1
|
Nasim F, Jakkula P, Kumar MS, Alvala M, Qureshi IA. Structural and catalytic properties of histidyl-tRNA synthetase: A potential drug target against leishmaniasis. Int J Biol Macromol 2024; 282:137357. [PMID: 39515693 DOI: 10.1016/j.ijbiomac.2024.137357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Visceral leishmaniasis is caused by Leishmania donovani which affects the poorer sections of society, and despite the global spread, effective treatment is unavailable. The current study investigates the potential of leishmanial histidyl-tRNA synthetase (LdHisRS) as a drug target. LdHisRS delineated more closeness to other protozoan parasites than its mammalian counterparts and contained relevant differences in the active site residues. The important ATP-binding residues were mutated to alanine and all the proteins, including human HisRS, were purified to homogeneity. LdHisRS exhibited a dimeric state in solution and showed maximal amino acid activation activity in physiological conditions. It also demonstrated a greater affinity for substrate over cofactor, while magnesium and potassium enhanced its activity better than other tested metal ions. Comp-7m, a benzothiazolo-coumarin derivative, proved to be specific inhibitor of LdHisRS with competitive mode of inhibition for ATP whereas it displayed lower binding affinity towards mutants. LdHisRS majorly contained α-helices and most of the aromatic residues were present in its hydrophobic core. Additionally, Comp-7m superimposed on ATP adenine ring during docking analysis and LdHisRS-ligand complexes had comparable stability as well as rigidity in molecular dynamics simulation. We thus provide structural and functional insights of LdHisRS which can be useful for devising antileishmanials.
Collapse
Affiliation(s)
- Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Muppidi Shravan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
2
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
3
|
Bhat SY. Drug targeting of aminopeptidases: importance of deploying a right metal cofactor. Biophys Rev 2024; 16:249-256. [PMID: 38737204 PMCID: PMC11078913 DOI: 10.1007/s12551-024-01192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/05/2022] [Indexed: 05/14/2024] Open
Abstract
Aminopeptidases are metal co-factor-dependent hydrolases releasing N-terminal amino acid residues from peptides. Many of these enzymes, particularly the M24 methionine aminopeptidases (MetAPs), are considered valid drug targets in the fight against many parasitic and non-parasitic diseases. Targeting MetAPs has shown promising results against the malarial parasite, Plasmodium, which is regarded as potential anti-cancer targets. While targeting these essential enzymes represents a potentially promising approach, many challenges are often ignored by scientists when designing drugs or inhibitory scaffolds against the MetAPs. One such aspect is the metal co-factor, with inadequate attention paid to its role in catalysis, folding and remodeling of the catalytic site, and its role in inhibitor binding or potency. Knowing that a metal co-factor is essential for aminopeptidase enzyme activity and active site remodeling, it is intriguing that most computational biologists often ignore the metal ion while screening millions of potential inhibitors to find hits. Ironically, a similar trend is followed by biologists who avoid metal promiscuity of these enzymes while screening inhibitor libraries in vitro which may lead to false positives. This review highlights the importance of considering a physiologically relevant metal co-factor during the drug discovery processes targeting metal-dependent aminopeptidases. Graphical abstract
Collapse
|
4
|
Narsimulu B, Jakkula P, Qureshi R, Nasim F, Qureshi IA. Inhibition and structural insights of leishmanial glutamyl-tRNA synthetase for designing potent therapeutics. Int J Biol Macromol 2024; 254:127756. [PMID: 37907177 DOI: 10.1016/j.ijbiomac.2023.127756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/08/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs), essential components of the protein synthesizing machinery, have been often chosen for devising therapeutics against parasitic diseases. Due to their relevance in drug development, the current study was designed to explore functional and structural aspects of Leishmania donovani glutamyl-tRNA synthetase (LdGluRS). Hence, LdGluRS was cloned into an expression vector and purified to homogeneity using chromatographic techniques. Purified protein showed maximum enzymatic activity at physiological pH, with more binding capacity towards its cofactor (Adenosine triphosphate, 0.06 ± 0.01 mM) than the cognate substrate (L-glutamate, 9.5 ± 0.5 mM). Remarkably, salicylate inhibited LdGluRS competitively with respect to L-glutamate and exhibited druglikeness with negligible effect on human macrophages. The protein possessed more α-helices (43 %) than β-sheets (12 %), whereas reductions in thermal stability and cofactor-binding affinity, along with variation in mode of inhibition after mutation signified the role of histidine (H60) as a catalytic residue. LdGluRS could also generate a pro-inflammatory milieu in human macrophages by upregulating cytokines. The docking study demonstrated the placement of salicylate into LdGluRS substrate-binding site, and the complex was found to be stable during molecular dynamics (MD) simulation. Altogether, our study highlights the understanding of molecular inhibition and structural features of glutamyl-tRNA synthetase from kinetoplastid parasites.
Collapse
Affiliation(s)
- Bandigi Narsimulu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
5
|
Xiao K, Zhao Q, Wang H, Zhu S, Dong H, Huang B, Han H. Molecular characterization of methionine aminopeptidase1 from Eimeria tenella. Eur J Protistol 2023; 90:126012. [PMID: 37557059 DOI: 10.1016/j.ejop.2023.126012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Coccidiosis, a serious intestinal parasitic disease caused by Eimeria spp., can result in huge annual economic losses to the poultry industry worldwide. At present, coccidiosis is mainly controlled by anticoccidial drugs. However, drug resistance has developed in Eimeria because of the long-term and unreasonable use of the drugs currently available. In our previous study, RNA-seq showed that the expression of methionine aminopeptidase1 (EtMetAP1) was up-regulated in diclazuril-resistant (DZR) and maduramicin-resistant (MRR) strains compared to drug-sensitive (DS) strain of Eimeria tenella. In this study, EtMetAP1 was cloned and expressed, and the function and characteristics of the EtMetAP1 protein were analyzed. The transcription and translation levels of EtMetAP1 in DS strain of E. tenella at different developmental stages were analyzed by qPCR and western blotting. We found that the transcription and translation levels of EtMetAP1 in second-generation merozoites (SM) were higher than those of the other three stages (unsporulated oocyst, sporulated oocyst, and sporozoites). Simultaneously, qPCR was used to analyze the mRNA transcription levels of EtMetAP1 in DS, DZR, MRR, and salinomycin-resistant (SMR) strain. The results showed that compared to the sensitive strain, the transcription levels of EtMetAP1 in DZR and MRR were up-regulated. There was no significant difference in transcription level in SMR. Indirect immunofluorescence localization showed that the protein was mainly localised in the cell membrane and cytoplasm of sporozoites and SM. An invasion inhibition test showed that anti-rEtMetAP1 polyclonal antibody could effectively inhibit the sporozoite invasion of host cells. These results suggest that the protein may be involved in the growth and development of parasites in host cells, the generation of drug resistance, and host cell invasion.
Collapse
Affiliation(s)
- Ke Xiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Bing Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China.
| |
Collapse
|
6
|
de Morais MC, Medeiros GA, Almeida FS, Rocha JDC, Perez-Castillo Y, Keesen TDSL, de Sousa DP. Antileishmanial Activity of Cinnamic Acid Derivatives against Leishmania infantum. Molecules 2023; 28:molecules28062844. [PMID: 36985814 PMCID: PMC10053546 DOI: 10.3390/molecules28062844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Leishmania infantum is the etiological agent of visceral leishmaniasis (VL) in South America, the Mediterranean basin, and West and Central Asia. The most affected country, Brazil, reported 4297 VL cases in 2017. L. infantum is transmitted by female phlebotomine sand flies during successive blood meals. There are no validated vaccines to prevent the infection and the treatment relies on drugs that often present severe side effects, which justify the efforts to find new antileishmanial drugs. Cinnamic acid derivatives have shown several pharmacological activities, including antiparasitic action. Therefore, in the present study, the biological evaluation of cinnamic acid and thirty-four derivatives against L. infantum is reported. The compounds were prepared by several synthesis methods and characterized by spectroscopic techniques and high-resolution mass spectrometry. The results revealed that compound 32 (N-(4-isopropylbenzyl)cinnamamide) was the most potent antileishmanial agent (IC50 = 33.71 μM) with the highest selectivity index (SI > 42.46), followed by compound 15 (piperonyl cinnamate) with an IC50 = 42.80 μM and SI > 32.86. Compound 32 was slightly less potent and nineteen times more selective for the parasite than amphotericin B (MIC = 3.14 uM; SI = 2.24). In the molecular docking study, the most likely target for the compound in L. infantum was aspartyl aminopeptidase, followed by aldehyde dehydrogenase, mitochondrial. The data obtained show the antileishmanial potential of this class of compounds and may be used in the search for new drug candidates against Leishmania species.
Collapse
Affiliation(s)
- Mayara Castro de Morais
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
| | - Gisele Alves Medeiros
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
| | - Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, BP, Brazil
| | - Juliana da Câmara Rocha
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, BP, Brazil
| | - Yunierkis Perez-Castillo
- Bio-Cheminformatics Research Group and Area de Ciencias Aplicadas, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Americas, Quito 170503, Ecuador
| | - Tatjana de Souza Lima Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, BP, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, BP, Brazil
| |
Collapse
|
7
|
Hassan AHE, Mahmoud K, Phan TN, Shaldam MA, Lee CH, Kim YJ, Cho SB, Bayoumi WA, El-Sayed SM, Choi Y, Moon S, No JH, Lee YS. Bestatin analogs-4-quinolinone hybrids as antileishmanial hits: Design, repurposing rational, synthesis, in vitro and in silico studies. Eur J Med Chem 2023; 250:115211. [PMID: 36827952 DOI: 10.1016/j.ejmech.2023.115211] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Amongst different forms of leishmaniasis, visceral leishmaniasis caused by L. donovani is highly mortal. Identification of new hit compounds might afford new starting points to develop novel therapeutics. In this lieu, a rationally designed small library of bestatin analogs-4-quinolone hybrids were prepared and evaluated. Analysis of SAR unveiled distinct profiles for hybrids type 1 and type 2, which might arise from their different molecular targets. Amongst type 1 bestatin analog-4-quinolone hybrids, hybrid 1e was identified as potential hit inhibiting growth of L. donovani promastigotes by 91 and 53% at 50 and 25 μM concentrations, respectively. Meanwhile, hybrid 2j was identified amongst type 2 bestatin analog-4-quinolone hybrids as potential hit compound inhibiting growth of L. donovani promastigotes by 50 and 38% at 50 and 25 μM concentrations, respectively. Preliminary safety evaluation of the promising hit compounds showed that they are 50-100 folds safer against human derived monocytic THP-1 cells relative to the drug erufosine. In silico study was conducted to predict the possible binding of hybrid 1e with methionine aminopeptidases 1 and 2 of L. donovani. Molecular dynamic simulations verified the predicted binding modes and provide more in depth understanding of the impact of hybrid 1e on LdMetAP-1 and LdMetAP-2.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Kazem Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Trong-Nhat Phan
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Waleed A Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suyeon Moon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
8
|
A single amino acid difference between archaeal and human type 2 methionine aminopeptidases differentiates their affinity towards ovalicin. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140881. [PMID: 36396098 DOI: 10.1016/j.bbapap.2022.140881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
In almost all living cells, methionine aminopeptidase (MetAP) co-translationally cleaves the initiator methionine in at least 70% of the newly synthesized polypeptides. MetAPs are typically classified into Type 1 and Type 2. While prokaryotes and archaea contain only either Type 1 or Type 2 MetAPs respectively, eukaryotes contain both types of enzymes. Almost all MetAPs published till date cleave only methionine from the amino terminus of the substrate peptides. Earlier experiments on crude Type 2a MetAP isolated from Pyrococcus furiosus (PfuMetAP2a) cosmid protein library was shown to cleave leucine in addition to methionine. Authors in that study have ruled out the PfuMetAP2a activity against leucine substrates and assumed it to be a background reaction contributed by other contaminating proteases. In the current paper, using the pure recombinant enzyme, we report that indeed activity against leucine is directly carried out by the PfuMetAP2a. In addition, the natural product ovalicin which is a specific covalent inhibitor of Type 2 MetAPs does not show efficient inhibition against the PfuMetAP2a. Bioinformatic analysis suggested that a glycine in eukaryotic MetAP2s (G222 in human MetAP2b) and asparagine (N53 in PfuMetAP2a) in archaeal MetAP2s positioned at the analogous position. N53 side chain forms a hydrogen bond with a conserved histidine (H62) at the entrance of the active site and alters its orientation to accommodate the ovalicin. This slight orientational difference of the H62, reduces affinity of the ovalicin by 300,000-fold when compared with the HsMetAP2b inhibition. This difference in the activity is partly reduced in the case of N53G mutation of the PfuMetAP2a.
Collapse
|
9
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
10
|
Wu M, Jia BB, Li MF. Complement C3 and Activated Fragment C3a Are Involved in Complement Activation and Anti-Bacterial Immunity. Front Immunol 2022; 13:813173. [PMID: 35281048 PMCID: PMC8913944 DOI: 10.3389/fimmu.2022.813173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
In the complement system, C3 is a central component in complement activation, immune defense and immune regulation. In all pathways of complement activation, the pivotal step is conversion of the component C3 to C3b and C3a, which is responsible to eliminate the pathogen and opsonization. In this study, we examined the immunological properties of C3 and its activated fragment C3a from Japanese flounder (Paralichthys olivaceus) (PoC3 and PoC3a), a teleost species with important economic value. PoC3 is composed of 1655 amino acid residues, contains the six domains and highly conserved GCGEQ sequence of the C3 family. We found that PoC3 expression occurred in nine different tissues and was upregulated by bacterial challenge. In serum, PoC3 was able to bind to a broad-spectrum of bacteria, and purified native PoC3 could directly kill specific pathogen. When PoC3 expression in Japanese flounder was knocked down by siRNA, serum complement activity was significantly decreased, and bacterial replication in fish tissues was significantly increased. Recombinant PoC3a (rPoC3a) exhibited apparent binding capacities to bacteria and Japanese flounder peripheral blood leukocytes (PBL) and induce chemotaxis of PBL. Japanese flounder administered rPoC3a exhibited enhanced resistance against bacterial infection. Taken together, these results indicate that PoC3 is likely a key factor of complement activation, and PoC3 and PoC3a are required for optimal defense against bacterial infection in teleost.
Collapse
Affiliation(s)
- Meng Wu
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bei-bei Jia
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mo-fei Li
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Mo-fei Li,
| |
Collapse
|
11
|
Mech D, Kurowska A, Trotsko N. The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int J Mol Sci 2021; 22:11533. [PMID: 34768964 PMCID: PMC8584074 DOI: 10.3390/ijms222111533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Thiazolidin-4-ones is an important heterocyclic ring system of a pharmacophore and a privileged scaffold in medicinal chemistry. This review is focused on the latest scientific reports regarding biological activities of thiazolidin-4-ones published in 2020 and 2021. The review covers recent information about antioxidant, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidiabetic, antiparasitic, antimicrobial, antitubercular and antiviral properties of thiazolidin-4-ones. Additionally, the influence of different substituents in molecules on their biological activity was discussed in this paper. Thus, this study may help to optimize the structure of thiazolidin-4-one derivatives as more efficient drug agents. Presented information may be used as a practical hint for rational design of new small molecules with biological activity, especially among thiazolidin-4-ones.
Collapse
Affiliation(s)
| | | | - Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (D.M.); (A.K.)
| |
Collapse
|
12
|
Bhat S, Qureshi IA. Structural and Functional Basis of Potent Inhibition of Leishmanial Leucine Aminopeptidase by Peptidomimetics. ACS OMEGA 2021; 6:19076-19085. [PMID: 34337246 PMCID: PMC8320071 DOI: 10.1021/acsomega.1c02386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A leucine aminopeptidase primarily hydrolyzes amino acid leucine from the N-terminus end of proteins and is involved in free amino acid regulation, which makes it a potential therapeutic target against neglected tropical diseases including leishmaniasis. We here report the purification and characterization of the leucine aminopeptidase from Leishmania donovani (LdLAP). Using a set of biophysical and biochemical methods, we demonstrate that this enzyme was properly folded after expression in a bacterial system and catalytically active when supplemented with divalent metal cofactors with synthetic fluorogenic peptides. Subsequently, enzymatic inhibition assay denoted that LdLAP activity was inhibited by peptidomimetics, particularly actinonin, which caused potent inhibition and exhibited stronger binding association with the LdLAP. Stronger association of actinonin with the LdLAP was due to a stable complex formation mostly mediated by hydrogen bonding with catalytic and substrate-binding residues in the C-terminal catalytic domain. With molecular dynamics simulation studies, we demonstrate that peptidomimetics retain their topological space in the LdLAP catalytic pocket and form a stable complex. These results expand the current knowledge of aminopeptidase biochemistry and highlight that specific actinonin or peptidomimetic-based inhibitors may emerge as leads to combat leishmaniasis.
Collapse
|
13
|
Aguado ME, González-Matos M, Izquierdo M, Quintana J, Field MC, González-Bacerio J. Expression in Escherichia coli, purification and kinetic characterization of LAPLm, a Leishmania major M17-aminopeptidase. Protein Expr Purif 2021; 183:105877. [PMID: 33775769 DOI: 10.1016/j.pep.2021.105877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022]
Abstract
The Leishmania major leucyl-aminopeptidase (LAPLm), a member of the M17 family of proteases, is a potential drug target for treatment of leishmaniasis. To better characterize enzyme properties, recombinant LAPLm (rLAPLm) was expressed in Escherichia coli. A LAPLm gene was designed, codon-optimized for expression in E. coli, synthesized and cloned into the pET-15b vector. Production of rLAPLm in E. coli Lemo21(DE3), induced for 4 h at 37 °C with 400 μM IPTG and 250 μM l-rhamnose, yielded insoluble enzyme with a low proportion of soluble and active protein, only detected by an anti-His antibody-based western-blot. rLAPLm was purified in a single step by immobilized metal ion affinity chromatography. rLAPLm was obtained with a purity of ~10% and a volumetric yield of 2.5 mg per liter, sufficient for further characterization. The aminopeptidase exhibits optimal activity at pH 7.0 and a substrate preference for Leu-p-nitroanilide (appKM = 30 μM, appkcat = 14.7 s-1). Optimal temperature is 50 °C, and the enzyme is insensitive to 4 mM Co2+, Mg2+, Ca2+ and Ba2+. However, rLAPLm was activated by Zn2+, Mn2+ and Cd2+ but is insensitive towards the protease inhibitors PMSF, TLCK, E-64 and pepstatin A, being inhibited by EDTA and bestatin. Bestatin is a potent, non-competitive inhibitor of the enzyme with a Ki value of 994 nM. We suggest that rLAPLm is a suitable target for inhibitor identification.
Collapse
Affiliation(s)
- Mirtha Elisa Aguado
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 Entre I y J, Vedado, 10400, Havana, Cuba.
| | - Maikel González-Matos
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 Entre I y J, Vedado, 10400, Havana, Cuba.
| | - Maikel Izquierdo
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 Entre I y J, Vedado, 10400, Havana, Cuba.
| | - Juan Quintana
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, UK.
| | - Mark C Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, UK; Institute of Parasitology, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic.
| | - Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 Entre I y J, Vedado, 10400, Havana, Cuba.
| |
Collapse
|
14
|
Panigrahi GC, Qureshi R, Jakkula P, Kumar KA, Khan N, Qureshi IA. Leishmanial aspartyl-tRNA synthetase: Biochemical, biophysical and structural insights. Int J Biol Macromol 2020; 165:2869-2885. [PMID: 33736288 DOI: 10.1016/j.ijbiomac.2020.10.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022]
Abstract
Aminoacyl tRNA synthetases (aaRSs) are integral components of protein biosynthesis along with several non-canonical cellular processes. Inhibition studies of aaRSs presented these enzymes as promising drug targets in many pathogens, however aspartyl tRNA synthetase has not been studied in trypanosomatids despite its essentiality. Hence, full-length ORF of Leishmania donovani aspartyl tRNA synthetase (LdaspRS) was cloned and purified to homogeneity followed by molecular mass determination. The aminoacylation assay established that the purified protein performs its function optimally at physiological pH and temperature. The kinetic parameters of LdaspRS revealed the affinity of l-aspartate towards the enzyme to be very much lower than the cofactor. Our study also highlights the moonlighting function of LdaspRS to stimulate the pro-inflammatory cytokines and nitric oxide generation by host macrophage. Furthermore, CD and intrinsic tryptophan fluorescence measurements showed the changes in structural conformation at varying pH, denaturants and ligands. The modelled LdaspRS structure presented all the specific characteristics of class II aaRSs, while in silico study suggested binding of pyrimidine-derived inhibitors in its cofactor binding site with high affinity followed by validation using MD simulation. Altogether, this study could provide a platform for exploring LdaspRS to develop potential therapeutics against leishmaniasis.
Collapse
Affiliation(s)
- Girish Ch Panigrahi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Rahila Qureshi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Pranay Jakkula
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K Amith Kumar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Nooruddin Khan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
15
|
Bhat SY, Bhandari S, Thacker PS, Arifuddin M, Qureshi IA. Development of quinoline‐based hybrid as inhibitor of methionine aminopeptidase 1 from
Leishmania donovani. Chem Biol Drug Des 2020; 97:315-324. [DOI: 10.1111/cbdd.13783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/26/2020] [Accepted: 08/15/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Saleem Yousuf Bhat
- Department of Biotechnology and Bioinformatics, School of Life Sciences University of Hyderabad Hyderabad India
| | - Sonal Bhandari
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Pavitra Suresh Thacker
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences University of Hyderabad Hyderabad India
| |
Collapse
|
16
|
In Vitro and In Vivo Characterization of Potent Antileishmanial Methionine Aminopeptidase 1 Inhibitors. Antimicrob Agents Chemother 2020; 64:AAC.01422-19. [PMID: 32179532 DOI: 10.1128/aac.01422-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/08/2020] [Indexed: 11/20/2022] Open
Abstract
Leishmania major is the causative agent of cutaneous leishmaniasis (CL). No human vaccine is available for CL, and current drug regimens present several drawbacks, such as emerging resistance, severe toxicity, medium effectiveness, and/or high cost. Thus, the need for better treatment options against CL is a priority. In the present study, we validate the enzyme methionine aminopeptidase 1 of L. major (MetAP1Lm), a metalloprotease that catalyzes the removal of N-terminal methionine from peptides and proteins, as a chemotherapeutic target against CL infection. The in vitro antileishmanial activities of eight novel MetAP1 inhibitors (OJT001 to OJT008) were investigated. Three compounds, OJT006, OJT007, and OJT008, demonstrated potent antiproliferative effects in macrophages infected with L. major amastigotes and promastigotes at submicromolar concentrations, with no cytotoxicity against host cells. Importantly, the leishmanicidal effect in transgenic L. major promastigotes overexpressing MetAP1Lm was diminished by almost 10-fold in comparison to the effect in wild-type promastigotes. Furthermore, the in vivo activities of OJT006, OJT007, and OJT008 were investigated in L. major-infected BALB/c mice. In comparison to the footpad parasite load in the control group, OJT008 decreased the footpad parasite load significantly, by 86%, and exhibited no toxicity in treated mice. We propose MetAP1 inhibitor OJT008 as a potential chemotherapeutic candidate against CL infection caused by L. major infection.
Collapse
|
17
|
Bhat SY, Qureshi IA. Mutations of key substrate binding residues of leishmanial peptidase T alter its functional and structural dynamics. Biochim Biophys Acta Gen Subj 2020; 1864:129465. [DOI: 10.1016/j.bbagen.2019.129465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 11/27/2022]
|
18
|
Synthesis and characterization of quinoline-carbaldehyde derivatives as novel inhibitors for leishmanial methionine aminopeptidase 1. Eur J Med Chem 2019; 186:111860. [PMID: 31759728 DOI: 10.1016/j.ejmech.2019.111860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022]
Abstract
Methionine aminopeptidase 1 of Leishmania donovani (LdMetAP1) is a novel antileishmanial target for its role in vital N-terminal methionine processing. After LdMetAP1 expression and purification, we employed a series of biochemical assays to determine optimal conditions for catalysis, metal dependence and substrate preferences for this ubiquitous enzyme. Screening of newly synthesized quinoline-carbaldehyde derivatives in inhibition assays led to the identification of HQ14 and HQ15 as novel and specific inhibitors for LdMetAP1 which compete with substrate for binding to the catalytic active site. Both leads bind LdMetAP1 with high affinity and possess druglikeness. Biochemical studies suggested HQ14 and HQ15 to be comparatively less effective against purified HsMetAP1 and showed no or less toxicity. We further show selectivity and inhibition of lead inhibitors is sensed through a non-catalytic Thr residue unique to LdMetAP1. Finally, structural studies highlight key differences in the binding modes of HQ14 and HQ15 to LdMetAP1 and HsMetAP1 providing structural basis for differences in inhibition. The study demonstrates the feasibility of deploying small drug like molecules to selectively target the catalytic activity of LdMetAP1 which may provide an effective treatment of leishmaniasis.
Collapse
|