1
|
El-Nablaway M, Rashed F, Taher ES, Atia GA, Foda T, Mohammed NA, Abdeen A, Abdo M, Hînda I, Imbrea AM, Taymour N, Ibrahim AM, Atwa AM, Ibrahim SF, Ramadan MM, Dinu S. Bioactive injectable mucoadhesive thermosensitive natural polymeric hydrogels for oral bone and periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1384326. [PMID: 38863491 PMCID: PMC11166210 DOI: 10.3389/fbioe.2024.1384326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Periodontitis is an inflammation-related condition, caused by an infectious microbiome and host defense that causes damage to periodontium. The natural processes of the mouth, like saliva production and eating, significantly diminish therapeutic medication residency in the region of periodontal disease. Furthermore, the complexity and diversity of pathological mechanisms make successful periodontitis treatment challenging. As a result, developing enhanced local drug delivery technologies and logical therapy procedures provides the foundation for effective periodontitis treatment. Being biocompatible, biodegradable, and easily administered to the periodontal tissues, hydrogels have sparked substantial an intense curiosity in the discipline of periodontal therapy. The primary objective of hydrogel research has changed in recent years to intelligent thermosensitive hydrogels, that involve local adjustable sol-gel transformations and regulate medication release in reaction to temperature, we present a thorough introduction to the creation and efficient construction of new intelligent thermosensitive hydrogels for periodontal regeneration. We also address cutting-edge smart hydrogel treatment options based on periodontitis pathophysiology. Furthermore, the problems and prospective study objectives are reviewed, with a focus on establishing effective hydrogel delivery methods and prospective clinical applications.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, United States
| | - Nourelhuda A. Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Al Karak, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ioana Hînda
- Department of Biology, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ana-Maria Imbrea
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Timișoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Samah F. Ibrahim
- Department of Internal Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
2
|
Kállai-Szabó N, Farkas D, Lengyel M, Basa B, Fleck C, Antal I. Microparticles and multi-unit systems for advanced drug delivery. Eur J Pharm Sci 2024; 194:106704. [PMID: 38228279 DOI: 10.1016/j.ejps.2024.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Microparticles have unique benefits in the formulation of multiparticulate and multi-unit type pharmaceutical dosage forms allowing improved drug safety and efficacy with favorable pharmacokinetics and patient centricity. On the other hand, the above advantages are served by high and well reproducible quality attributes of the medicinal product where even flexible design and controlled processability offer success as well as possible longer product life-cycle for the manufacturers. Moreover, the specific demands of patients can be taken into account, including simplified dosing regimens, flexible dosage, drug combinations, palatability, and ease of swallowing. In the more than 70 years since the first modified-release formulation appeared on the market, many new formulations have been marketed and many publications have appeared in the literature. More unique and newer pharmaceutical technologies and excipients have become available for producing tailor-made particles with micrometer dimensions and beyond. All these have contributed to the fact that the sub-units (e.g. minitablets, pellets, microspheres) that make up a multiparticulate system can vary widely in composition and properties. Some units have mucoadhesive properties and others can float to contribute to a suitable release profile that can be designed for the multiparticulate formula as a whole. Nowadays, there are some available formulations on the market, which are able to release the active substance even for several months (3 or 6 months depending on the type of treatment). In this review, the latest developments in technologies that have been used for a long time are presented, as well as innovative solutions such as the applicability of 3D printing to produce subunits of multiparticulate systems. Furthermore, the diversity of multiparticulate systems, different routes of administration are also presented, touching the ones which are capable of carrying the active substance as well as the relevant, commercially available multiparticle-based medical devices. The versatility in size from 1 µm and multiplicity of formulation technologies promise a solid foundation for the future applications of dosage form design and development.
Collapse
Affiliation(s)
- Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Miléna Lengyel
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Bálint Basa
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - Christian Fleck
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary.
| |
Collapse
|
3
|
Figuero E, Serrano J, Arweiler NB, Auschill TM, Gürkan A, Emingil G. Supra and subgingival application of antiseptics or antibiotics during periodontal therapy. Periodontol 2000 2023. [PMID: 37766668 DOI: 10.1111/prd.12511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 09/29/2023]
Abstract
Periodontal diseases (gingivitis and periodontitis) are characterized by inflammatory processes which arise as a result of disruption of the balance in the oral ecosystem. According to the current S3 level clinical practice guidelines, therapy of patients with periodontitis involves a stepwise approach that includes the control of the patient's risk factors and the debridement of supra and subgingival biofilm. This debridement can be performed with or without the use of some adjuvant therapies, including physical or chemical agents, host modulating agents, subgingivally locally delivered antimicrobials, or systemic antimicrobials. Therefore, the main aim of this article is to review in a narrative manner the existing literature regarding the adjuvant application of local agents, either subgingivally delivered antibiotics and antiseptics or supragingivally applied rinses and dentifrices, during the different steps in periodontal therapy performed in Europe.
Collapse
Affiliation(s)
- Elena Figuero
- Department of Dental Clinical Specialties, Etiology and Therapy of Periodontal and Peri-implant Research Group, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
- Etiology and Therapy of Periodontal and Peri-implant Research Group, University Complutense of Madrid, Madrid, Spain
| | - Jorge Serrano
- Etiology and Therapy of Periodontal and Peri-implant Research Group, University Complutense of Madrid, Madrid, Spain
| | - Nicole Birgit Arweiler
- Department of Periodontology and Peri-implant Diseases, Philipps University of Marburg, Marburg, Germany
| | - Thorsten Mathias Auschill
- Department of Periodontology and Peri-implant Diseases, Philipps University of Marburg, Marburg, Germany
| | - Ali Gürkan
- Department of Peridontology, Ege University School of Dentistry, Bornova, Turkey
| | - Gülnur Emingil
- Department of Peridontology, Ege University School of Dentistry, Bornova, Turkey
| |
Collapse
|
4
|
Eghbali H, Sadeghi M, Noroozi M, Movahedifar F. Vanillin crosslinked 3D porous chitosan hydrogel for biomedicine applications: Preparation and characterization. J Mech Behav Biomed Mater 2023; 145:106044. [PMID: 37506568 DOI: 10.1016/j.jmbbm.2023.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Crosslinked chitosan (CS) is one of the most useable hydrogels in biomedicine and tissue engineering. Unlike most chitosan crosslinkers that are toxic, such as glutaraldehyde, vanillin is a natural, biocompatible, and antimicrobial alternative. The crosslinking of chitosan and vanillin consists of Schiff base bonds between the amines of chitosan and the aldehydes of vanillin, in addition to hydrogen bonds formed across the network. In most studies, the combination of chitosan and vanillin has been investigated in small sizes (micro/nanoscale and biofilms). In this study, a chitosan-vanillin (CV) hydrogel was studied on a macroscale with a three-dimensional porous structure, and it was compared with chitosan crosslinked with glutaraldehyde (CG) on the same scale. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (FE-SEM) used to identify the bonds formed and examine the morphology of the hydrogels. The gel content, swelling, porosity, mechanical properties, cell viability (on L929 and mesenchymal cells), and antibacterial activity (against Escherichia coli and Staphylococcus aureus) of the samples were investigated. The results showed that the CV had both gel content and high porosity (>90%), with an interconnected porous network of uniform pore size. The CV hydrogel exhibited good antibacterial activity and cell viability. In terms of mechanical properties, CV has weaker mechanical properties compared to CG in the dry state, while the mechanical properties of CV have more improved in the swollen state compared to CG.
Collapse
Affiliation(s)
- Hadis Eghbali
- Department of Chemical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohsen Sadeghi
- Department of Chemical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mojgan Noroozi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fahimeh Movahedifar
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
5
|
An injectable multifunctional thermo-sensitive chitosan-based hydrogel for periodontitis therapy. BIOMATERIALS ADVANCES 2022; 142:213158. [PMID: 36288629 DOI: 10.1016/j.bioadv.2022.213158] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/01/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Bacteria are recognized as the driving factors of periodontitis. However, excessive reactive oxygen species (ROS) can harm periodontal tissue while also causing an uncontrolled inflammatory response. Hence, eliminating excessive ROS and blocking ROS-induced abnormal inflammatory response by antioxidants are achieving remarkable results in periodontitis therapy. Moreover, influenced by the deep and irregular periodontal pockets, injectable thermo-sensitive chitosan-based hydrogels have attracted a lot of attention. This study aimed to formulate an antibacterial and antioxidant therapeutic regimen by incorporating antimicrobial peptides (Nal-P-113) and/or antioxidants (polydopamine nanoparticles, PDNPs) into chitosan-based hydrogels. The hydrogel was characterized in vitro and finally examined in rats using the experimental periodontitis model. The release kinetics showed that the hydrogel could stably release Nal-P-113 and PDNPs for up to 13 days. The scavenging activity of the hydrogel against DPPH was about 80 % and the antibacterial ratio against Streptococcus gordonii (S. gordonii), Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis) was about 99 %. Importantly, it was examined that the hydrogel had the ability to prevent periodontal tissue damage. Thus, chitosan-based hydrogels may provide a basis for designing multifunctional local drug delivery biomaterials for the treatment of periodontitis.
Collapse
|
6
|
Design of a nanofibrous guided tissue regeneration carrier as a potential drug delivery system for tetracycline hydrochloride in the management of periodontitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Dubar M, Lizambard M, Delcourt-Debruyne E, Batool F, Huck O, Siepmann F, Agossa K. In-situforming drug-delivery systems for periodontal treatment: current knowledge and perspectives. Biomed Mater 2021; 16. [PMID: 34500442 DOI: 10.1088/1748-605x/ac254c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Several chemical compounds are considered to be promising as adjuvants in the treatment of periodontitis. Antimicrobials, anti-inflammatory drugs or, more recently, pro-regenerative or antioxidant molecules have shown a very interesting potential to improve the outcomes of mechanical biofilm removal and promote the healing of the damaged tissues. However, their clinical effect is often limited by the challenge of achieving effective and prolonged drug delivery within the periodontal lesion, while limiting the risk of toxicity.In-situforming implants (ISFI) are 'implantable' drug-delivery systems that have gained considerable attention over the last few decades due to their multiple biomedical applications. They are liquids that, when injected at the site to be treated, form a semi-solid or solid dosage form that provides safe and locally controlled drug release. This review discusses current data and future prospects for the use of ISFI in periodontal treatment.
Collapse
Affiliation(s)
- Marie Dubar
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | - Martin Lizambard
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | | | - Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Florence Siepmann
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | - Kevimy Agossa
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| |
Collapse
|
8
|
Parhizkar A, Asgary S. Local Drug Delivery Systems for Vital Pulp Therapy: A New Hope. Int J Biomater 2021; 2021:5584268. [PMID: 34567123 PMCID: PMC8457968 DOI: 10.1155/2021/5584268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Vital pulp therapy (VPT) is deliberated as an ultraconservative/minimally invasive approach for the conservation of vital pulpal tissues, preservation of dental structure, and maintenance of tooth function in the oral cavity. In VPT, following the exposure of the dental pulp, the environment is prepared for the possible healing and probable refunctionalisation of pulpal connective tissue. However, to succeed in VPT, specific biomaterials are used to cover and/or dress the exposed pulp, lower the inflammation, heal the dental pulp, provoke the remaining odontoblastic cells, and induce the formation of a hard tissue, i.e., the dentinal bridge. It can be assumed that if the employed biomaterial is transferred to the target site using a specially designed micro-/nanosized local drug delivery system (LDDS), the biomaterial would be placed in closer proximity to the connective tissue, may be released in a controlled and sustained pattern, could properly conserve the remaining dental pulp and might appropriately enhance hard-tissue formation. Furthermore, the loaded LDDS could help VPT modalities to be more ultraconservative and may minimise the manipulation of the tooth structure as well as pulpal tissue, which could, in turn, result in better VPT outcomes.
Collapse
Affiliation(s)
- Ardavan Parhizkar
- Iranian Centre for Endodontic Research, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Saeed Asgary
- Iranian Centre for Endodontic Research, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| |
Collapse
|
9
|
Mirzaeei S, Mansurian M, Asare-Addo K, Nokhodchi A. Metronidazole- and Amoxicillin-Loaded PLGA and PCL Nanofibers as Potential Drug Delivery Systems for the Treatment of Periodontitis: In Vitro and In Vivo Evaluations. Biomedicines 2021; 9:biomedicines9080975. [PMID: 34440179 PMCID: PMC8395018 DOI: 10.3390/biomedicines9080975] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to prepare poly (D-L) lactide-co-glycolide (PLGA) and poly ε-caprolactone (PCL) nanofibers containing metronidazole and amoxicillin using an electrospinning process as intrapocket sustained-release drug delivery systems for the treatment of periodontal diseases. Scanning electron microscopy showed that the drug containing PLGA and PCL nanofibers produced from the electrospinning process was uniform and bead-free in morphology. The obtained nanofibers had a strong structure and resisted external tension according to the tensiometry results. The cytotoxicity results indicated acceptable cell viability (>80%). Quantification by high-performance liquid chromatography showed almost complete in vitro drug release between 7 and 9 days, whereas 14 days were required for complete drug release in vivo. No significant signs of irritation or inflammatory reaction were detected after three weeks of subcutaneous implantation of nanofibers in the animal models, thus indicating suitable compatibility. The results therefore suggest that the designed nanofibers can be used as potential commercial formulations in the treatment of periodontitis as controlled-release intrapocket drug delivery systems that can increase patient compliance. This is due to their ability to reduce the frequency of administration from three times daily in a systemic manner to once weekly as local delivery.
Collapse
Affiliation(s)
- Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Correspondence: (S.M.); (A.N.); Tel.: +98-8334266780 (S.M.); +44-1273872811 (A.N.)
| | - Mahla Mansurian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
- Correspondence: (S.M.); (A.N.); Tel.: +98-8334266780 (S.M.); +44-1273872811 (A.N.)
| |
Collapse
|
10
|
Kida D, Zakrzewska A, Zborowski J, Szulc M, Karolewicz B. Polymer-Based Carriers in Dental Local Healing-Review and Future Challenges. MATERIALS 2021; 14:ma14143948. [PMID: 34300865 PMCID: PMC8308048 DOI: 10.3390/ma14143948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/01/2023]
Abstract
Polymers in drug formulation technology and the engineering of biomaterials for the treatment of oral diseases constitute a group of excipients that often possess additional properties in addition to their primary function, i.e., biological activity, sensitivity to stimuli, mucoadhesive properties, improved penetration of the active pharmaceutical ingredient (API) across biological barriers, and effects on wound healing or gingival and bone tissue regeneration. Through the use of multifunctional polymers, it has become possible to design carriers and materials tailored to the specific conditions and site of application, to deliver the active substance directly to the affected tissue, including intra-periodontal pocket delivery, and to release the active substance in a timed manner, allowing for the improvement of the form of application and further development of therapeutic strategies. The scope of this review is polymeric drug carriers and materials developed from selected multifunctional groups of natural, semi-synthetic, and synthetic polymers for topical therapeutic applications. Moreover, the characteristics of the topical application and the needs for the properties of carriers for topical administration of an active substance in the treatment of oral diseases are presented to more understand the difficulties associated with the design of optimal active substance carriers and materials for the treatment of lesions located in the oral cavity.
Collapse
Affiliation(s)
- Dorota Kida
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-0315
| | - Aneta Zakrzewska
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Jacek Zborowski
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Małgorzata Szulc
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| |
Collapse
|
11
|
Baranov N, Popa M, Atanase LI, Ichim DL. Polysaccharide-Based Drug Delivery Systems for the Treatment of Periodontitis. Molecules 2021; 26:2735. [PMID: 34066568 PMCID: PMC8125343 DOI: 10.3390/molecules26092735] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Periodontal diseases are worldwide health problems that negatively affect the lifestyle of many people. The long-term effect of the classical treatments, including the mechanical removal of bacterial plaque, is not effective enough, causing the scientific world to find other alternatives. Polymer-drug systems, which have different forms of presentation, chosen depending on the nature of the disease, the mode of administration, the type of polymer used, etc., have become very promising. Hydrogels, for example (in the form of films, micro-/nanoparticles, implants, inserts, etc.), contain the drug included, encapsulated, or adsorbed on the surface. Biologically active compounds can also be associated directly with the polymer chains by covalent or ionic binding (polymer-drug conjugates). Not just any polymer can be used as a support for drug combination due to the constraints imposed by the fact that the system works inside the body. Biopolymers, especially polysaccharides and their derivatives and to a lesser extent proteins, are preferred for this purpose. This paper aims to review in detail the biopolymer-drug systems that have emerged in the last decade as alternatives to the classical treatment of periodontal disease.
Collapse
Affiliation(s)
- Nicolae Baranov
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
| | - Marcel Popa
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
- Academy of Romanian Scientists, 50085 Bucharest, Romania
| | | | | |
Collapse
|
12
|
Wang X, Wang Y. LncRNA DCST1-AS1 inhibits PDLCs' proliferation in periodontitis and may bind with miR-21 precursor to upregulate PLAP-1. J Periodontal Res 2021; 56:256-264. [PMID: 33533513 DOI: 10.1111/jre.12809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 08/26/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to investigate the potential interactions among long noncoding RNA domain containing 1-antisense (lncRNA DCST1-AS1), miR-21, and periodontal ligament-associated protein-1 (PLAP-1) in periodontitis. BACKGROUND DATA DISCUSSING THE PRESENT STATE OF THE FIELD It has been verified that miR-21 can target PLAP-1 to regulate the osteogenic differentiation of periodontal ligament cells (PDLCs). METHODS Differential expression of DCST1-AS1 and miR-21 in PDLCs derived from periodontitis patients and healthy controls was determined by qPCR and unpaired t test. QPCR and Western blots were conducted to evaluate the effects of overexpression of DCST1-AS1 and miR-21 on the expression of PLAP-1. CCK-8 assay was applied to evaluate the effect of DCST1-ASI, miR-21, or PLAP-1 on PDLCs' proliferation. Western blotting was conducted to detect the expression levels of CKD family (CDK4, CDK6, and CCND1). RESULTS DCST1-AS1 was downregulated in PDLCs derived from periodontitis patients, and its expression was inversely correlated with the expression of miR-2 but positively correlated with PLAP-1. Bioinformatics analysis showed that DCST1-AS1 might bind with miR-21 precursor but not mature miR-21. Transfection experiments showed that overexpression of DCST1-AS1 led to decreased expression levels of miR-21 and significantly increased the expression levels of PLAP-1 at both mRNA and protein levels, while overexpression of miR-21 resulted in a dramatic lower level of PLAP-1. CCK-8 assay indicated that overexpression of DCST1-AS1 or PLAP-1 prohibited PDLCs' proliferation. However, elevation of miR-21 had a contrary effect on the proliferation of PDLCs. And increased expression levels of DCST1-AS1 could significantly inhibit the expression of CDK4, CDK6, and CCND-1, while overexpression of miR-21 inversed the effects of DCST1-AS1. CONCLUSION Therefore, the expression levels of DCST1-AS1 are much lower in periodontitis patients compared to that in healthy controls, and overexpression of DCST1-AS1 can significantly elevate the expression of PLAP-1 by inhibiting miR-21 in PDLCs.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanhua Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Yadav R, Kanwar IL, Haider T, Pandey V, Gour V, Soni V. In situ gel drug delivery system for periodontitis: an insight review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00053-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Background
Periodontitis is a microbial disease that leads to inflammation in the tooth-supporting tissues of the oral cavity that is common among the elderly. It is initiated by oral inflammation induced by bacterial dysbiosis. Choosing an appropriate antimicrobial agent with the right course of drug administration is the key to successful periodontal therapy. In recent times, with more biomarkers and the development of new technologies, several point-of-care testing (POCT) platforms have been developed for the diagnosis and monitoring of periodontitis. This review focuses on oral microbiology and the pathogenesis of periodontitis as well as recent insights into the in situ gel system for periodontitis.
Design
An exhaustive search was conducted in the following scientific databases Science Direct, Springer, Pub Med, and Google Scholar to review all relevant literatures. This is a comprehensive narrative review of the literature, summarizing the perspectives of the authors.
Results
Novel in situ forming gel is introduced at the site that shows a promising potential to overcome one of the main practical obstacles associated with the treatment of local periodontitis: partial adhesion to the surrounding tissue, causing in the accidental expulsion of at least parts of the implants from patient’s pockets. This results in a large residence time of the system at the site of action and uncertainty of the final exposure to the drug.
Conclusion
From the reviewed literature, it is concluded that experimental evidence suggests that the in situ gel-forming systems can be useful in treating several common diseases of the oral cavity. Future research should focus on clinical studies to be performed for the in situ gel to make a significant contribution to periodontitis.
Graphical abstract
Collapse
|
14
|
Steinberg D, Friedman M. Sustained-release delivery of antimicrobial drugs for the treatment of periodontal diseases: Fantasy or already reality? Periodontol 2000 2020; 84:176-187. [PMID: 32844422 DOI: 10.1111/prd.12341] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Periodontal diseases are prevalent in humans. Conventional means of combating these diseases involve basic oral hygiene, mostly toothbrushing, use of mouthwashes, and flossing. Supplementary means of treatment, either clinical or pharmaceutical, are often necessary. The use of sustained-release delivery systems, applied locally to the periodontal pocket, seems to be one feasible approach: local sustained-release delivery of antibacterial agents to treat periodontal diseases is conceivable. The use of local (intrapocket) sustained-release delivery systems has numerous clinical, pharmacologic, and toxicologic advantages over conventional treatments for periodontal diseases. Sustained-release technology has been proven to be effective over the last few decades. Films, gels, and fibers are the three main classical intrapocket pharmaceutical delivery systems. Research today is more focused on improving drug delivery, and less on introducing new drugs. New approaches, eg, those making use of nanotechnology, are emerging for local drug-delivery systems. The local sustained-release delivery system concept is innovative and a few products are already commercially available.
Collapse
Affiliation(s)
- Doron Steinberg
- Biofilm Research Laboratory, Faculty of Dental Medicine, Institute of Dental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Friedman
- School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent Advances in the Development of In Situ Gelling Drug Delivery Systems for Non-Parenteral Administration Routes. Pharmaceutics 2020; 12:pharmaceutics12090859. [PMID: 32927595 PMCID: PMC7559482 DOI: 10.3390/pharmaceutics12090859] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
In situ gelling drug delivery systems have gained enormous attention over the last decade. They are in a sol-state before administration, and they are capable of forming gels in response to different endogenous stimuli, such as temperature increase, pH change and the presence of ions. Such systems can be administered through different routes, to achieve local or systemic drug delivery and can also be successfully used as vehicles for drug-loaded nano- and microparticles. Natural, synthetic and/or semi-synthetic polymers with in situ gelling behavior can be used alone, or in combination, for the preparation of such systems; the association with mucoadhesive polymers is highly desirable in order to further prolong the residence time at the site of action/absorption. In situ gelling systems include also solid polymeric formulations, generally obtained by freeze-drying, which, after contact with biological fluids, undergo a fast hydration with the formation of a gel able to release the drug loaded in a controlled manner. This review provides an overview of the in situ gelling drug delivery systems developed in the last 10 years for non-parenteral administration routes, such as ocular, nasal, buccal, gastrointestinal, vaginal and intravesical ones, with a special focus on formulation composition, polymer gelation mechanism and in vitro release studies.
Collapse
|
16
|
Bonde GV, Ajmal G, Yadav SK, Mittal P, Singh J, Bakde BV, Mishra B. Assessing the viability of Soluplus® self-assembled nanocolloids for sustained delivery of highly hydrophobic lapatinib (anticancer agent): Optimisation and in-vitro characterisation. Colloids Surf B Biointerfaces 2020; 185:110611. [DOI: 10.1016/j.colsurfb.2019.110611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
|
17
|
Lizambard M, Menu T, Fossart M, Bassand C, Agossa K, Huck O, Neut C, Siepmann F. In-situ forming implants for the treatment of periodontal diseases: Simultaneous controlled release of an antiseptic and an anti-inflammatory drug. Int J Pharm 2019; 572:118833. [PMID: 31715363 DOI: 10.1016/j.ijpharm.2019.118833] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 01/16/2023]
Abstract
Different types of in-situ forming implants based on poly(lactic-co-glycolic acid) (PLGA) for the controlled dual release of an antiseptic drug (chlorhexidine) and an anti-inflammatory drug (ibuprofen) were prepared and thoroughly characterized in vitro. N-methyl-pyrrolidone (NMP) was used as water-miscible solvent, acetyltributyl citrate (ATBC) as plasticizer and hydroxypropyl methylcellulose (HPMC) was added to enhance the implants' stickiness/bioadhesion upon formation within the periodontal pocket. Different drug forms exhibiting substantially different solubilities were used: chlorhexidine dihydrochloride and digluconate as well as ibuprofen free acid and lysinate. The initial drug loadings were varied from 1.5 to 16.1%. In vitro drug release, dynamic changes in the pH of the surrounding bulk fluid and in the systems' wet mass as well as polymer degradation were monitored. Importantly, the release of both drugs, chlorhexidine and ibuprofen, could effectively be controlled simultaneously during several weeks. Interestingly, the tremendous differences in the drug forms' solubilities (e.g., factor >5000) did not translate into major differences in the resulting release kinetics. In the case of ibuprofen, this can likely (at least in part) be attributed to significant drug-polymer interactions (ibuprofen acts as a plasticizer for PLGA). In the case of chlorhexidine, the release of the much less soluble dihydrochloride was even faster compared to the more soluble digluconate (when combined with ibuprofen free acid). In the case of ibuprofen, at higher initial drug loadings also limited solubility effects within the implants seem to play a role, in contrast to chlorhexidine. In the latter case, instead, increased system porosity effects likely dominate at higher drug loadings.
Collapse
Affiliation(s)
- M Lizambard
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - T Menu
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - M Fossart
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - C Bassand
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - K Agossa
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - O Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - C Neut
- Univ. Lille, Inserm, CHU Lille, U995-LIRIC, F-59000 Lille, France
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
18
|
UV Light Assisted Coating Method of Polyphenol Caffeic Acid and Mediated Immobilization of Metallic Silver Particles for Antibacterial Implant Surface Modification. Polymers (Basel) 2019; 11:polym11071200. [PMID: 31323751 PMCID: PMC6680839 DOI: 10.3390/polym11071200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022] Open
Abstract
Titanium implants are extensively used in biomedical applications due to their excellent biocompatibility, corrosion resistance, and superb mechanical stability. In this work, we present the use of polycaffeic acid (PCA) to immobilize metallic silver on the surface of titanium materials to prevent implant bacterial infection. Caffeic acid is a plant-derived phenolic compound, rich in catechol moieties and it can form functional coatings using alkaline buffers and with UV irradiation. This combination can trigger oxidative polymerization and deposition on the surface of metallic substrates. Using PCA can also give advantages in bone implants in decreasing inflammation by decelerating macrophage and osteoclast activity. Here, chemical and physical properties were investigated using FE-SEM, EDS, XPS, AFM, and contact angle. The in vitro biocompatibility and antibacterial studies show that PCA with metallic silver can inhibit bacterial growth, and proliferation of MC-3T3 cells was observed. Therefore, our results suggest that the introduced approach can be considered as a potential method for functional implant coating application in the orthopedic field.
Collapse
|
19
|
The effect of vanillic acid on ligature-induced periodontal disease in Wistar rats. Arch Oral Biol 2019; 103:1-7. [DOI: 10.1016/j.archoralbio.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 11/21/2022]
|
20
|
Singh J, Mittal P, Vasant Bonde G, Ajmal G, Mishra B. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S546-S555. [PMID: 30322273 DOI: 10.1080/21691401.2018.1501379] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Quercetin (Qu), is a flavonoid known to have anti-diabetic effects owing to its antioxidant property, thus promoting regeneration of the pancreatic islets, ultimately increasing insulin secretion. But the therapeutic application of Qu is hampered by its low oral bioavailability and its unfavourable physicochemical characteristics. The present work aimed at formulation of Quercetin loaded Soluplus® micelles (SMs) so as to enhance its bioavailability and provide prolonged release for the management of diabetes. Box-Behnken response surface methodology was employed to optimize the formulation prepared using co-solvent evaporation method. Physicochemical characterization confirmed the nano-spherical nature of Quercetin loaded Soluplus® micelles (Qu-SMs) with average particle size ranging from 85-108nm, encapsulation efficiency of 63-77%. Solid state characterization confirmed the encapsulation of Qu in the micelles without any incompatibilities. Moving forward, the results of in vitro study revealed prolonged and slow release of Qu from the developed formulations. The in vivo pharmacokinetic study revealed improved bioavailability by enveloping the drug in SMs. Moreover, the study performed to evaluate the efficiency in diabetes treatment revealed an enhanced anti-diabetic effect. Thus, Qu-SMs can serve as potential carriers aimed at improving the anti-diabetic property of Qu.
Collapse
Affiliation(s)
- Juhi Singh
- a Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (BHU) , Varanasi , India
| | - Pooja Mittal
- a Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (BHU) , Varanasi , India
| | - Gunjan Vasant Bonde
- a Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (BHU) , Varanasi , India
| | - Gufran Ajmal
- a Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (BHU) , Varanasi , India
| | - Brahmeshwar Mishra
- a Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (BHU) , Varanasi , India
| |
Collapse
|