1
|
Dong L, Li Y, Cong H, Yu B, Shen Y. A review of chitosan in gene therapy: Developments and challenges. Carbohydr Polym 2024; 324:121562. [PMID: 37985064 DOI: 10.1016/j.carbpol.2023.121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Gene therapy, as a revolutionary treatment, has been gaining more and more attention. The key to gene therapy is the selection of suitable vectors for protection of exogenous nucleic acid molecules and enabling their specific release in target cells. While viral vectors have been widely used in researches, non-viral vectors are receiving more attention due to its advantages. Chitosan (CS) has been widely used as non-viral organic gene carrier because of its good biocompatibility and its ability to load large amounts of nucleic acids. This paper summarizes and evaluates the potential of chitosan and its derivatives as gene delivery vector materials, along with factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and the current main research development directions. Additionally, it provides an outlook on its future prospects.
Collapse
Affiliation(s)
- Liang Dong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Çağdaş Tunalı B, Çelik E, Budak Yıldıran FA, Türk M. Delivery of
siRNA
using hyaluronic acid‐guided nanoparticles for downregulation of
CXCR4. Biopolymers 2023; 114:e23535. [PMID: 36972328 DOI: 10.1002/bip.23535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
In this study, effective transport of small interfering RNAs (siRNAs) via hyaluronic acid (HA) receptor was carried out with biodegradable HA and low-molecular weight polyethyleneimine (PEI)-based transport systems. Gold nanoparticles (AuNPs) capable of giving photothermal response, and their conjugates with PEI and HA, were also added to the structure. Thus, a combination of gene silencing, photothermal therapy and chemotherapy, has been accomplished. The synthesized transport systems ranged in size, between 25 and 690 nm. When the particles were applied at a concentration of 100 μg mL-1 (except AuPEI NPs) in vitro, cell viability was above 50%. Applying radiation after the conjugate/siRNA complex (especially those containing AuNP) treatment, increased the cytotoxic effect (decrease in cell viability of 37%, 54%, 13%, and 15% for AuNP, AuPEI NP, AuPEI-HA, and AuPEI-HA-DOX, respectively) on the MDA-MB-231 cell line. CXCR4 gene silencing via the synthesized complexes, especially AuPEI-HA-DOX/siRNA was more efficient in MDA-MB-231 cells (25-fold decrease in gene expression) than in CAPAN-1 cells. All these results demonstrated that the synthesized PEI-HA and AuPEI-HA-DOX conjugates can be used as siRNA carriers that are particularly effective, especially in the treatment of breast cancer.
Collapse
Affiliation(s)
- Beste Çağdaş Tunalı
- Division of Bioengineering, Institute of Science, Hacettepe University, Ankara, Turkey
- Department of Bioengineering, Engineering Faculty, Kırıkkale University, Kırıkkale, Turkey
| | - Eda Çelik
- Division of Bioengineering, Institute of Science, Hacettepe University, Ankara, Turkey
- Department of Chemical Engineering, Engineering Faculty, Hacettepe University, Ankara, Turkey
| | | | - Mustafa Türk
- Department of Bioengineering, Engineering Faculty, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
3
|
Le HV, Le Cerf D. Colloidal Polyelectrolyte Complexes from Hyaluronic Acid: Preparation and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204283. [PMID: 36260830 DOI: 10.1002/smll.202204283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide which has been extensively exploited in biomedical fields owing to its outstanding biocompatibility. Self-assembly of HA and polycations through electrostatic interactions can generate colloidal polyelectrolyte complexes (PECs), which can offer a wide range of applications while being relatively simple to prepare with rapid and "green" processes. The advantages of colloidal HA-based PECs stem from the combined benefits of nanomedicine, green chemistry, and the inherent properties of HA, namely high biocompatibility, biodegradability, and biological targeting capability. Accordingly, colloidal PECs from HA have received increasing attention in the recent years as high-performance materials for biomedical applications. Considering their potential, this review is aimed to provide a comprehensive understanding of colloidal PECs from HA in complex with polycations, from the most fundamental aspects of the preparation process to their various biomedical applications, notably as nanocarriers for delivering small molecule drugs, nucleic acids, peptides, proteins, and bioimaging agents or the construction of multifunctional platforms.
Collapse
Affiliation(s)
- Huu Van Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| |
Collapse
|
4
|
Hyaluronic Acid Modified Nanostructured Lipid Carrier for Targeting Delivery of Kaempferol to NSCLC: Preparation, Optimization, Characterization, and Performance Evaluation In Vitro. Molecules 2022; 27:molecules27144553. [PMID: 35889427 PMCID: PMC9318624 DOI: 10.3390/molecules27144553] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022] Open
Abstract
Lung cancer seriously threatens the health of human beings, with non-small cell lung cancer (NSCLC) accounting for 80%. Nowadays, the potential position of nano-delivery in treating cancer has been the subject of continuous research. The present research aimed to prepare two molecular weight hyaluronic acid (HA)-modified kaempferol (KA)-loaded nanostructured lipid carriers (HA-KA-NLCs) by the method of melting ultrasonic and electrostatic adsorption, and to assess the antitumor effect of the preparations on A549 cells. The characterization and safety evaluation of the preparations illustrated that they are acceptable for drug delivery for cancer. Subsequently, differential scanning calorimetry (DSC) curve and transmission electron microscopy (TEM) images indicated that the drug was adequately incorporated in the carrier, and the particle appeared as a sphere. Moreover, HA-KA-NLC showed predominant in vitro antitumor effects, inhibiting proliferation, migration, and invasion, promoting apoptosis and increasing cellular uptake of A549 cells. Otherwise, the Western blot assay revealed that preparations could activate epithelial-mesenchymal transition (EMT)-related signaling pathways and modulate the expression of E-cadherin, N-cadherin, and Vimentin in A549 cells. Our present findings demonstrated that HA-KA-NLC could be considered as a secure and effective carrier for targeted tumor delivery and may have potential application prospects in future clinic therapy of NSCLC.
Collapse
|
5
|
Supachawaroj N, Damrongrungruang T, Limsitthichaikoon S. Formulation development and evaluation of lidocaine hydrochloride loaded in chitosan-pectin-hyaluronic acid polyelectrolyte complex for dry socket treatment. Saudi Pharm J 2021; 29:1070-1081. [PMID: 34588852 PMCID: PMC8463479 DOI: 10.1016/j.jsps.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/04/2021] [Indexed: 12/31/2022] Open
Abstract
The main purpose of this study was to assess a lidocaine hydrochloride-loaded chitosan-pectin-hyaluronic polyelectrolyte complex for rapid onset and sustained release in dry socket wound treatment. Nine formulations (LCs) of lidocaine hydrochloride (LH) loaded into a chitosan–pectin–hyaluronic polyelectrolyte complex (PEC) were assessed using full factorial design (two factors × three levels). The formulations ranged between 4 and 10% w/w LH and 0.5–1.5% w/w HA. The following physicochemical properties of LCs were characterized: size, zeta potential, % entrapment efficiency, viscosity, mucoadhesiveness, % drug release, morphology, storage stability, and cytotoxicity. The particle size, zeta potential, % EE, viscosity, and % mucoadhesion increased with increasing LH and HA concentrations. Rapid release of LH followed a zero-order model, and a steady-state percentage of the drug was released over 4 h. LCs were found to be non-cytotoxic compared to LH solution. LH loaded into PEC demonstrated appropriate characteristics—including suitable rate of release—and fit a zero-order model. Furthermore, it was not cytotoxic and showed good stability in a high-HA formula, making it a promising candidate for future topical oral formulations.
Collapse
Affiliation(s)
- Nuttawut Supachawaroj
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Thailand.,Department of Oral Surgery, College of Dental Medicine, Rangsit University, Thailand
| | - Teerasak Damrongrungruang
- Division of Oral Diagnosis, Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, Thailand
| | | |
Collapse
|
6
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer-based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021; 60:13225-13243. [PMID: 32893932 PMCID: PMC8247987 DOI: 10.1002/anie.202010282] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Over the last 30 years, genetically engineered DNA has been tested as novel vaccination strategy against various diseases, including human immunodeficiency virus (HIV), hepatitis B, several parasites, and cancers. However, the clinical breakthrough of the technique is confined by the low transfection efficacy and immunogenicity of the employed vaccines. Therefore, carrier materials were designed to prevent the rapid degradation and systemic clearance of DNA in the body. In this context, biopolymers are a particularly promising DNA vaccine carrier platform due to their beneficial biochemical and physical characteristics, including biocompatibility, stability, and low toxicity. This article reviews the applications, fabrication, and modification of biopolymers as carrier medium for genetic vaccines.
Collapse
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Luise Fanslau
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Puneet Tyagi
- Dosage Form Design and DevelopmentBioPharmaceuticals DevelopmentR&DAstra ZenecaGaithersburgMD20878USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
7
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer‐based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Luise Fanslau
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Puneet Tyagi
- Dosage Form Design and Development BioPharmaceuticals Development R&D Astra Zeneca Gaithersburg MD 20878 USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|