1
|
Dong Z, Jin J, Wei W, Wang X, Wu G, Wang X, Jin Q. Fabrication of immobilized lipases from Candida rugosa on hierarchical mesoporous silica for enzymatic enrichment of ω-3 polyunsaturated fatty acids by selective hydrolysis. Food Chem X 2024; 22:101434. [PMID: 38779499 PMCID: PMC11108833 DOI: 10.1016/j.fochx.2024.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, lipase from Candida rugosa was immobilized on hydrophobic hierarchical porous hollow silica microsphere (HPHSM-C3) via adsorption. The prepared biocatalyst HPHSM-C3@CRL exhibited higher activity, thermal and pH stability. HPHSM-C3@CRL remained 70.2% of initial activity after 30 days of storage at 24 °C and 50.4% of initial activity after 10 cycles. Moreover, HPHSM-C3@CRL was utilized in enzymatic enrichment of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in glycerides, achieving ω-3 PUFAs content of 53.42% with the hydrolysis rate of 48.78% under optimal condition. The Km and Vmax value of HPHSM-C3@CRL was 42.2% lower and 63.5% higher than those of CRL, respectively. The 3D structure analysis of CRL, substrates and pore structure of HPHSM-C3 suggested that the hierarchical pore improved activity and selectivity of immobilized lipase. This result demonstrated that HPHSM-C3@CRL may be an effective biocatalyst for the enzymatic enrichment of ω-3 PUFAs in food industries.
Collapse
Affiliation(s)
- Zhe Dong
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaosan Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Safdar A, Ismail F, Imran M. Characterization of Detergent-Compatible Lipases from Candida albicans and Acremonium sclerotigenum under Solid-State Fermentation. ACS OMEGA 2023; 8:32740-32751. [PMID: 37720795 PMCID: PMC10500658 DOI: 10.1021/acsomega.3c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
The purpose of this study was to compare and explore the potential of two distinct lipases at industrial levels after their production using wheat bran substrate in solid-state fermentation. Lipases from Candida albicans (C. albicans) and Acremonium sclerotigenum (A. sclerotigenum) were characterized to assess their compatibility and suitability for use in laundry detergents. The effects of pH, temperature, metal ions, inhibitors, organic solvents, and various commercially available detergents on these lipases were studied in order to compare their activity and stability profiles and check their stain removal ability. Both lipases remained stable across the wide pH (7-10) and temperature (30-50 °C) ranges. C. albicans lipase exhibited optimum activity (51.66 U/mL) at pH 7.0 and 37 °C, while A. sclerotigenum lipase showed optimum activity (52.12 U/mL) at pH 8.0 and 40 °C. The addition of Ca2+ and Mg2+ ions enhanced their activities, while sodium dodecyl sulfate (SDS) and ethylenediamine tetraacetic acid (EDTA) reduced their activities. Lipase from both strains showed tolerance to various organic solvents and considerable stability and compatibility with commercially available laundry detergents (>50%); however, A. sclerotigenum lipase performed slightly better. Characterization of these crude lipases showed nearly 60% relative activity after incubation for 2 h in various detergents, thus suggesting their potential to be employed in the formulation of laundry detergents with easy and efficient enzyme production. The production of thermostable and alkaline lipases from both strains makes them an attractive option for economic gain by lowering the amount of detergent to be used, thus reducing the chemical burden on the environment.
Collapse
Affiliation(s)
- Ayesha Safdar
- Department
of Biochemistry, The Islamia University
of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Fatima Ismail
- Department
of Biochemistry, The Islamia University
of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Muhammad Imran
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Hamidon TS, Hussin MH. Improved p-chlorophenol adsorption onto copper-modified cellulose nanocrystal-based hydrogel spheres. Int J Biol Macromol 2023; 233:123535. [PMID: 36740116 DOI: 10.1016/j.ijbiomac.2023.123535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The present study intended to develop efficient hydrogel spheres in treating simulated wastewater contaminated with p-chlorophenol. Herein, copper-modified nanocellulose was grafted onto alginate to produce eco-friendly hydrogel spheres to utilize as a viable biosorbent. Fabricated spheres were characterized through scanning electron microscopy, thermogravimetry, surface area measurement, point of zero charge and zeta potential analyses. The adsorption of p-chlorophenol was optimized by altering various experimental conditions. Pseudo second order kinetics and Langmuir adsorption isotherm best described the adsorption of p-chlorophenol onto copper-modified cellulose nanocrystal-based spheres. The maximum adsorption capacity was 66.67 mg g-1 with a reusability up to five regeneration cycles. The thermodynamic study directed that p-chlorophenol adsorption was exothermic, spontaneous, and reversible within the analyzed temperature range. Weber-Morris model revealed that intraparticle diffusion was not the singular rate-controlling step in the adsorption process. Hence, copper-modified nanocellulose spheres could be employed as a sustainable and effective biosorbent for p-chlorophenol adsorption from wastewater.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
4
|
Bounegru AV, Apetrei C. Tyrosinase Immobilization Strategies for the Development of Electrochemical Biosensors-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:760. [PMID: 36839128 PMCID: PMC9962745 DOI: 10.3390/nano13040760] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The development of enzyme biosensors has successfully overcome various challenges such as enzyme instability, loss of enzyme activity or long response time. In the electroanalytical field, tyrosinase is used to develop biosensors that exploit its ability to catalyze the oxidation of numerous types of phenolic compounds with antioxidant and neurotransmitter roles. This review critically examines the main tyrosinase immobilization techniques for the development of sensitive electrochemical biosensors. Immobilization strategies are mainly classified according to the degree of reversibility/irreversibility of enzyme binding to the support material. Each tyrosinase immobilization method has advantages and limitations, and its selection depends mainly on the type of support electrode, electrode-modifying nanomaterials, cross-linking agent or surfactants used. Tyrosinase immobilization by cross-linking is characterized by very frequent use with outstanding performance of the developed biosensors. Additionally, research in recent years has focused on new immobilization strategies involving cross-linking, such as cross-linked enzyme aggregates (CLEAs) and magnetic cross-linked enzyme aggregates (mCLEAs). Therefore, it can be considered that cross-linking immobilization is the most feasible and economical approach, also providing the possibility of selecting the reagents used and the order of the immobilization steps, which favor the enhancement of biosensor performance characteristics.
Collapse
|
5
|
Chemical modification of clay nanocomposites for the improvement of the catalytic properties of Lipase A from Candida antarctica. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Tan Z, Bilal M, Li X, Ju F, Teng Y, Iqbal HM. Nanomaterial-immobilized lipases for sustainable recovery of biodiesel – A review. FUEL 2022. [DOI: 10.1016/j.fuel.2022.123429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Preparation, Characterization, and Surface Modification of Cellulose Nanocrystal from Lignocellulosic Biomass for Immobilized Lipase. FIBERS 2022. [DOI: 10.3390/fib10040033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study reports the synthesis of cellulose nanocrystal (CNC) from sugarcane bagasse and rice straw as the matrix for immobilized lipase enzyme. The CNC surface was modified using cetyltrimethylammonium bromide (CTAB) to improve the interaction of CNC with glutaraldehyde so that CNC can immobilize lipase effectively. The results showed that after surface modification of CNC using CTAB with concentrations of 2–10 mM, the crystallinity of CNC slightly decreased. The presence of immobilized lipase on the modified CNC was confirmed visibly by the appearance of dark spots using transmission electron microscopy (TEM). The bond formed between the enzyme and CNC was approved using Fourier transform infrared spectroscopy (FTIR). FTIR results show a new amine group peak in the immobilized lipase, which is not present in the modified CNC itself. The modified CNC, both from bagasse (SB-20 A1-1) and rice straw (RS-20 B1-1), was successfully applied to the immobilized lipase enzyme with a yield of 88%. The observed free enzyme activity was 3.69 µmol/min∙mL. The degree of hydrolysis of canola oil relative to free lipase (100%) from immobilized lipase at lipase SB-20 A1-1 and lipase RS-20 A1-1 was 23% and 30%, respectively. Therefore, this study successfully immobilized lipase and applied it to the hydrolysis of triglycerides.
Collapse
|
8
|
Jacob AG, Wahab RA, Chandren S, Jumbri K, Wan Mahmood WMA. Physicochemical properties and operational stability of Taguchi design-optimized Candida rugosa lipase supported on biogenic silica/magnetite/graphene oxide for ethyl valerate synthesis. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Hussin NH, Wahab RA, Elias N, Jacob AG, Zainal-Abidin MH, Abdullah F, Sulaiman NJ, Misson M. Electrospun Magnetic Nanocellulose-Polyethersulfone-Conjugated Aspergillus oryzae Lipase for Synthesis of Ethyl Valerate. MEMBRANES 2021; 11:972. [PMID: 34940473 PMCID: PMC8707156 DOI: 10.3390/membranes11120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022]
Abstract
A novel greener MNC/PES membrane was developed through an electrospinning technique for lipase immobilization to catalyze the synthesis of ethyl valerate (EV). In this study, the covalent immobilization of Aspergillus oryzae lipase (AOL) onto an electrospun nanofibrous membrane consisting of magnetic nanocellulose (MNC) and polyethersulfone (PES) to produce EV was statistically optimized. Raman spectroscopy, Fourier-transform infrared spectroscopy: attenuated total reflection, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, thermal gravimetric analysis (TGA), and differential thermal gravimetric (DTG) of MNC/PES-AOL demonstrated that AOL was successfully immobilized onto the fibers. The Taguchi design-assisted immobilization of AOL onto MNC/PES fibers identified that 1.10 mg/mL protein loading, 4 mL reaction volume, 250 rpm stirring rate, and 50 °C were optimal to yield 72.09% of EV in 24 h. The thermal stability of MNC/PES-AOL was improved by ≈20% over the free AOL, with reusability for up to five consecutive esterification cycles while demonstrating an exceptional half-life of 120 h. Briefly, the electrospun MNC/PES fibers that immobilized AOL showed promising applicability in yielding relatively good EV levels. This study suggests that using MNC as fillers in a PES to improve AOL activity and durability for a longer catalytic process could be a viable option.
Collapse
Affiliation(s)
- Nurul Hidayah Hussin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Nursyafiqah Elias
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Adikwu Gowon Jacob
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Department of Applied Chemistry, Federal University Dutsin-Ma (FUDMA), Dutsin-Ma P.M.B 5001, Katsina State, Nigeria
| | - Mohamad Hamdi Zainal-Abidin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
| | - Faizuan Abdullah
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (N.H.H.); (N.E.); (A.G.J.); (M.H.Z.-A.); (F.A.)
| | - Nurul Jannah Sulaiman
- Department of Bioprocess & Polymer Engineering, School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
10
|
Abstract
The market for industrial enzymes has witnessed constant growth, which is currently around 7% a year, projected to reach $10.5 billion in 2024. Lipases are hydrolase enzymes naturally responsible for triglyceride hydrolysis. They are the most expansively used industrial biocatalysts, with wide application in a broad range of industries. However, these biocatalytic processes are usually limited by the low stability of the enzyme, the half-life time, and the processes required to solve these problems are complex and lack application feasibility at the industrial scale. Emerging technologies create new materials for enzyme carriers and sophisticate the well-known immobilization principles to produce more robust, eco-friendlier, and cheaper biocatalysts. Therefore, this review discusses the trending studies and industrial applications of the materials and protocols for lipase immobilization, analyzing their advantages and disadvantages. Finally, it summarizes the current challenges and potential alternatives for lipases at the industrial level.
Collapse
|
11
|
Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization. Catalysts 2021. [DOI: 10.3390/catal11080936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During recent decades, the use of enzymes or chemoenzymatic cascades for organic chemistry has gained much importance in fundamental and industrial research. Moreover, several enzymatic and chemoenzymatic reactions have also served in green and sustainable manufacturing processes especially in fine chemicals, pharmaceutical, and flavor/fragrance industries. Unfortunately, only a few processes have been applied at industrial scale because of the low stabilities of enzymes along with the problematic processes of their recovery and reuse. Immobilization and co-immobilization offer an ideal solution to these problems. This review gives an overview of all the pathways for enzyme immobilization and their use in integrated enzymatic and chemoenzymatic processes in cascade or in a one-pot concomitant execution. We place emphasis on the factors that must be considered to understand the process of immobilization. A better understanding of this fundamental process is an essential tool not only in the choice of the best route of immobilization but also in the understanding of their catalytic activity.
Collapse
|
12
|
Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. Int J Biol Macromol 2021; 187:127-142. [PMID: 34298046 DOI: 10.1016/j.ijbiomac.2021.07.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
The development of new biocatalytic systems to replace the chemical catalysts, with suitable characteristics in terms of efficiency, stability under high temperature reactions and in the presence of organic solvents, reusability, and eco-friendliness is considered a very important step to move towards the green processes. From this basis, the use of lipase as a catalyst is highly desired for many industrial applications because it offers the reactions in which could be used, stability in harsh conditions, reusability and a greener process. Therefore, the introduction of temperature-resistant and solvent-tolerant lipases have become essential and ideal for industrial applications. Temperature-resistant and solvent-tolerant lipases have been involved in many large-scale applications including biodiesel, detergent, food, pharmaceutical, organic synthesis, biosensing, pulp and paper, textile, animal feed, cosmetics, and leather industry. So, the present review provides a comprehensive overview of the industrial use of lipase. Moreover, special interest in biotechnological and biochemical techniques for enhancing temperature-resistance and solvent-tolerance of lipases to be suitable for the industrial uses.
Collapse
|
13
|
Bockuviene A, Zalneravicius R, Sereikaite J. Preparation, characterization and stability investigation of lycopene-chitooligosaccharides complexes. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 2021; 179:170-195. [PMID: 33667561 DOI: 10.1016/j.ijbiomac.2021.02.198] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/15/2023]
Abstract
Immobilized enzymes have received incredible interests in industry, pharmaceuticals, chemistry and biochemistry sectors due to their various advantages such as ease of separation, multiple reusability, non-toxicity, biocompatibility, high activity and resistant to environmental changes. This review in between various immobilized enzymes focuses on lipase as one of the most practical enzyme and chitosan as a preferred biosupport for lipase immobilization and provides a broad range of studies of recent decade. We highlight several aspects of lipase immobilization on the surface of chitosan support containing various types of lipase and immobilization techniques from physical adsorption to covalent bonding and cross-linking with their benefits and drawbacks. The recent advances and future perspectives that can improve the present problems with lipase and chitosan such as high-price of lipase and low mechanical resistance of chitosan are also discussed. According to the literature, optimization of immobilization methods, combination of these methods with other techniques, physical and chemical modifications of chitosan, co-immobilization and protein engineering can be useful as a solution to overcome the mentioned limitations.
Collapse
|
15
|
Wang L, Lin L, Guo Y, Long J, Mu RJ, Pang J. Enhanced functional properties of nanocomposite film incorporated with EGCG-loaded dialdehyde glucomannan/gelatin matrix for food packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105863] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Wahab RA, Elias N, Abdullah F, Ghoshal SK. On the taught new tricks of enzymes immobilization: An all-inclusive overview. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104613] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Recent Trends in Biomaterials for Immobilization of Lipases for Application in Non-Conventional Media. Catalysts 2020. [DOI: 10.3390/catal10060697] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The utilization of biomaterials as novel carrier materials for lipase immobilization has been investigated by many research groups over recent years. Biomaterials such as agarose, starch, chitin, chitosan, cellulose, and their derivatives have been extensively studied since they are non-toxic materials, can be obtained from a wide range of sources and are easy to modify, due to the high variety of functional groups on their surfaces. However, although many lipases have been immobilized on biomaterials and have shown potential for application in biocatalysis, special features are required when the biocatalyst is used in non-conventional media, for example, in organic solvents, which are required for most reactions in organic synthesis. In this article, we discuss the use of biomaterials for lipase immobilization, highlighting recent developments in the synthesis and functionalization of biomaterials using different methods. Examples of effective strategies designed to result in improved activity and stability and drawbacks of the different immobilization protocols are discussed. Furthermore, the versatility of different biocatalysts for the production of compounds of interest in organic synthesis is also described.
Collapse
|
18
|
Mohd Hussin FNN, Attan N, Wahab RA. Taguchi design-assisted immobilization of Candida rugosa lipase onto a ternary alginate/nanocellulose/montmorillonite composite: Physicochemical characterization, thermal stability and reusability studies. Enzyme Microb Technol 2020; 136:109506. [DOI: 10.1016/j.enzmictec.2019.109506] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
19
|
Mohamad Yusof MS, Othman MHD, Abdul Wahab R, Abu Samah R, Kurniawan TA, Mustafa A, Abdul Rahman M, Jaafar J, Ismail AF. Effects of pre and post-ozonation on POFA hollow fibre ceramic adsorptive membrane for arsenic removal in water. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Bahaman AH, Wahab RA, Abdul Hamid AA, Abd Halim KB, Kaya Y. Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation. J Biomol Struct Dyn 2020; 39:2628-2641. [DOI: 10.1080/07391102.2020.1751713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aina Hazimah Bahaman
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia
| | - Yilmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| |
Collapse
|
21
|
Otari SV, Patel SKS, Kalia VC, Lee JK. One-step hydrothermal synthesis of magnetic rice straw for effective lipase immobilization and its application in esterification reaction. BIORESOURCE TECHNOLOGY 2020; 302:122887. [PMID: 32018086 DOI: 10.1016/j.biortech.2020.122887] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 05/22/2023]
Abstract
Immobilization of industrially important enzymes on supports is important to decrease the cost of the overall enzymatic production procedure. Herein, a novel method for synthesizing a new support, magnetic rice straw (MRS) in one step is reported: rice straw (RS) was soaked with Fe2+ ions and these were further reduced to form embedded Fe2O3 nanoparticles on the RS surface, forming MRS. This material presented a magnetic saturation value of 27.32 emu g-1. Lipase immobilization on MRS resulted in 94.3% immobilization efficiency and 91.3 mg g-1 of enzyme loading, which are higher than immobilization on native RS. The lipase stability was increased approximately 8-fold at 70 °C. The lipase-MRS composite was tested in the esterification reaction of biodiesel production, where it showed prominent reusability. Therefore, this novel and rapid synthesis method can provide ecological and economic support for enzyme immobilization and industrially important product formation.
Collapse
Affiliation(s)
- Sachin V Otari
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
22
|
Li L. Biomemristic Behavior for Water-Soluble Chitosan Blended with Graphene Quantum Dot Nanocomposite. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E559. [PMID: 32244863 PMCID: PMC7153374 DOI: 10.3390/nano10030559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 11/16/2022]
Abstract
Bionanocomposite has promising biomemristic behaviors for data storage inspired by a natural biomaterial matrix. Carboxylated chitosan (CCS), a water-soluble derivative of chitosan avoiding the acidic salt removal, has better biodegradability and bioactivity, and is able to absorb graphene quantum dots (GQDs) employed as charge-trapping centers. In this investigation, biomemristic devices based on water-soluble CCS:GQDs nanocomposites were successfully achieved with the aid of the spin-casting method. The promotion of binary biomemristic behaviors for Ni/CCS:GQDs/indium-tin-oxide (ITO) was evaluated for distinct weight ratios of the chemical components. Fourier transform infrared spectroscopy, Raman spectroscopy (temperature dependence), thermogravimetric analyses and scanning electron microscopy were performed to assess the nature of the CCS:GQDs nanocomposites. The fitting curves on the experimental data further confirmed that the conduction mechanism might be attributed to charge trapping-detrapping in the CCS:GQDs nanocomposite film. Advances in water-soluble CCS-based electronic devices would open new avenues in the biocompatibility and integration of high-performance biointegrated electronics.
Collapse
Affiliation(s)
- Lei Li
- HLJ Province Key Laboratories of Senior-Education for Electronic Engineering, Heilongjiang University, Harbin 150080, China; ; Tel.: +86-136-7462-1831
- Research Center for Fiber Optic Sensing Technology National Local Joint Engineering, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
23
|
Yusof MSM, Othman MHD, Wahab RA, Jumbri K, Razak FIA, Kurniawan TA, Abu Samah R, Mustafa A, Rahman MA, Jaafar J, Ismail AF. Arsenic adsorption mechanism on palm oil fuel ash (POFA) powder suspension. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121214. [PMID: 31546216 DOI: 10.1016/j.jhazmat.2019.121214] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The contribution of palm oil fuel ash (POFA), an agricultural waste as a low cost adsorbent for the removal of arsenite (As(III)) and arsenate (As(V)) was explored. Investigation on the adsorbency characteristics of POFA suspension revealed that the surface area, particle size, composition, and crystallinity of the SiO2 rich mullite structure were the crucial factors in ensuring a high adsorption capacity of the ions. Maximum adsorption capacities of As(III) and As(V) at 91.2 and 99.4 mg g-1, respectively, were obtained when POFA of 30 μm particle size was employed at pH 3 with the highest calcination temperature at 1150 °C. An optimum dosage of 1.0 g of dried POFA powder successfully removed 48.7% and 50.2% of As(III) and As(V), respectively. Molecular modeling using the density functional theory consequently identified the energy for the proposed reaction routes between the SiO- and As+ species. The high stability of the POFA suspension in water in conjunction with good adsorption capacity of As(III) and As(V) seen in this study, thus envisages its feasibility as a potential alternative absorbent for the remediation of water polluted with heavy metals.
Collapse
Affiliation(s)
- Mohamad Sukri Mohamad Yusof
- Advance Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advance Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Department of Chemistry, Faculty of Science, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Fazira Ilyana Abdul Razak
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Department of Chemistry, Faculty of Science, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tonni Agustiono Kurniawan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment Ecology, Xiamen University, Xiamen 361102 Fujian, PR China
| | - Rozaimi Abu Samah
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Kuantan, Pahang, Malaysia
| | - Azeman Mustafa
- Advance Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mukhlis Abdul Rahman
- Advance Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Juhana Jaafar
- Advance Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advance Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
24
|
Elias N, Wahab RA, Chandren S, Abdul Razak FI, Jamalis J. Effect of operative variables and kinetic study of butyl butyrate synthesis by Candida rugosa lipase activated by chitosan-reinforced nanocellulose derived from raw oil palm leaves. Enzyme Microb Technol 2019; 130:109367. [DOI: 10.1016/j.enzmictec.2019.109367] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/17/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022]
|
25
|
Wong WKL, Wahab RA, Onoja E. Chemically modified nanoparticles from oil palm ash silica-coated magnetite as support for Candida rugosa lipase-catalysed hydrolysis: kinetic and thermodynamic studies. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00976-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
26
|
Bahaman AH, Abdul Wahab R, Hamid AAA, Halim KBA, Kaya Y, Edbeib MF. Substrate docking and molecular dynamic simulation for prediction of fungal enzymes from Trichoderma species-assisted extraction of nanocellulose from oil palm leaves. J Biomol Struct Dyn 2019; 38:4246-4258. [DOI: 10.1080/07391102.2019.1679667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aina Hazimah Bahaman
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Yilmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Kyrgyzstan
| | - Mohamed Faraj Edbeib
- Department of Animal Production, Faculty of Agriculture, Baniwalid University, Baniwalid, Libya
| |
Collapse
|
27
|
Hussin FNNM, Attan N, Wahab RA. Extraction and Characterization of Nanocellulose from Raw Oil Palm Leaves (Elaeis guineensis). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-04131-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Huang L, Zheng D, Zhao Y, Ma J, Li Y, Xu Z, Shan M, Shao S, Guo Q, Zhang J, Lu F, Liu Y. Improvement of the alkali stability of Penicillium cyclopium lipase by error-prone PCR. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Bacakova L, Pajorova J, Bacakova M, Skogberg A, Kallio P, Kolarova K, Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. NANOMATERIALS 2019; 9:nano9020164. [PMID: 30699947 PMCID: PMC6410160 DOI: 10.3390/nano9020164] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Abstract
Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose; nanofibers, present particularly in electrospun matrices; and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Anne Skogberg
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Pasi Kallio
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Katerina Kolarova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| |
Collapse
|
30
|
Onoja E, Chandren S, Razak FIA, Wahab RA. Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. J Biotechnol 2018; 283:81-96. [DOI: 10.1016/j.jbiotec.2018.07.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/14/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
|
31
|
Rahman INA, Attan N, Mahat NA, Jamalis J, Abdul Keyon AS, Kurniawan C, Wahab RA. Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl valerate. Int J Biol Macromol 2018; 115:680-695. [DOI: 10.1016/j.ijbiomac.2018.04.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 10/17/2022]
|