1
|
Wen J, Okyere SK, Wang S, Wang J, Huang R, Tang Z, Wang X, Shao C, Hu Y. Antibacterial Activity and Multi-Targeted Mechanism of Action of Suberanilic Acid Isolated from Pestalotiopsis trachycarpicola DCL44: An Endophytic Fungi from Ageratina adenophora. Molecules 2024; 29:4205. [PMID: 39275053 PMCID: PMC11396930 DOI: 10.3390/molecules29174205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly threatening foodborne pathogen capable of causing severe organ and life-threatening diseases. Over the past years, various commercial antibiotics have been used to treat MRSA infections. However, these commercial antibiotics have not yielded efficient results and also cause other side effects; therefore, there is a need for the development of effective alternatives to replace these commercial antibiotics. Suberanilic acid, an amide alkaloid obtained from the endophytic fungus Pestalotiopsis trachycarpicola DCL44, has been identified as a significant antimicrobial agent. However, its antibiotic properties on multi-drug-resistant bacteria such as MRSA have not been fully explored. Therefore, to investigate the potential antimicrobial mechanism of suberanilic acid against MRSA, a quantitative proteomics approach using tandem mass tagging (TMT) was used. The results obtained in the study revealed that suberanilic acid targets multiple pathways in MRSA, including disruption of ribosome synthesis, inhibition of membrane translocation for nutrient uptake (ABC transporter system), and causing dysregulation of carbohydrate and amino acid energy metabolism. These results provide new insights into the mechanism of action of suberanilic acid against MRSA and offer technical support and a theoretical basis for the development of novel food antimicrobial agents derived from endophytic fungal origin.
Collapse
Affiliation(s)
- Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- College of Animal Science, Xichang University, Xichang 615013, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruya Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyao Tang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxuan Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chenyang Shao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Yang F, Duan Y, Li Y, Zhu D, Wang Z, Luo Z, Zhang Y, Zhang G, He X, Kang X. S100A6 Regulates nucleus pulposus cell apoptosis via Wnt/β-catenin signaling pathway: an in vitro and in vivo study. Mol Med 2024; 30:87. [PMID: 38877413 PMCID: PMC11179208 DOI: 10.1186/s10020-024-00853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/β-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/β-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/β-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1β-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/β-catenin signaling pathway. CONCLUSIONS This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/β-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanni Duan
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanhu Li
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Daxue Zhu
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhaoheng Wang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhangbin Luo
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yizhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuegang He
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuewen Kang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Zhang Y, Tang J, Wang S, Zhou X, Peng C, Zhou H, Wang D, Lin H, Xiang W, Zhang Q, Cai T, Yu X. Mechanism of deltamethrin biodegradation by Brevibacillus parabrevis BCP-09 with proteomic methods. CHEMOSPHERE 2024; 350:141100. [PMID: 38171393 DOI: 10.1016/j.chemosphere.2023.141100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Ester-containing deltamethrin pesticides are widely used in farmland and have inevitable side effects on the biosphere and human health. Microbia have been used for efficient degradation of deltamethrin, but the related mechanism and enzyme characteristics have not been elucidated. In this study, a species Brevibacillus parabrevis BCP-09 could degrade up to 75 mg L-1 deltamethrin with a degradation efficiency of 95.41%. Proteomic and genomic methods were used to explore its degradation mechanism. Enzymes belonged to hydrolases, oxidases and aromatic compound degrading enzymes were expressed enhanced and might participate in the deltamethrin degradtion. RT-PCR experiment and enzyme activity analysis verified the degradation of deltamethrin by bacterial protein. Additionally, the formation of endospores can help strain BCP-09 resist the toxicity of deltamethrin and enhance its degradation. This study supplies a scientific evidence for the application of Brevibacillus parabrevis BCP-09 in the bioremediation of environmental pollution and enriches the resources of deltamethrin-biodegradable proteins.
Collapse
Affiliation(s)
- Yingyue Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu, 610039, China.
| | - Su Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China
| | - Xuerui Zhou
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China
| | - Chuanning Peng
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China
| | - Hu Zhou
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China
| | - Dan Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China
| | - Haoran Lin
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China
| | - Wenliang Xiang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| | - Qing Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| | - Ting Cai
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| | - Xuan Yu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| |
Collapse
|
4
|
Chettri D, Verma AK. Biological significance of carbohydrate active enzymes and searching their inhibitors for therapeutic applications. Carbohydr Res 2023; 529:108853. [PMID: 37235954 DOI: 10.1016/j.carres.2023.108853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Glycans are the most abundant and diverse group of biomolecules with a crucial role in all the biological processes. Their structural and functional diversity is not genetically encoded, but depends on Carbohydrate Active Enzymes (CAZymes) which carry out all catalytic activities in terms of synthesis, modification, and degradation. CAZymes comprise large families of enzymes with specific functions and are widely used for various commercial applications ranging from biofuel production to textile and food industries with impact on biorefineries. To understand the structure and functional mechanism of these CAZymes for their modification for industrial use, together with knowledge of therapeutic aspects of their dysfunction associated with various diseases, CAZyme inhibitors can be used as a valuable tool. In search for new inhibitors, the screening of various secondary metabolites using high-throughput techniques and rational design techniques have been explored. The inhibitors can thus help tune CAZymes and are emerging as a potential research interest.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
5
|
Combination of Spirulina platensis, Ganoderma lucidum and Moringa oleifera Improves Cardiac Functions and Reduces Pro-Inflammatory Biomarkers in Preclinical Models of Short-Term Doxorubicin-Mediated Cardiotoxicity: New Frontiers in Cardioncology? J Cardiovasc Dev Dis 2022; 9:jcdd9120423. [PMID: 36547420 PMCID: PMC9780956 DOI: 10.3390/jcdd9120423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Anthracyclines are essential adjuvant therapies for a variety of cancers, particularly breast, gastric and esophageal cancers. Whilst prolonging cancer-related survival, these agents can induce drug-related cardiotoxicity. Spirulina, Reishi (Ganoderma lucidum) and Moringa are three nutraceuticals with anti-inflammatory effects that are currently used in cancer patients as complementary and alternative medicines to improve quality of life and fatigue. We hypothesize that the nutraceutical combination of Spirulina, Reishi and Moringa (Singo) could reduce inflammation and cardiotoxicity induced by anthracyclines. Female C57Bl/6 mice were untreated (Sham, n = 6) or treated for 7 days with short-term doxorubicin (DOXO, n = 6) or Singo (Singo, n = 6), or pre-treated with Singo for 3 days and associated with DOXO for remaining 7 days (DOXO−Singo, n = 6). The ejection fraction and radial and longitudinal strain were analyzed through transthoracic echocardiography (Vevo 2100, Fujifilm, Tokyo, Japan). The myocardial expressions of NLRP3, DAMPs (galectin-3 and calgranulin S100) and 13 cytokines were quantified through selective mouse ELISA methods. Myocardial fibrosis, necrosis and hypertrophy were analyzed through immunohistochemistry (IHC). Human cardiomyocytes were exposed to DOXO (200 nM) alone or in combination with Singo (at 10, 25 and 50 µg/mL) for 24 and 48 h. Cell viability and inflammation studies were also performed. In preclinical models, Singo significantly improved ejection fraction and fractional shortening. Reduced expressions of myocardial NLRP3 and NF-kB levels in cardiac tissues were seen in DOXO−Singo mice vs. DOXO (p < 0.05). The myocardial levels of calgranulin S100 and galectin-3 were strongly reduced in DOXO−Singo mice vs. DOXO (p < 0.05). Immunohistochemistry analysis indicates that Singo reduces fibrosis and hypertrophy in the myocardial tissues of mice during exposure to DOXO. In conclusion, in the preclinical model of DOXO-induced cardiotoxicity, Singo is able to improve cardiac function and reduce biomarkers involved in heart failure and fibrosis.
Collapse
|
6
|
Identification, structure, and caseinolytic properties of milk-clotting proteases from Moringa oleifera flowers. Food Res Int 2022; 159:111598. [DOI: 10.1016/j.foodres.2022.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
7
|
Yang M, Ma L, Yang X, Li L, Chen S, Qi B, Wang Y, Li C, Yang S, Zhao Y. Bioinformatic Prediction and Characterization of Proteins in Porphyra dentata by Shotgun Proteomics. Front Nutr 2022; 9:924524. [PMID: 35873412 PMCID: PMC9301277 DOI: 10.3389/fnut.2022.924524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyra dentata is an edible red seaweed with high nutritional value. It is widely cultivated and consumed in East Asia and has vast economic benefits. Studies have found that P. dentata is rich in bioactive substances and is a potential natural resource. In this study, label-free shotgun proteomics was first applied to identify and characterize different harvest proteins in P. dentata. A total of 13,046 different peptides were identified and 419 co-expression target proteins were characterized. Bioinformatics was used to study protein characteristics, functional expression, and interaction of two important functional annotations, amino acid, and carbohydrate metabolism. Potential bioactive peptides, protein structure, and potential ligand conformations were predicted, and the results suggest that bioactive peptides may be utilized as high-quality active fermentation substances and potential targets for drug production. Our research integrated the global protein database, the first time bioinformatic analysis of the P. dentata proteome during different harvest periods, improves the information database construction and provides a framework for future research based on a comprehensive understanding.
Collapse
Affiliation(s)
- Mingchang Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lizhen Ma
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Bo Qi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shaoling Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Yongqiang Zhao,
| |
Collapse
|
8
|
David Troncoso F, Alberto Sánchez D, Luján Ferreira M. Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen 2022; 11:e202200017. [PMID: 35286022 PMCID: PMC8919702 DOI: 10.1002/open.202200017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
An updated review of emerging plant proteases with potential biotechnological application is presented. Plant proteases show comparable or even greater performance than animal or microbial proteases for by-product valorization through hydrolysis for, for example, cheese whey, bird feathers, collagen, keratinous materials, gelatin, fish protein, and soy protein. Active biopeptides can be obtained as high added value products, which have shown numerous beneficial effects on human health. Plant proteases can also be used for wastewater treatment. The production of new plant proteases is encouraged for the following advantages: low cost of isolation using simple procedures, remarkable stability over a wide range of operating conditions (temperature, pH, salinity, and organic solvents), substantial affinity to a broad variety of substrates, and possibility of immobilization. Vegetable proteases have enormous application potential for the valorization of industrial waste and its conversion into products with high added value through low-cost processes.
Collapse
Affiliation(s)
- Franco David Troncoso
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - Daniel Alberto Sánchez
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - María Luján Ferreira
- Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| |
Collapse
|
9
|
Kim G, Xu Y, Zhang J, Sui Z, Corke H. Antibacterial Activity and Multi-Targeting Mechanism of Dehydrocorydaline From Corydalis turtschaninovii Bess. Against Listeria monocytogenes. Front Microbiol 2022; 12:799094. [PMID: 35087499 PMCID: PMC8787222 DOI: 10.3389/fmicb.2021.799094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen, with relatively low incidence but high case-fatality. Phytochemicals have been recognized as a promising antimicrobial agent as an alternative to synthetic chemicals due to their safety and high efficacy with multi-target sites. This study identified and characterized a novel antibacterial agent, dehydrocorydaline, in the Corydalis turschaninovii rhizome using HPLC-LTQ-Orbitrap-HRMS, and its antibacterial effect with lowest MIC (1 mg/mL) and MBC (2 mg/mL) values. In addition, an in vitro growth kinetic assay, cytoplasmic nucleic acid and protein leakage assay, and observation of morphological changes in bacterial cells supported the strong antibacterial activity. Dehydrocorydaline also displayed effective inhibitory effects on biofilm formation and bacterial motility. In order to investigate the potential antibacterial mechanism of action of dehydrocorydaline against L. monocytogenes, label-free quantitative proteomics was used, demonstrating that dehydrocorydaline has multiple targets for combating L. monocytogenes including dysregulation of carbohydrate metabolism, suppression of cell wall synthesis, and inhibition of bacterial motility. Overall, this study demonstrated that dehydrocorydaline has potential as a natural and effective antibacterial agent with multi-target sites in pathogenic bacteria, and provides the basis for development of a new class of antibacterial agent.
Collapse
Affiliation(s)
- Gowoon Kim
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yijuan Xu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiarong Zhang
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China
| | - Zhongquan Sui
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Zhao Q, Zhao C, Shi Y, Wei G, Yang K, Wang X, Huang A. Proteomics analysis of the bio-functions of Dregea sinensis stems provides insights regarding milk-clotting enzyme. Food Res Int 2021; 144:110340. [PMID: 34053536 DOI: 10.1016/j.foodres.2021.110340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Dregea sinensis (D. sinensis) stems have traditionally been used as milk coagulant in Dali of Yunnan Province, China. In this study, proteomics was used to investigate the bio-functions of D. sinensis stem proteins, leading to the purification and identification of the milk-clotting enzyme. A total of 205 proteins mainly involved in the catalytic and metabolic processes were identified, of which 28 proteins exhibited hydrolase activity. Among the 28 proteins, we focused on two enzymes (M9QMC9 and B7VF65). Based on proteomics, a cysteine protease (M9QMC9) with a molecular weight of 25.8 kDa and milk-clotting activity was purified from D. sinensis stems using double ammonium sulfate precipitation and was confirmed using liquid chromatography-mass spectrometry (LC-MS/MS). The milk-clotting temperature using the purified enzyme was around 80 °C (specific activity at 314.38 U/mg), and it was found to be stable in the pH range of 6-9 in NaCl concentration of <0.8 mol/L. These findings indicated that the enzyme isolated from D. sinensis stems has potential in the dairy and food sectors, especially in the cheese-making industry.
Collapse
Affiliation(s)
- Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Cunchao Zhao
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Kun Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
11
|
Cao Y, Lu X, Dai Y, Li Y, Liu F, Zhou W, Li J, Zheng B. Proteomic analysis of body wall and coelomic fluid in Sipunculus nudus. FISH & SHELLFISH IMMUNOLOGY 2021; 111:16-24. [PMID: 33460719 DOI: 10.1016/j.fsi.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
In order to make clear the protein compositions of Sipunculus nudus and investigate its immune-related proteins, proteomic analysis was performed on body wall and coelomic fluid of Sipunculus nudus. A total of 1659 proteins were identified, and 539 proteins were differentially expressed in the coelomic fluid compared to those in the body wall, of which 415 proteins were up-regulated while 124 proteins were down-regulated. Gene Ontology (GO) analysis showed that the GO terms involved in the two parts of Sipunculus nudus were similar, with metabolic processes, catalytic activity and cell occupying the top categories of biological process, molecular function and cellular component, respectively. KEGG pathway analysis showed that 49 pathways in body wall and 48 in coelomic fluid were mapped respectively, and these pathways were mainly related to cellular processes, environmental information processing, genetic information processing and metabolism. The COG analysis showed that 757 proteins from body wall and 889 from coelomic fluid were classified into 26 COG categories, respectively. Pfam annotation revealed the mainly immune-related proteins contained in Sipunculus nudus, such as insulin-like growth factor binding protein, catalase, basement membrane proteoglycan, titin. Our research provides the first proteomic information of Sipunculus nudus, which contributes to the study of functional proteins in Sipunculus nudus and is of great significance for the application of Sipunculus nudus in functional foods and medicines.
Collapse
Affiliation(s)
- Yupo Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China; Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China
| | - Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China
| | - Yahui Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China
| | - Fei Liu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang, 524001, Guangdong, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
12
|
Wang WF, Xie XY, Chen K, Chen XL, Zhu WL, Wang HL. Immune Responses to Gram-Negative Bacteria in Hemolymph of the Chinese Horseshoe Crab, Tachypleus tridentatus. Front Immunol 2021; 11:584808. [PMID: 33584649 PMCID: PMC7878551 DOI: 10.3389/fimmu.2020.584808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Chinese horseshoe crab, Tachypleus tridentatus, is an ancient marine arthropod with a long evolutionary history. As a kind of living fossil species, the pathogen defenses of horseshoe crabs entirely depend on the innate immune system. Although, there are abundant immune molecules found in the horseshoe crab hemolymph, the biological mechanisms underlying their abilities of distinguishing and defending against invading microbes are still unclear. In this study, we used high-throughput sequencing at mRNA and protein levels and bioinformatics analysis methods to systematically analyze the innate immune response to Gram-negative bacteria in hemolymph of Chinese horseshoe crab. These results showed that many genes in the complement and coagulation cascades, Toll, NF-κB, C-type lectin receptor, JAK-STAT, and MAPK signaling pathways, and antimicrobial substances were activated at 12 and 24 h post-infection, suggesting that Gram-negative bacteria could activate the hemolymph coagulation cascade and antibacterial substances release via the above pathways. In addition, we conjectured that Toll and NF-κB signaling pathway were most likely to participate in the immune response to Gram-negative bacteria in hemolymph of horseshoe crab through an integral signal cascade. These findings will provide a useful reference for exploring the ancient original innate immune mechanism.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Yong Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Kang Chen
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xiu-Li Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Wei-Lin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Wang X, He L, Zhao Q, Chen H, Shi Y, Fan J, Chen Y, Huang A. Protein function analysis of germinated Moringa oleifera seeds, and purification and characterization of their milk-clotting peptidase. Int J Biol Macromol 2021; 171:539-549. [PMID: 33434550 DOI: 10.1016/j.ijbiomac.2021.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The present study aimed to investigate the biological functions of germinated M. oleifera seed proteins and to identify the identity of milk-clotting proteases. A total of 963 proteins were identified, and those with molecular weights between 10 and 30 kDa were most abundant. The identified proteins were mainly involved in energy-associated catalytic activity and metabolic processes, and carbohydrate and protein metabolisms. The numbers of proteins associated with the hydrolytic and catalytic activities were higher than the matured dry M. oleifera seeds reported previously. Of the identified proteins, proteases were mainly involved in the milk-clotting activity. Especially, a cysteine peptidase with a molecular mass of 17.727 kDa exhibiting hydrolase and peptidase activities was purified and identified. The identified cysteine peptidase was hydrophilic, and its secondary structure consisted of 27.60% alpha helix, 9.20% beta fold, and 63.20% irregular curl; its tertiary structure was also constructed using M. oleifera seed 2S protein as the protein template. The optimal pH and temperature of the purified protease were pH 4.0 and 60 °C, respectively. The protease had high acidic stability and good thermostability, thus could potentially be applied in the dairy industry.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Li He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Haoran Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yue Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
14
|
Exploring the Milk-Clotting and Proteolytic Activities in Different Tissues of Vallesia glabra: a New Source of Plant Proteolytic Enzymes. Appl Biochem Biotechnol 2020; 193:389-404. [PMID: 33009584 DOI: 10.1007/s12010-020-03432-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023]
Abstract
Proteolytic enzymes are widely distributed in nature, playing essential roles in important biological functions. Recently, the use of plant proteases at the industrial level has mainly increased in the food industry (e.g., cheesemaking, meat tenderizing, and protein hydrolysate production). Current technological and scientific advances in the detection and characterization of proteolytic enzymes have encouraged the search for new natural sources. Thus, this work aimed to explore the milk-clotting and proteolytic properties of different tissues of Vallesia glabra. Aqueous extracts from the leaves, fruits, and seeds of V. glabra presented different protein profiles, proteolytic activity, and milk-clotting activity. The milk-clotting activity increased with temperature (30-65 °C), but this activity was higher in leaf (0.20 MCU/mL) compared with that in fruit and seed extracts (0.12 and 0.11 MCU/mL, respectively) at 50 °C. Proteolytic activity in the extracts assayed at different pH (2.5-12.0) suggested the presence of different types of active proteases, with maximum activity at acidic conditions (4.0-4.5). Inhibitory studies indicated that major activity in V. glabra extracts is related to cysteine proteases; however, the presence of serine, aspartic, and metalloproteases was also evident. The hydrolytic profile of caseins indicated that V. glabra leaves could be used as a rennet substitute in cheesemaking, representing a new and promising source of proteolytic enzymes.
Collapse
|
15
|
Comparative proteome analysis of matured dry and germinating Moringa oleifera seeds provides insights into protease activity during germination. Food Res Int 2020; 136:109332. [DOI: 10.1016/j.foodres.2020.109332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/09/2020] [Accepted: 05/16/2020] [Indexed: 12/16/2022]
|
16
|
Ma TF, Chen YP, Fang F, Yan P, Shen Y, Kang J, Nie YD. Effects of ZnO nanoparticles on aerobic denitrifying bacteria Enterobacter cloacae strain HNR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138284. [PMID: 32276046 DOI: 10.1016/j.scitotenv.2020.138284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The aerobic denitrification process is a promising and cost-effective alternative to the conventional nitrogen removal process. Widely used ZnO nanoparticles (NPs) will inevitably reach wastewater treatment plants, and cause adverse impacts on aerobic denitrification and nitrogen removal. Therefore, a full understanding of the responses and adaption of aerobic denitrifiers to ZnO NPs is essential to develop effective strategies to reduce adverse effects on wastewater treatment. In this study, the responses and adaption to ZnO NPs were investigated of a wild type strain (WT) and a resistant type strain (Re) of aerobic denitrifying bacteria Enterobacter cloacae strain HNR. When exposed to 0.75 mM ZnO NPs, the nitrate removal efficiency of Re was 11.2% higher than that of WT. To prevent ZnO NPs entering cells by adsorption, the production of extracellular polymeric substances (EPS) of WT and Re strains increased 13.2% and 43.9%, respectively. The upregulations of amino sugar and carbohydrate-related metabolism contributed to the increase of EPS production, and the increased nitrogen metabolism contributed to higher activities of nitrate and nitrite reductases. Interestingly, cationic antimicrobial peptide resistance contributed to resist Zn (II) released by ZnO NPs, and many antioxidative stress-related metabolism pathways were upregulated to resist the oxidative stress resulting from ZnO NPs. These findings will guide efforts to improve the aerobic denitrification process in an environment polluted by NPs, and promote the application of aerobic denitrification technologies.
Collapse
Affiliation(s)
- Teng-Fei Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research lnstitute Co., Ltd., Chongqing 400069, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research lnstitute Co., Ltd., Chongqing 400069, China
| | - Jia Kang
- North China Univ Water Resources & Elect Power, Key Lab Water Environment Simulatation & Governance Henan, Zhengzhou 460046, Henan, China
| | - Yu-Dong Nie
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
17
|
Zhang X, Nan H, Guo J, Yang S, Liu J. Periplocin induces apoptosis and inhibits inflammation in rheumatoid arthritis fibroblast-like synoviocytes via nuclear factor kappa B pathway. IUBMB Life 2020; 72:1951-1959. [PMID: 32584515 DOI: 10.1002/iub.2328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 01/09/2023]
Abstract
Apoptotic resistance and excessive proliferation of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) stimulated by inflammation could lead to distal joint destruction and bone damage. Periplocin could promote apoptosis, resist proliferation, and reduce inflammation. However, the effect and mechanism toward periplocin in proliferation and inflammation of RA-FLSs remain unclear. The role of tumor necrosis factor (TNF)-α induced proliferation and expression of inflammatory cytokines in RA-FLSs was established. Our studies noted that cell viability of TNF-α-induced RA-FLSs was inhibited in periplocin treatment via dose-response, whereas cell apoptosis of RA-FLSs was triggered by dose-dependent effect of periplocin. Bcl-2 protein, one of the apoptotic regulators, was downregulated, while other regulators of apoptosis, including BAX, cleaved caspase-3, and cleaved caspase-9, were upregulated in RA-FLSs under periplocin treatment. In addition, periplocin decreased the TNF-α-induced mRNA and protein expression levels of interleukin (IL)-1β and IL-6 in RA-FLSs in a dose-dependent way. Finally, the increased levels of phospho (p)-inhibitor of kappa B (IκBα)/IκBα and p-NF (nuclear factor)-κB/nuclear factor kappa B (NF-κB) ratio of RA-FLSs stimulated by TNF-α were decreased by periplocin treatment. Taken together, periplocin treatment decreased cell viability and cytokines expression and promoted cell apoptosis of TNF-α-induced RA-FLSs through inhibition of NF-κB signaling pathway, providing a potential therapeutic approach for RA.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - He Nan
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jialong Guo
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shoujun Yang
- Department of Rehabilitation Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinyu Liu
- Department of Gynecologyic Oncosurgery-1, Ji Lin Tumor Hospital, Changchun, China
| |
Collapse
|
18
|
Yan J, Xie J. Comparative Proteome Analysis of Shewanella putrefaciens WS13 Mature Biofilm Under Cold Stress. Front Microbiol 2020; 11:1225. [PMID: 32582122 PMCID: PMC7296144 DOI: 10.3389/fmicb.2020.01225] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Worldwide, Shewanella putrefaciens is the predominant seafood spoilage microorganism during cold storage. This bacterium can attach to biotic/abiotic surfaces to form biofilms which contribute to seafood quality degradation and shelf-life reduction. The mechanism of S. putrefaciens biofilm formation is not yet described. Crystal violet staining in combination with confocal laser scanning microscopy (CLSM) was used to study the sequence of events leading to the establishment of a mature biofilm at 4, 15, and 30°C. In addition, the main chemical constituents of the mature biofilm were determined by Raman spectroscopy (RM), whereas, comparative proteomic analysis was used to quantify changes in metabolic pathways and to find out underlying protein determinants. The physical dimensions of the mature biofilm, i.e., biomass, biovolume, and mean thickness, were higher at 4°C when compared to 15 and 30°C. The variations of proteins measured by RM confirmed the importance of proteins during the formation of a mature biofilm. Comparative proteomic analysis showed that siderophore and iron chelate transport proteins were down-regulated during mature biofilm formation. The down-regulated aforementioned proteins are involved in promoting iron storage in response to a higher demand for metabolic energy, whereas, the upregulated proteins of the sulfur relay system, pyrimidine metabolism, and purine metabolism are related to bacterial adaptability. Synthesis of proteins related to cold stress was increased and proteins involved in aminoacyl-tRNA biosynthesis were up-regulated, whereas, proteins involved in aminopeptidase activity were down-regulated. Proteolysis to scavenge energy was reduced as proteins involved in pyrophosphatase activity were up-regulated. Also extracellular eDNA was found which may play an important role in maintaining the stability of mature S. putrefaciens biofilm structures under cold stress. This work provides a better understanding of the role of proteins in mature biofilms. In addition, the biofilm formation mechanism of a psychrotrophic spoilage bacterial species at low temperature is explored, which may contribute to generating biofilm controlling strategies during seafood preservation and processing.
Collapse
Affiliation(s)
- Jun Yan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
19
|
Liu WL, Wu BF, Shang JH, Zhao YL, Huang AX. Moringa oleifera Lam Seed Oil Augments Pentobarbital-Induced Sleeping Behaviors in Mice via GABAergic Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3149-3162. [PMID: 32062961 DOI: 10.1021/acs.jafc.0c00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Moringa oleifera Lam. (MO), which is widely consumed as both food and herbal medicine in tropical and subtropical regions, has a wide spectrum of health benefits. Yet, whether the oil obtained from MO seeds could affect (improve) the sleep activity remains unclear. Herein, we used the locomotor activity, pentobarbital-induced sleeping, and pentetrazol-induced convulsions test to examine sedative-hypnotic effects (SHE) of MO oil (MOO) and explored the underlying mechanisms. Besides, the main components of MOO like oleic acid, β-Sitosterol, and Stigmasterol were also evaluated. The results showed that they possessed good SHE. Except for oleic acid and Stigmasterol, they could significantly elevate γ-amino butyric acid (GABA) and reduce glutamic acid (Glu) levels in the hypothalamus of mice. Moreover, SHE was blocked by picrotoxin, flumazenil, and bicuculline, except for oleic acid, which could not be antagonized by picrotoxin. Molecular mechanisms showed that MOO and β-Sitosterol significantly upregulated the amount of protein-level expression of Glu decarboxylase-65 (GAD65) and α1-subunit of GABAA receptors in the hypothalamus of mice, not affecting GAD67, γ2 subunits. These data indicated that MOO modulates sleep architectures via activation of the GABAA-ergic systems.
Collapse
Affiliation(s)
- Wei-Liang Liu
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Bai-Fen Wu
- Yunnan University of Business Management, Kunming 650106, People's Republic of China
| | - Jian-Hua Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Ai-Xiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
20
|
Label-free quantitative proteomic analysis of the biological functions of Moringa oleifera seed proteins provides insights regarding the milk-clotting proteases. Int J Biol Macromol 2020; 144:325-333. [DOI: 10.1016/j.ijbiomac.2019.12.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
|
21
|
Shi Y, Prabakusuma AS, Zhao Q, Wang X, Huang A. Proteomic analysis of Moringa oleifera Lam. leaf extract provides insights into milk-clotting proteases. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|