1
|
Dinh Thanh N, Ngoc Toan V, Minh Trang V. Sulphonyl thiourea compounds containing pyrimidine as dual inhibitors of I, II, IX, and XII carbonic anhydrases and cancer cell lines: synthesis, characterization and in silico studies. RSC Med Chem 2024:d4md00816b. [PMID: 39823041 PMCID: PMC11734695 DOI: 10.1039/d4md00816b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025] Open
Abstract
Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase hCA I, hCA II, hCA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the hCA I isoform), 7f > 7b > 7c (against the hCA II isoform), 7c > 7g > 7a > 7b (against the hCA IX isoform), and 7d > 7c > 7g > 7f (against the hCA XII isoform). The obtained inhibitory activity data against the hCA IX and XII isoforms showed that compound 7c was the most potent inhibitor in this sulphonyl thiourea series against enzyme hCA IX, with K I = 125.1 ± 12.4 nM, while compound 7d was the most potent inhibitor against enzyme hCA XII, with K I = 111.0 ± 12.3 nM. Compound 7c exhibited strong inhibitory activity among all four tested hCA enzymes, while thiourea 7f was a potent inhibitor for enzymes hCA I, II and XII. All these compounds demonstrated non-competitive inhibition of both enzymes. Some selected potential inhibitory compounds, including 7c, 7d, and 7g, exhibited remarkable cytotoxic activity against human cancer cell lines, including human breast adenocarcinoma (MCF-7), human liver adenocarcinoma (HepG2), human cervical epithelial carcinoma (HeLa), and human lung adenocarcinoma cells (A549). These compounds exhibited low cytotoxicity in the WI-38 cell line. The compounds 7c and 7d were the most potent inhibitors against tumour-associated hCA IX and hCA XII isoenzymes. Furthermore, these compounds exhibited remarkable inhibition against some cancer cell lines, such as MCF-7, HepG2, HeLa, and A549. They were subjected to in silico screening for molecular docking and molecular dynamics simulations. The results of in vitro and in silico studies revealed that compounds 7c and 7d were the most promising derivatives in this series owing to their significant effects on the studied hCA IX and hCA XII isoenzymes, respectively. The results showed that the sulphonyl thiourea moiety was deeply accommodated in the active site and interacted with zinc ions in the receptors.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Ha Noi Vietnam
| | - Vu Ngoc Toan
- Institute of New Technology, Academy of Military Science and Technology, Ministry of Defence 17 Hoang Sam, Cau Giay Ha Noi Vietnam
| | - Vu Minh Trang
- VNU University of Education, Vietnam National University, Hanoi 144 Xuan Thuy, Cau Giay Ha Noi Vietnam
| |
Collapse
|
2
|
Thanh ND, Giang NTK, Hai DS, Toan VN, Van HTK, Tri NM. Sulfonyl thiourea derivatives from 2-aminodiarylpyrimidines: In vitro and in silico evaluation as potential carbonic anhydrase I, II, IX, and XII inhibitors. Chem Biol Drug Des 2024; 103:e14494. [PMID: 38490810 DOI: 10.1111/cbdd.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
A series of synthesized sulfonyl thiourea derivatives (7a-o) of substituted 2-amino-4,6-diarylpyrimidines (4a-o) exhibited the remarkable inhibitory activity against some the human carbonic anhydrases (hCAs), including hCA I, II, IX, and XII isoforms. The inhibitory efficacy of synthesized sulfonyl thiourea derivatives were experimentally validated by in vitro enzymatic assays. 7a (KI = 46.14 nM), 7j (KI = 48.92 nM), and 7m (KI = 62.59 nM) (for isoform hCA I); 7f (KI = 42.72 nM), 7i (KI = 40.98 nM), and 7j (KI = 33.40 nM) (for isoform hCA II); 7j (KI = 228.5 nM), 7m (KI = 195.4 nM), and 7n (KI = 210.1 nM) (for isoform hCA IX); 7l (KI = 116.9 nM), 7m (KI = 118.8 nM), and 7n (KI = 147.2 nM) (for isoform hCA XII) in comparison with KI values of 452.1, 327.3, 437.2, and 338.9 nM, respectively, of the standard drug AAZ. These compounds also had significantly more potent inhibitory action against cytosolic isoform hCA I and tumor-associated isoforms hCA IX and hCA XII. Furthermore, the potential inhibitory compounds were subjected to in silico screening for molecular docking and molecular dynamics simulations. The results of in vitro and in silico studies revealed that compounds 7a, 7j, and 7m were the most promising derivatives in this series due to their significant effects on studied hCA I, II, IX, and XII isoforms, respectively. The results showed that the sulfonyl thiourea moiety was accommodated deeply in the active site and interacted with the zinc ion in the receptors.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
| | - Nguyen Thi Kim Giang
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, Hanoi, Vietnam
| | - Do Son Hai
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, Hanoi, Vietnam
| | - Vu Ngoc Toan
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of New Technology, Academy of Military Science and Technology, Ministry of National Defence, Hanoi, Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Faculty of Chemical Technology, Viet Tri University of Industry, Phu Tho, Vietnam
| | - Nguyen Minh Tri
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of New Technology, Academy of Military Science and Technology, Ministry of National Defence, Hanoi, Vietnam
| |
Collapse
|
3
|
Dinh Thanh N, Ngoc Toan V, Thi Kim Giang N, Thi Kim Van H, Son Hai D, Minh Tri N, Ngoc Toan D. Synthesis, biological and molecular modelling for 1,3,4-thiadiazole sulfonyl thioureas: bacterial and fungal activity. RSC Med Chem 2023; 14:2751-2767. [PMID: 38107183 PMCID: PMC10718584 DOI: 10.1039/d3md00508a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Some substituted thioureas (6a-i) containing a 1,3,4-thiadiazole ring were synthesized by the reaction of the corresponding substituted 2-amino-1,3,4-thiadiazoles 3a-i with p-toluenesulfonyl isocyanate in a one-pot procedure. The antibacterial and antifungal activities of these sulfonyl thioureas were estimated using a minimum inhibitory concentration protocol. Almost all the thioureas exhibited remarkable antimicrobial activity. Amongst the studied compounds, thioureas 6a, 6c, 6h, and 6i were better inhibitors against the bacterium S. aureus, with MIC values of 0.78-3.125 μg mL-1. These compounds were also tested for their inhibition against S. aureus enzymes, including enzymes of DNA gyrase, DNA topoisomerase IV (Topo IV), and dihydrofolate reductase. Amongst the compounds, 6h was a strong inhibitor, with IC50 values of 1.22, 53.78, and 0.23, respectively. Induced fit docking calculations were performed to observe the binding efficiency and steric interactions of these compounds. The obtained results showed that compound 6h was compatible with the active sites of S. aureus DNA gyrase 2XCS. This ligand interacted with residues ASP1083 (chain D), MET1121 (chain B), ARG1122 (chain D), and also with HOH2035, HOH2089, HOH2110, HOH2162. Molecular dynamics simulation in a water solvent system showed that the active interactions with residues ASP083 and MET1121 (chain B), along with ASP1083, MET1121, and ARG1122 (chain D), played an important role in stabilizing complex 6h/2XCS in the active pocket.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
| | - Vu Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of New Technology, Military Institute of Science and Technology (Ministry of Military) 17 Hoang Sam, Cau Giay Ha Noi Viet Nam
| | - Nguyen Thi Kim Giang
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong, Cau Giay Ha Noi Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Faculty of Chemical Technology, Viet Tri University of Industry Tien Kien, Lam Thao Phu Tho Viet Nam
| | - Do Son Hai
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong, Cau Giay Ha Noi Vietnam
| | - Nguyen Minh Tri
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong, Cau Giay Ha Noi Vietnam
| | - Duong Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Faculty of Chemistry, Thai Nguyen University of Education 20 Luong Ngoc Quyen Thai Nguyen Viet Nam
| |
Collapse
|
4
|
Khatua S, Taraphder S. In the footsteps of an inhibitor unbinding from the active site of human carbonic anhydrase II. J Biomol Struct Dyn 2022; 41:3187-3204. [PMID: 35257634 DOI: 10.1080/07391102.2022.2048075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The crystal structure of human carbonic anhydrase (HCA) II bound to an inhibitor molecule, 6-hydroxy-2-thioxocoumarin (FC5), shows FC5 to be located in a hydrophobic pocket at the active site. The present work employs classical molecular dynamics (MD) simulation to follow the FC5 molecule for 1 μs as it unbinds from its binding location, adopts the path of substrate/product diffusion (path 1) to leave the active site at around 75 ns. It is then found to undergo repeated binding and unbinding at different locations on the surface of the enzyme in water. Several transient excursions through different regions of the enzyme are also observed prior to its exit from the active site. These transient paths are combined with functionally relevant cavities/channels to enlist five additional pathways (path 2-6). Pathways 1-6 are subsequently explored using steered MD and umbrella sampling simulations. A free energy barrier of 0.969 kcal mol-1 is encountered along path 1, while barriers in the range of 0.57-2.84 kcal mol-1 are obtained along paths 2, 4 and 5. We also analyze in detail the interaction between FC5 and the enzyme along each path as the former leaves the active site of HCA II. Our results indicate path 1 to be the major exit pathway for FC5, although competing contributions may also come from the paths 2, 4 and 5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyajit Khatua
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
5
|
Stoner A, Harris A, Oddone F, Belamkar A, Verticchio Vercellin AC, Shin J, Januleviciene I, Siesky B. Topical carbonic anhydrase inhibitors and glaucoma in 2021: where do we stand? Br J Ophthalmol 2021; 106:1332-1337. [PMID: 34433550 DOI: 10.1136/bjophthalmol-2021-319530] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/16/2021] [Indexed: 11/04/2022]
Abstract
Carbonic anhydrase inhibitors (CAIs) have been used for many decades in the treatment of glaucoma. Systemic CAIs were an early treatment option to lower intraocular pressure by reducing aqueous humour production; however, frequent side effects including polyuria and paresthesia contributed to the eventual development of topical CAIs. As topical drug development evolved over time, prostaglandin analogues and beta-blockers have become the gold standard of glaucoma therapies. Although prescribed less often than other classes of topical glaucoma therapies, topical CAIs continue to be used in combination therapies with beta-blockers and alpha agonists. Topical CAIs have also been demonstrated to alter biomarkers of ocular haemodynamics, which have relevance in glaucoma. The purpose of this review is to review and summarise the current state of topical CAI prescribing trends, known efficacy and suggested mechanisms and potential influence on ocular haemodynamics for the future of glaucoma management.
Collapse
Affiliation(s)
- Ari Stoner
- Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alon Harris
- Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Aditya Belamkar
- Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Joshua Shin
- New York Medical College, Valhalla, New York, USA
| | | | - Brent Siesky
- Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Anjum F, Ali F, Mohammad T, Shafie A, Akhtar O, Abdullaev B, Hassan I. Discovery of Natural Compounds as Potential Inhibitors of Human Carbonic Anhydrase II: An Integrated Virtual Screening, Docking, and Molecular Dynamics Simulation Study. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:513-524. [PMID: 34255561 DOI: 10.1089/omi.2021.0059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbonic anhydrase II (CAII) is one of the zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide, leading to the formation of bicarbonate and proton. CAII plays a significant role in health and disease. For example, CAII helps to maintain eye pressure while regulating the pH of the tumor microenvironment, and by extension, contributing to cancer progression. Owing to its remarkable role in cancer, visual health, and other human diseases, CAII can serve as an attractive therapeutic target. We report an original study based on high-throughput virtual screening of natural compounds from the ZINC database in search of potential inhibitors of CAII. We selected the hits based on the physicochemical, absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, pan-assay interference compound (PAINS) patterns, and interaction analysis. Importantly, two natural compounds were identified, ZINC08918123 and ZINC00952700, bearing considerable affinity and specific interactions to the residues of the CAII-binding pocket with well-organized conformational fitting compatibility. We investigated the conformational dynamics of CAII in complex with the identified compounds through molecular dynamics simulation, which revealed the formation of a stable complex preserved throughout the 100 ns trajectories. The stability of the protein/ligand complexes is maintained by significant numbers of noncovalent interactions throughout the simulations. In conclusion, natural compounds identified in the present study specifically and computer-assisted drug design broadly offer a reliable resource and strategy to discover potential promising therapeutic inhibitors of CAII to cure various cancers and glaucoma after further experimental validation and clinical studies.
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fatima Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Omar Akhtar
- Department of Medicine, Tbilisi State Medical University, Tbilisi, Georgia
| | | | - Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
7
|
Mahapatra AD, Shaik A, Thiruvenkatam V, Datta B. Supramolecular architecture in sulfonylurea, sulfonyldiurea and sulfonyltriurea drugs: Synthesis, X-ray structure and Hirshfeld surface analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Zhang A, Li W, Liu X, Wu M, Xuan G. Synthesis, Biological Evaluation and in Silico Studies of Several Substituted Benzene Sulfonamides as Potential Antibacterial Agents. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1742-6596/1624/2/022058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. Int J Biol Macromol 2020; 163:1970-1988. [DOI: 10.1016/j.ijbiomac.2020.09.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
|
10
|
Roy S, Mahapatra AD, Mohammad T, Gupta P, Alajmi MF, Hussain A, Rehman MT, Datta B, Hassan MI. Design and Development of Novel Urea, Sulfonyltriurea, and Sulfonamide Derivatives as Potential Inhibitors of Sphingosine Kinase 1. Pharmaceuticals (Basel) 2020; 13:E118. [PMID: 32526899 PMCID: PMC7346089 DOI: 10.3390/ph13060118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) is one of the well-studied drug targets for cancer and inflammatory diseases. Recently discovered small-molecule inhibitors of SphK1 have been recommended in cancer therapeutics; however, selectivity and potency of first-generation inhibitors are great challenge. In search of effective SphK1 inhibitors, a set of small molecules have been designed and synthesized bearing urea, sulfonylurea, sulfonamide, and sulfonyltriurea groups. The binding affinity of these inhibitors was measured by fluorescence-binding assay and isothermal titration calorimetry. Compounds 1, 5, 6, and 7 showed an admirable binding affinity to the SphK1 in the sub-micromolar range and significantly inhibited SphK1 activity with admirable IC50 values. Molecular docking studies revealed that these compounds fit well into the sphingosine binding pocket of SphK1 and formed significant number of hydrogen bonds and van der Waals interactions. These molecules may be exploited as potent and selective inhibitors of SphK1 that could be implicated in cancer therapeutics after the required in vivo validation.
Collapse
Affiliation(s)
- Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| | - Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| | - Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.); (M.T.R.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.); (M.T.R.)
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.); (M.T.R.)
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (S.R.); (T.M.); (P.G.)
| |
Collapse
|
11
|
N-Quinary heterocycle-4-sulphamoylbenzamides exert anti-hypoxic effects as dual inhibitors of carbonic anhydrases I/II. Bioorg Chem 2020; 100:103931. [PMID: 32450385 DOI: 10.1016/j.bioorg.2020.103931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/09/2020] [Indexed: 01/05/2023]
Abstract
Acute mountain sickness (AMS) affects approximately 25-50% of newcomers to high altitudes. Two human carbonic anhydrase isoforms, hCA I and II, play key roles in developing high altitude illnesses. However, the only FDA-approved drug for AMS is acetazolamide (AAZ), which has a nearly 100 times weaker inhibitory activity against hCA I (Ki = 1237.10 nM) than hCA II (Ki = 13.22 nM). Hence, developing potent dual hCA I/II inhibitors for AMS prevention and treatment is a critical medical need. Here we identified N-quinary heterocycle-4-sulphamoylbenzamides as potent hCA I/II inhibitors. The newly designed compounds 2b, 5b, 5f, 6d, and 6f possessed the desired inhibitory activities (hCA I: Ki = 16.95-52.71 nM; hCA II: Ki = 8.61-18.64 nM). Their hCA I inhibitory capacity was 22- to 76-fold stronger than that of AAZ. Relative to the control group for survival in a mouse model of hypoxia, 2b and 6d prolonged the survival time of mice by 21.7% and 29.3%, respectively, which was longer than those of AAZ (6.5%). These compounds did not display any apparent toxicity in vitro and in vivo. In addition, docking simulations suggested that the quinary aromatic heterocycle groups stabilised the interaction between hCA I/II and the inhibitors, which could be further exploited in structure optimization studies. Hence, future functional studies may confirm 2b and 6d as potential clinical candidate compounds with anti-hypoxic activity against AMS.
Collapse
|
12
|
Yang C, Feng Y, Yang X, Sun M, Li Z, Liu X, Lu L, Sun X, Zhang J, He X. Synthesis and evaluation of 4-(1,3,4-oxadiazol-2-yl)-benzenesulfonamides as potent carbonic anhydrase inhibitors. Bioorg Med Chem Lett 2020; 30:126874. [PMID: 31859159 DOI: 10.1016/j.bmcl.2019.126874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 01/08/2023]
Abstract
Human Carbonic anhydrase (hCA) I and II are crucial targets for anti-acute mountain sickness. Twenty-one 4-(1,3,4-oxadiazol-2-yl) benzenesulfonamides were synthesized and screened against these two isoforms. The results illustrated that 5c, 5g, 5h, 5k were more potent against both hCA I and II than clinical drug AAZ. In particular, the value of compound 5c with hCA I (18.08 nM) was over 84-fold more than of AAZ with hCA I. The data of docking simulations were also in accord with the tendency of inhibitive activities. Furthermore, compound 6h, the methanesulfonate of 5h, showed better anti-hypoxia activity than AAZ in vivo, making it interesting lead compound.
Collapse
Affiliation(s)
- Chaofu Yang
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Yan Feng
- College of Pharmacy, Hebei University, Baoding 071002, Hebei, China
| | - Xu Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Mingxia Sun
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenwang Li
- Department of Pharmacy, College of Animal Science and Technique, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xuan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Liang Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xianyu Sun
- Department of Pharmacy, College of Animal Science and Technique, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiwen Zhang
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xinhua He
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China.
| |
Collapse
|