1
|
Fan X, Li K, Qin X, Li Z, Du Y. Structural Characterization and Screening for Anti-inflammatory Activity of Polysaccharides with Different Molecular Weights from Astragali Radix. Chem Biodivers 2024; 21:e202400262. [PMID: 38705857 DOI: 10.1002/cbdv.202400262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Astragali Radix polysaccharides (APSs) exhibit a broad spectrum of biological activity, which is mainly related to immune regulation. At present, most available studies focus on total APSs or a certain component of APSs. However, systematic structural study and screening for the anti-inflammatory activity of polysaccharides with different molecular weights (MW) have yet to be conducted. In this study, lipopolysaccharide (LPS)-induced RAW264.7 macrophages were used as a model to investigate the anti-inflammatory activity of APSs and its fractions. The results revealed that fraction APS-I had better anti-inflammatory effects than APS-II. After APS-I was hydrolyzed by trifluoroacetic acid (TFA), the resulting degradation products oligosaccharides were fully methylated. These derivatized oligosaccharides were further analyzed by MALDI-TOF-MS and UPLC-Q-Exactive-MS/MS. The results showed that APS-I was a hetero-polysaccharide with a molecular weight of about 2.0×106 Da, mainly consisting of glucose (46.8 %) and galactose (34.4 %). The degree of polymerization of Astragali Radix oligosaccharides (APOS) was 2-16. APOS were identified as 1,4-glucooligosaccharides and 1,4-galactooligosaccharides. The findings of this study lay the foundation for further elucidation of structure-function relationships of APSs and provide guidance for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xinhui Fan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Engineering Research Center of Glycoconjugates of Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Xu J, Yu Y, Chen K, Wang Y, Zhu Y, Zou X, Xu X, Jiang Y. Astragalus polysaccharides ameliorate osteoarthritis via inhibiting apoptosis by regulating ROS-mediated ASK1/p38 MAPK signaling pathway targeting on TXN. Int J Biol Macromol 2024; 258:129004. [PMID: 38151083 DOI: 10.1016/j.ijbiomac.2023.129004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
This research aims to explore the potential of astragalus polysaccharides (APS) in treating osteoarthritis. The primary component of APS extracted in this study was glucose, and noticeably it had a relatively high content of glucuronic acids. In vitro, APS reduced ROS levels, protected chondrocytes from apoptosis, and promoted collagen II expression by regulating ASK1 (apoptosis-signal-regulating kinase1)/p38 cell apoptosis pathway. Further co-immunoprecipitation and immunofluorescence localization experiments demonstrated that the thioredoxin (TXN) antioxidant system was responsible for its bioactivity. Moreover, TXN silencing remarkably blocked the protective effects of APS, indicating that APS inhibited chondrocyte apoptosis by targeting TXN. In vivo, APS effectively mitigated cartilage loss and chondrocyte apoptosis and decreased expressions of p-ASK1 and p-p38. Collectively, this research first demonstrated that APS could ameliorate osteoarthritis by ASK1/p38 signaling pathway through regulating thioredoxin. In conclusion, APS holds promise as a nutraceutical supplement for osteoarthritis in future drug development.
Collapse
Affiliation(s)
- Jintao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yaohui Yu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Chen
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yishu Wang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangjie Zou
- Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xianghong Xu
- Department of Endocrinology, Nanjing First Hospital, Nanjing, China
| | - Yiqiu Jiang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Chen G, Jiang N, Zheng J, Hu H, Yang H, Lin A, Hu B, Liu H. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus. Int J Biol Macromol 2023; 241:124386. [PMID: 37054858 DOI: 10.1016/j.ijbiomac.2023.124386] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
In this study, two homogeneous polysaccharides (APS-A1 and APS-B1) were isolated from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Their chemical structures were characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-A1 (2.62 × 106 Da) was a 1,4-α-D-Glcp backbone with a 1,4,6-α-D-Glcp branch every ten residues. APS-B1 (4.95 × 106 Da) was a heteropolysaccharide composed of glucose, galactose, and arabinose (75.24:17.27:19.35). Its backbone consisted of 1,4-α-D-Glcp, 1,4,6-α-D-Glcp, 1,5-α-L-Araf and the sidechains composed of 1,6-α-D-Galp and T-α/β-Glcp. Bioactivity assays showed that APS-A1 and APS-B1 had potential anti-inflammatory activity. They could inhibit the production of inflammatory factors (TNF-α, IL-6, and MCP-1) in LPS-stimulated RAW264.7 macrophages via NF-κB and MAPK (ERK, JNK) pathways. These results suggested that the two polysaccharides could be potential anti-inflammatory supplements.
Collapse
Affiliation(s)
- Guangming Chen
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Aizhen Lin
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| |
Collapse
|
4
|
Structural characterization of mushroom polysaccharides by cyclic ion mobility-mass spectrometry. J Chromatogr A 2022; 1680:463445. [PMID: 36041250 DOI: 10.1016/j.chroma.2022.463445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
Abstract
Polysaccharides are biopolymers known to possess various bioactivities. Because of their molecular complexity, the structural characterization of polysaccharides remains challenging, and difficult to be completed with a single analytical method. In this study, a novel approach for the characterization of linkages and anomeric configuration of polysaccharides was proposed. Based on ion mobility-mass spectrometry (IM-MS), a database containing 5 glucotriose standards was set up. Information about the arrival time distribution and fragmentation patterns of these standards were included. The method was validated by three commercially available purified polysaccharides, namely laminarin, dextrin, and dextran, each having distinct connectivity and configuration of the glycosidic bonds. Lastly, the method was successfully applied to analyze polysaccharides prepared from three medicinal mushrooms, namely Xylaria nigripes, Grifola frondosa, and Laetiporus sulphureus. The results showed that water-soluble non-digestible polysaccharides of X. nigripes and G. frondosa were mainly composed of (1→3)-β-glucan, while that of L. sulphureus was composed of (1→3)-ɑ-glucan. The present method has the advantages of being simple in sample preparation and short analysis time.
Collapse
|
5
|
Zheng Q, Chen J, Yuan Y, Zhang X, Li L, Zhai Y, Gong X, Li B. Structural characterization, antioxidant, and anti-inflammatory activity of polysaccharides from Plumula Nelumbinis. Int J Biol Macromol 2022; 212:111-122. [PMID: 35594937 DOI: 10.1016/j.ijbiomac.2022.05.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/18/2022]
Abstract
A polysaccharide from Plumula Nelumbinis (PNP), was isolated and purified. PNP had a molecular weight of 450 kDa and consisted five monosaccharides, including rhamnose, galacturonic acid, xylose, galactose, and arabinose. The methylation and nuclear magnetic resonance (NMR) analysis revealed that the main glycosidic linkage types of PNP were →5)-α-L-Araf-(1→, →3)-β-D-Galp-(1→, β-D-Xylp-(→1, →3,4)-β-D-Rhap-(1→, →4)-β-D-GalpA-(1→. In the range of 25-1200 μg/mL, PNP had no cytotoxicity to RAW264.7 cells. PNP could protect RAW264.7 cell from oxidative damage by reducing the production of ROS and MDA and the secretion of LDH, enhancing the activity of SOD, CAT, and GSH-Px, and increasing the content of GSH. Anti-inflammatory activity experiments showed that PNP inhibited the expression of NO, TNF-α, INF-γ, IL-1β, and IL-6. PNP could inhibit the activation of MAPK/NF-κB cell pathways. PNP could be used as a potential natural antioxidant and anti-inflammatory substance in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Yi Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan, 523808, China
| | - Yongzhen Zhai
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xiao Gong
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Xu JJ, Gong LL, Li YY, Zhou ZB, Yang WW, Wan CX, Zhang WN. Anti-inflammatory effect of a polysaccharide fraction from Craterellus cornucopioides in LPS-stimulated macrophages. J Food Biochem 2021; 45:e13842. [PMID: 34189750 DOI: 10.1111/jfbc.13842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Immunocytes-involved inflammation is considered to modulate the damage in various diseases. Oxidative stress is initiated by oxidative agents such as LPS and ROS, which are strongly involved in chronic inflammation. Our previous study found that a polysaccharide fraction from Craterellus cornucopioides (CCPP-1) showed good antioxidant activity. However, the anti-inflammatory effect of CCPP-1 was still elusive. The objective of this study was to evaluate the anti-inflammatory activity of CCPP-1 and its potential mechanism in LPS-stimulated RAW264.7 macrophages. The results showed that CCPP-1 could inhibit LPS-induced ROS and NO accumulation. Additionally, CCPP-1 could decrease pro-inflammatory cytokines production (TNF-α, IL-1β, and IL-18) and inflammatory mediator (iNOS) expression, which might be associated with its capacity to inhibit NF-κB signaling pathway and NLRP3 inflammasome activation. Therefore, this study suggested that CCPP-1 had an ameliorative effect on the inflammation response and was potential to develop into functional food for treating chronic inflammation. PRACTICAL APPLICATIONS: Craterellus cornucopioides is an edible fungus widely distributed in Southwestern China. It was reported that C. cornucopioides polysaccharide (CCPP-1), as important active ingredient, showed good antioxidant activity. However, the anti-inflammatory effect was still elusive. This study showed that CCPP-1 possessed anti-inflammatory activity. The molecular mechanism might be associated with its capacity to inhibit NF-κB signaling pathway and NLRP3 inflammasome activation. Therefore, polysaccharides from C. cornucopioides have potential to develop into functional food to combat inflammatory condition and thus indirectly halt the progression of various inflammatory response-related chronic diseases.
Collapse
Affiliation(s)
- Jia-Jia Xu
- School of Life Sciences, Anhui University, Hefei, China
| | - Li-Li Gong
- School of Life Sciences, Anhui University, Hefei, China
| | - Yuan-Yuan Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Zhong-Bo Zhou
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
| | - Wei-Wei Yang
- School of Life Sciences, Anhui University, Hefei, China
| | - Chuan-Xing Wan
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
| | - Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei, China
| |
Collapse
|
7
|
Jen CI, Su CH, Lu MK, Lai MN, Ng LT. Synergistic anti-inflammatory effects of different polysaccharide components from Xylaria nigripes. J Food Biochem 2021; 45:e13694. [PMID: 33687093 DOI: 10.1111/jfbc.13694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Nondigestible polysaccharides are essential nutrients, which are also important bioactive constituents of mushrooms. This study aimed to investigate the physicochemical properties and anti-inflammatory effects of different polysaccharide components of Xylaria nigripes in lipopolysaccharides (LPS)-induced RAW264.7 macrophages. Results showed that X. nigripes nondigestible polysaccharide (XN) possessed a molecular weight of 910.7 kDa and mainly composed of glucose; it effectively suppressed NO, TNF-α, and IL-6 production. Based on molecular weight, two bioactive polysaccharide components (F1 and F2) were isolated from XN. F1 was a glucan with high molecular weight (885.2 kDa), whereas F2 was a low molecular weight heteropolysaccharide (24.5 kDa) composing of glucose, mannose, and galactose. F1 showed stronger inhibitory effects on NO, TNF-α, and IL-6 production than F2, however, its inhibitory effects were weaker than XN. Further analysis demonstrated that the combined treatment of F1 and F2 exhibited anti-inflammatory activity as good as XN, and they possessed synergistic effects on inhibiting pro-inflammatory mediator production. PRACTICAL APPLICATIONS: Polysaccharides are essential nutrients, and are major bioactive constituents of mushrooms. This study isolated two bioactive polysaccharide components from Xylaria nigripes, namely F1 and F2. F1 was a high molecular weight glucan, whereas F2 was a low molecular weight heteropolysaccharide. F1 showed stronger anti-inflammatory activity than F2, but was weaker than their combined treatment (F1 + F2). Different polysaccharide components were shown to possess synergistic anti-inflammatory effects, suggesting their importance in the formulation of polysaccharide-based products.
Collapse
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Han Su
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | | | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Jen CI, Su CH, Lai MN, Ng LT. Comparative anti-inflammatory characterization of selected fungal and plant water soluble polysaccharides. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University
| | - Chun-Han Su
- Department of Agricultural Chemistry, National Taiwan University
| | | | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University
| |
Collapse
|
9
|
Motta F, Gershwin ME, Selmi C. Mushrooms and immunity. J Autoimmun 2020; 117:102576. [PMID: 33276307 DOI: 10.1016/j.jaut.2020.102576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
In the wide field of nutraceuticals, the effects of mushrooms on immunity, cancer and including autoimmunity have been proposed for centuries but in recent years a growing interest has led scientists to elucidate which specific compounds have bioactive properties and through which mechanisms. Glucans and specific proteins are responsible for most of the biological effects of mushrooms, particularly in terms of immunomodulatory and anti-tumor results. Proteins with bioactive effects include lectins, fungal immunomodulatory proteins (FIPs), ribosome inactivating proteins (RIPs), ribonucleases, laccases, among others. At the present status of knowledge, numerous studies have been performed on cell lines and murine models while only a few clinical trials have been conducted. As in most cases of dietary components, the multitude of variables implicated in the final effect and an inadequate standardization are expected to affect the observed differences, thus making the available evidence insufficient to justify the treatment of human diseases with mushrooms extracts. We will herein provide a comprehensive review and critically discussion the biochemical changes induced by different mushroom compounds as observed in in vitro studies, particularly on macrophages, dendritic cells, T cells, and NK cells, compared to in vivo and human studies. Additional effects are represented by lipids which constitute a minor part of mushrooms but may have a role in reducing serum cholesterol levels or phenols acting as antioxidant and reducing agents. Human studies provide a minority of available data, as well illustrated by a placebo-controlled study of athletes treated with β-glucan from Pleurotus ostreatus. Variables influencing study outcomes include different mushrooms strains, growing conditions, developmental stage, part of mushroom used, extraction method, and storage conditions. We foresee that future rigorous research will be needed to determine the potential of mushroom compounds for human health to reproduce the effects of some compounds such as lentinan which a metaanalysis demonstrated to increase the efficacy of chemotherapy in the treatment of lung cancer and in the improvement of the patients quality of life.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
10
|
Li H, Xie W, Sun H, Cao K, Yang X. Effect of the structural characterization of the fungal polysaccharides on their immunomodulatory activity. Int J Biol Macromol 2020; 164:3603-3610. [PMID: 32860795 DOI: 10.1016/j.ijbiomac.2020.08.189] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
The immunomodulatory effects of the four extracellular polysaccharides, namely WPA, WPB, AP2A, and TP1A, which were isolated from the fermented broth of Aspergillus aculeatus, A. terreus and Trichoderma sp. KK19L1, were investigated in vitro. WPA, WPB, AP2A, and TP1A were not toxic to RAW264.7 cells. These polysaccharides enhanced cell viability. WPA, WPB, AP2A, and TP1A showed increased immunomodulatory effect by strengthening the phagocytic activity and enhancing the release of NO, TNF-α and IL-6 from RAW264.7 cells. WPA, WPB, AP2A, and TP1A exhibited different immunomodulatory activity in vitro due to their different structural characterizations, and their immunoregulatory effects decreased successively in the following order: WPA, WPB, AP2A, and TP1A. The extracellular polysaccharides WPA, WPB, AP2A, and TP1A had potent immunomodulatory effects and could be used as potential immunomodulatory agents in the fields of functional food and medicine.
Collapse
Affiliation(s)
- Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China
| | - Haihong Sun
- Qingdao Academy of Agricultural Sciences, Shandong, Qingdao 266100, China
| | - Kewei Cao
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Xihong Yang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China.
| |
Collapse
|
11
|
Zou P, Lu X, Zhao H, Yuan Y, Meng L, Zhang C, Li Y. Polysaccharides Derived From the Brown Algae Lessonia nigrescens Enhance Salt Stress Tolerance to Wheat Seedlings by Enhancing the Antioxidant System and Modulating Intracellular Ion Concentration. FRONTIERS IN PLANT SCIENCE 2019; 10:48. [PMID: 30766543 PMCID: PMC6365471 DOI: 10.3389/fpls.2019.00048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/14/2019] [Indexed: 05/18/2023]
Abstract
Soil salinity reduces plant growth and is a major factor that causes decreased agricultural productivity worldwide. Seaweed polysaccharides promote crop growth and improve plant resistance to abiotic stress. In this study, polysaccharides from brown seaweed Lessonia nigrescens polysaccharides (LNP) were extracted and further separated and fractionated. Two acidic polysaccharides (LNP-1 and LNP-2) from crude LNP were obtained and characterized. The latter had a lower molecular weight (MW) (40.2 kDa) than the former (63.9 kDa), but had higher uronic acid and sulfate content. Crude LNP and LNP-2 were composed of mannose, glucuronic acid, fucose, and xylose, whereas LNP-1 has little mannose. Moreover, the effects of the three polysaccharides on plant salt tolerance were investigated. The results showed that crude LNP, LNP-1, and LNP-2 promoted the growth of plants, decreased membrane lipid peroxidation, increased the chlorophyll content, improved antioxidant activities, and coordinated the efflux and compartmentation of intracellular ion. All three polysaccharides could induce plant resistance to salt stress, but LNP-2 was more effective than the other two. The present study allowed to conclude that both MW and sulfate degree contribute to salt resistance capability of polysaccharides derived from L. nigrescens.
Collapse
Affiliation(s)
- Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Ping Zou, Chengsheng Zhang, Yiqiang Li,
| | - Xueli Lu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Hongtao Zhao
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lei Meng
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Ping Zou, Chengsheng Zhang, Yiqiang Li,
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Ping Zou, Chengsheng Zhang, Yiqiang Li,
| |
Collapse
|
12
|
Guo Y, Ye Q, Yang S, Wu J, Ye B, Wu Y, Huang Z, Zheng C. Therapeutic effects of polysaccharides from Anoectochilus roxburghii on type II collagen-induced arthritis in rats. Int J Biol Macromol 2018; 122:882-892. [PMID: 30408452 DOI: 10.1016/j.ijbiomac.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
Anoectochilus roxburghii, a famous Chinese herbal medicine, has been commonly used for the treatment of liver disease, diabetes, and rheumatoid arthritis. Our study aimed to investigate the anti-rheumatoid arthritis effects of A. roxburghii polysaccharides (ARP), using the rat's model of type II collagen-induced arthritis (CIA). ARP was prepared by alcohol sedimentation and structurally characterized based on combined chemical, chromatographic and spectroscopic methods. High Performance Size Exclusion Chromatography-Multiangle Laser Light Scattering-Refrative Index (HPSEC-MALLS-RI) analysis revealed that ARP includes two peaks, and the weight-average molecular weight (Mw) of the principal one was estimated as 5.90 kDa with a relative content of 98.2%. Pharmacological results exhibited that ARP significantly decreased the arthritis index and ameliorated the inflammatory cell infiltration and the synovial tissue destruction in CIA rats. Additionally, ARP possessed significant NO production inhibitory effects and antioxidant activity. Further anti-inflammatory mechanism investigations indicated that ARP significantly inhibited the activation of nuclear factor κB (NF-κB) pathway by suppressing the phosphorylation of IκB and p65, which subsequently down-regulated the mRNA expressions of IL-1β and IL-6 in LPS-stimulated RAW 264.7 cells. These findings suggested that ARP has great potential in the development of functional foods and dietary supplements for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yaoli Guo
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Shuling Yang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Jinzhong Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Bingzhu Ye
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yanbin Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China.
| | - Zehao Huang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China.
| | - Chengjian Zheng
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|