González-Aguilar GA, Vega-Baudrit JR, Salazar-López NJ, Domínguez-Avila JA, Navarro-Hoyos M. Curcumin Loaded and Co-loaded Nanosystems: A Review from a Biological Activity Enhancement Perspective. Pharm Nanotechnol 2020; 9:85-100. [PMID: 33371864 DOI: 10.2174/2211738508666201228150659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a natural phenolic compound exhibiting multiple bioactivities that have been evaluated in vitro, in vivo as well as through clinical studies in humans. Some of them include antimicrobial, antioxidant, anti-inflammatory, and central nervous system protective effects. Further, curcumin is generally recognized as a safe substance because of its low toxicity. However, its molecular structure is susceptible to changes in pH, oxidation, photodegradation, low aqueous solubility, and biotransformation compromising its bioavailability; these drawbacks are successfully addressed through nanotechnology. OBJECTIVE The present review systematizes findings on the enhancement of curcumin's beneficial effects when it is loaded and co-loaded into different types of nanosystems covering liposomes, polymeric and solid-lipid nanoparticles, nanostructured lipid carrier, lipid-polymeric hybrids, self- -assembled and protein-based core-shell systems in relation to its antimicrobial, antioxidant, anti-inflammatory and central nervous system protective bioactivities. CONCLUSION Curcumin is a versatile molecule capable of exerting antimicrobial, antioxidant, anti- inflammatory, and central nervous system protective effects in an enhanced manner using the possibilities offered by the nanotechnology-based approach. Its enhanced bioactivities are associated with increments in solubility, stability, bioavailability, as well as in improved intracellular uptake and cell internalization. These advantages, in addition to curcumin's low toxicity, indicate the potential of curcumin to be loaded and co-loaded into nanosystems capable of providing a controlled release and targeted administration.
Collapse
Affiliation(s)
- Andrea M Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Krissia Wilhelm
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Gustavo A González-Aguilar
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - José R Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Norma J Salazar-López
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Jesús A Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Mirtha Navarro-Hoyos
- BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, 2060, San José, Costa Rica
| |
Collapse
|
8
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Back to Nucleus: Combating with Cadmium Toxicity Using Nrf2 Signaling Pathway as a Promising Therapeutic Target. Biol Trace Elem Res 2020; 197:52-62. [PMID: 31786752 DOI: 10.1007/s12011-019-01980-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
There are concerns about the spread of heavy metals in the environment, and human activities are one of the most important factors in their spread. These agents have the high half-life resulting in their persistence in the environment. So, prevention of their spread is the first step. However, heavy metals are an inevitable part of modern and industrial life and they are applied in different fields. Cadmium is one of the heavy metals which has high carcinogenesis ability. Industrial waste, vehicle emissions, paints, and fertilizers are ways of exposing human to cadmium. This potentially toxic agent harmfully affects the various organs and systems of body such as the liver, kidney, brain, and cardiovascular system. Oxidative stress is one of the most important pathways of cadmium toxicity. So, improving the antioxidant defense system can be considered as a potential target. On the other hand, the Nrf2 signaling pathway involves improving the antioxidant capacity by promoting the activity of antioxidant enzymes such as catalase and superoxide dismutase. At the present review, we demonstrate how Nrf2 signaling pathway can be modulated to diminish the cadmium toxicity.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
9
|
Gonçalves OH, Moreira TFM, de Oliveira A, Bracht L, Ineu RP, Leimann FV. Antioxidant Activity of Encapsulated Extracts and Bioactives from Natural Sources. Curr Pharm Des 2020; 26:3847-3861. [PMID: 32634076 DOI: 10.2174/1381612826666200707131500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
The low water solubility and low bioavailability of natural bioactive substances such as polyphenols and flavonoids, either in pure form or extracts, are a major concern in the pharmaceutical field and even on the food development sector. Although encapsulation has demonstrated success in addressing these drawbacks, it is important to evaluate the antioxidant activity of the encapsulated compounds. This article reviews the encapsulation of bioactive compounds from natural sources focusing their antioxidant activity after encapsulation. Attention is given to the methods and wall materials used, and the antioxidant activity methodologies (classical in vitro techniques such as DPPH, ORAC, FRAP and others, as well as in vivo/ex vivo tests to evaluate endogenous antioxidant enzymes or oxidative stress) applied to assess the antioxidant capacity are also comprehensively summarized.
Collapse
Affiliation(s)
- Odinei H Gonçalves
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Thaysa F M Moreira
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Anielle de Oliveira
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Lívia Bracht
- Departamento de Bioquimica, Universidade Estadual de Maringa, Av. Colombo, 5790, CEP 87020-270, Maringa, Parana, Brazil
| | - Rafael P Ineu
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Fernanda V Leimann
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| |
Collapse
|
10
|
Taşdemir M, Çelikezen FÇ, Oto G, Özbey F. The effects of pretreatment with lithium metaborate dihydrate on lipid peroxidation and Ca, Fe, Mg, and K levels in serum of Wistar albino male rats exposed to Cd. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7702-7711. [PMID: 31889282 DOI: 10.1007/s11356-019-07516-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Boron and boron compounds have beneficial biological effects. Lithium metaborate dihydrate (LMBDH) is used in many branches of industry. Despite its wide industrial use, there is limited information about its biological effects on antioxidant defense system and trace element homeostasis. Therefore, the aim of this study was to evaluate the in vivo protective effects of LMBDH against CdCl2-induced oxidative stress and imbalance of some bioelements for the first time. In the study, totally 20 Wistar albino male rats were used. The rats were fed with pellet food and water ad libitum and divided into four groups including five rats in each. Group I was control group (standard pellet food + water + normal saline), Group II was CdCl2 (4.58 mg/kg/body weight/intraperitoneally/single dose), Group III was LMBDH (15 mg/kg/body weight/day orally, for 5 days), Group IV was CdCl2 (4.58 mg/kg/body weight/intraperitoneally/single dose in fifth day), and LMBDH (15 mg/kg/body weight/day orally for 5 days). The results showed that CdCl2 treatment increased blood MDA level and decreased antioxidant enzyme activities and the level of blood GSH compared to control group. Pretreatment with LMBDH significantly decreased MDA levels and increased SOD activity (p < 0.05). In addition, Ca, Fe, and K levels decreased in LMBDH pretreatment group in different statistically levels. However, Mg levels showed an increase in LMBDH pretreatment group. As a result, LMBDH pretreatment decreased MDA status and supported antioxidant system by increasing SOD activity. In addition, it did not exhibit an ameliorative effect on measured bioelement homeostasis.
Collapse
Affiliation(s)
- Muhammed Taşdemir
- Department of Chemistry, Bitlis Eren University, Faculty of Science, Bitlis, Turkey
| | | | - Gökhan Oto
- Department of Pharmacology and Toxicology, Yuzuncu Yil University, Faculty of Medicine, Van, Turkey
| | - Fahrettin Özbey
- Department of Statistics, Bitlis Eren University, Faculty of Science, Bitlis, Turkey
| |
Collapse
|
11
|
Hussain MA, Zaman S, Abbas A, Tahir MN, Amin M, Hussain SZ, Hussain I. Sodium hyroxyethylcellulose adipate: An efficient and reusable sorbent for cadmium uptake from spiked high-hardness ground water. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
12
|
Curcumin Ameliorates Nonalcoholic Fatty Liver Disease through Inhibition of O-GlcNAcylation. Nutrients 2019; 11:nu11112702. [PMID: 31717261 PMCID: PMC6893521 DOI: 10.3390/nu11112702] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The cause of progression to non-alcoholic fatty liver disease (NAFLD) is not fully understood. In the present study, we aimed to investigate how curcumin, a natural phytopolyphenol pigment, ameliorates NAFLD. Initially, we demonstrated that curcumin dramatically suppresses fat accumulation and hepatic injury induced in methionine and choline-deficient (MCD) diet mice. The severity of hepatic inflammation was alleviated by curcumin treatment. To identify the proteins involved in the pathogenesis of NAFLD, we also characterized the hepatic proteome in MCD diet mice. As a result of two-dimensional proteomic analysis, it was confirmed that thirteen proteins including antioxidant protein were differentially expressed in hepatic steatosis. However, the difference in expression was markedly improved by curcumin treatment. Interestingly, eight of the identified proteins are known to undergo O-GlcNAcylation modification. Thus, we further focused on elucidating how the regulation of O-linked β-N-acetylglucosamine (O-GlcNAc) modification is associated with the progression of hepatic steatosis leading to hepatitis in MCD diet mice. In parallel with lipid accumulation and inflammation, the MCD diet significantly up-regulated hexosamine biosynthetic pathway (HBP) and O-GlcNAc transferase (OGT) via ER stress. Curcumin treatment alleviates the severity of hepatic steatosis by relieving the dependence of O-GlcNAcylation on nuclear factor-κB (NF-κB) in inflammation signaling. Conversely, the expressions of superoxide dismutase 1 (SOD1) and SIRT1 were significantly upregulated by curcumin treatment. In conclusion, curcumin inhibits O-GlcNAcylation pathway, leading to antioxidant responses in non-alcoholic steatohepatitis (NASH) mice. Therefore, curcumin will be a promising therapeutic agent for diseases involving hyper-O-GlcNAcylation, including cancer.
Collapse
|
13
|
Otuechere CA, Adewuyi A, Oluwabayo T, Afolayan F, Avwioroko O, Abazuh U. Salubrious effects of a vermiculite–cellulose‐based bionanocomposite on oxidative stress indices and histomorphology of male Wistar rats. Andrologia 2019; 52:e13426. [DOI: 10.1111/and.13426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Adewale Adewuyi
- Department of Chemical Sciences Redeemer's University Ede Osun State Nigeria
| | | | | | | | - Uche Abazuh
- Department of Biological Sciences Redeemer's University Ede Osun State Nigeria
| |
Collapse
|
14
|
Green and eco-friendly nanocomposite for the removal of toxic Hg(II) metal ion from aqueous environment: Adsorption kinetics & isotherm modelling. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.090] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Molosse V, Souza CF, Baldissera MD, Glombowsky P, Campigotto G, Cazaratto CJ, Stefani LM, da Silva AS. Diet supplemented with curcumin for nursing lambs improves animal growth, energetic metabolism, and performance of the antioxidant and immune systems. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2018.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Negm NA, Abd El Wahed MG, Hassan ARA, Abou Kana MT. Feasibility of metal adsorption using brown algae and fungi: Effect of biosorbents structure on adsorption isotherm and kinetics. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Farzaei MH, Zobeiri M, Parvizi F, El-Senduny FF, Marmouzi I, Coy-Barrera E, Naseri R, Nabavi SM, Rahimi R, Abdollahi M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients 2018; 10:E855. [PMID: 29966389 PMCID: PMC6073929 DOI: 10.3390/nu10070855] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress has been considered a key causing factor of liver damage induced by a variety of agents, including alcohol, drugs, viral infections, environmental pollutants and dietary components, which in turn results in progression of liver injury, non-alcoholic steatohepatitis, non-alcoholic liver disease, liver fibrosis and cirrhosis. During the past 30 years and even after the major progress in the liver disease management, millions of people worldwide still suffer from an acute or chronic liver condition. Curcumin is one of the most commonly used indigenous molecules endowed by various shielding functionalities that protects the liver. The aim of the present study is to comprehensively review pharmacological effects and molecular mechanisms, as well as clinical evidence, of curcumin as a lead compound in the prevention and treatment of oxidative associated liver diseases. For this purpose, electronic databases including “Scopus,” “PubMed,” “Science Direct” and “Cochrane library” were extensively searched with the keywords “curcumin or curcuminoids” and “hepatoprotective or hepatotoxicity or liver” along with “oxidative or oxidant.” Results showed that curcumin exerts remarkable protective and therapeutic effects of oxidative associated liver diseases through various cellular and molecular mechanisms. Those mechanisms include suppressing the proinflammatory cytokines, lipid perodixation products, PI3K/Akt and hepatic stellate cells activation, as well as ameliorating cellular responses to oxidative stress such as the expression of Nrf2, SOD, CAT, GSH, GPx and GR. Taking together, curcumin itself acts as a free radical scavenger over the activity of different kinds of ROS via its phenolic, β-diketone and methoxy group. Further clinical studies are still needed in order to recognize the structure-activity relationships and molecular mechanisms of curcumin in oxidative associated liver diseases.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mahdi Zobeiri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Fatemeh Parvizi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Fardous F El-Senduny
- Biochemistry division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Ilias Marmouzi
- Laboratory of Pharmacology and Toxicology Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco.
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá 250247, Colombia.
| | - Rozita Naseri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baghyatollah University of Medical Sciences, Tehran 1435916471, Iran.
| | - Roja Rahimi
- Department of Persian Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1416663361, Iran.
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| |
Collapse
|