1
|
Zhuo M, Liu C, Wang Q, Wang Z, Wang Y, Yu F, Zhang Y. Catharanthus roseus extract-assisted silver nanoparticles chitosan films with high antioxidant and antimicrobial properties for fresh food preservation. Int J Biol Macromol 2025; 309:142771. [PMID: 40185439 DOI: 10.1016/j.ijbiomac.2025.142771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Although the potential of chitosan (CS) -based biomass packaging materials for food preservation is encouraging, their use is severely constrained by the poor mechanical, UV, antioxidant, and solubility qualities. This study successfully combined silver nanoparticles made from Catharanthus roseus extracts with chitosan (CS-Ca-Ag) to enrich the functions of CS film. The films' Young's modulus values (45.489 MPa) were considerably raised after adding the extract-biosynthesized silver nanoparticles, in contrast to the chitosan film, and their water vapor permeability (2.386 × 10-12 g·mm-1·Pa-1·h-1) was greatly reduced. Furthermore, the antibacterial, antioxidant, and UV adsorption capabilities of CS-Ca-Ag films were significantly improved. The prepared Cs-Ca-Ag film had high biocompatibility and safety, making it suitable for strawberry coatings and chicken packaging. The CS-Ca-Ag film effectively limited the weight loss of fresh food, reduced nutrient loss, prevented microbial growth, and significantly extended food's shelf life. CS-based reinforced films containing Catharanthus roseus extract and silver nanoparticles showed potential food coating and packaging material applications.
Collapse
Affiliation(s)
- Mengru Zhuo
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Changhao Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qianbu Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ze Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yue Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Ghanbar Soleiman Abadi F, Bazargani‐Gilani B, Emamifar A, Nourian A. Beet Root Peel Extract as a Natural Cost-Effective pH Indicator and Food Preservative in Edible Film: Shelf Life Improvement of Cold-Stored Trout Fillet. Food Sci Nutr 2024; 12:10561-10575. [PMID: 39723084 PMCID: PMC11666831 DOI: 10.1002/fsn3.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024] Open
Abstract
In this study, chitosan (C)-polyvinyl alcohol (P) edible film containing bio-fabricated nanosilver particles (nAg) (as antimicrobial agent) and beetroot peel extract (BRPE) (as antioxidant agent and pH indicator) was used as spoilage indicator in cold-stored rainbow trout fillets. DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (43.02%), reducing power (2.87), and total phenolic content (360.50 mg GAE/g) of ethanolic BRPE were higher than aqueous extract. Silver nanoparticles were biosynthesized using silver nitrate reduction by chitosan, confirmed by UV-Visible spectroscopy, optical and scanning electron microscope images, and X-ray diffraction analysis. The highest tensile strength (4.20 MPa) and elongation at break (118%) belonged to the CP-BRPE film, and the lowest water vapor permeability (2.45 10-5 g/s/m/P) was related to the CP-nAg film. Also, the lowest total viable count (6.17 log CFU/g), psychrotrophic bacteria (6.27 log CFU/g), Enterobacteriaceae (4.9 log CFU/g), pH (5.66), total volatile basic-nitrogen (TVB-N) (22.1 mg/100 g of fish), and thiobarbituric acid reactive substances (TBARS) (0.705 mg MDA/kg of fish) values of the packaged trout fillets were significantly (p ≤ 0.05) observed in CP-BRPE-gnAg treatment among the other treatments at the end of the storage period, and CP-gnAg, CP-BRPE, and CP treatments were in the next ranks, respectively. Colorimetric analysis of the used films showed that the films containing BRPE depicted color spectra of red to yellow at the same time as the spoilage symptoms initiated in the packaged fillets. It is concluded that BRPE not only increased the preservative effects of chitosan-polyvinyl alcohol film containing green silver nanoparticles but also can be considered as a natural cost-effective spoilage indicator of the rainbow trout fillets during cold storage time.
Collapse
Affiliation(s)
| | - Behnaz Bazargani‐Gilani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineBu‐Ali Sina UniversityHamedanIran
| | - Aryou Emamifar
- Department of Food Science and Technology, College of Food IndustryBu‐Ali Sina UniversityHamedanIran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary MedicineBu‐Ali Sina UniversityHamedanIran
| |
Collapse
|
3
|
Wang B, He L, Zhou F, Huang J, Yu W, Chen H, Gan J, Song M, Yang X, Zhu R. Exploiting the advantages of cationic copolymers and AgBr nanoparticles to optimize the antibacterial activity of chitosan. Int J Biol Macromol 2024; 270:132209. [PMID: 38729471 DOI: 10.1016/j.ijbiomac.2024.132209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Recently, the chitosan (CS)-based composites have attracted increasing attention for controlling and preventing the spread of pathogenic microorganisms. Herein, an amphiphilic copolymer containing epoxy and quaternary ammonium groups (PBGDBr) was synthesized via three common acrylate monomers. The epoxy groups of this copolymer were then crosslinked with the amino groups of CS to synthesize a natural/synthetic (PBGDBr-C) composite to increase the water solubility of CS under alkaline conditions and enhance its antibacterial activity based on chemical contact-type modes. Moreover, silver bromide nanoparticles (AgBr NPs)-decorated PBGDBr-C (AgBr@PBGDBr-C) composite was prepared, which aimed to endow the final AgBr@PBGDBr-C composite with a photodynamic antibacterial mode relying on the formation of Ag/AgBr nanostructures catalyzed by visible light on AgBr NPs. The results showed that the final composite possessed satisfactory bactericidal effects at concentrations higher than 64 and 128 μg/mL against Escherichia coli and Staphylococcus aureus, respectively. Additionally, The L929 cells treated with the final composite retained high cell viability (>80 %) at a concentration of 128 μg/mL, indicating its low toxicity to L929 cells. Overall, our synthetic strategy exploits a multi-modal system that enables chemical-photodynamic synergies to treat infections caused by pathogenic bacteria while delaying the development of bacterial resistance.
Collapse
Affiliation(s)
- Bin Wang
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China.
| | - Lei He
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Fujun Zhou
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Wenjie Yu
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Hongjun Chen
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Jiyuan Gan
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Meng Song
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Xingyue Yang
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| | - Rongxian Zhu
- College of Chemistry & Chemical Engineering, Mianyang Normal University, MianYang 621000, China
| |
Collapse
|
4
|
Ashames A, Ijaz M, Buabeid M, Yasin H, Yaseen S, Bhandare RR, Murtaza G. In Vivo Wound Healing Potential and Molecular Pathways of Amniotic Fluid and Moringa Olifera-Loaded Nanoclay Films. Molecules 2024; 29:729. [PMID: 38338472 PMCID: PMC10856228 DOI: 10.3390/molecules29030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 02/12/2024] Open
Abstract
Cutaneous wounds pose a significant health burden, affecting millions of individuals annually and placing strain on healthcare systems and society. Nanofilm biomaterials have emerged as promising interfaces between materials and biology, offering potential for various biomedical applications. To explore this potential, our study aimed to assess the wound healing efficacy of amniotic fluid and Moringa olifera-loaded nanoclay films by using in vivo models. Additionally, we investigated the antioxidant and antibacterial properties of these films. Using a burn wound healing model on rabbits, both infected and non-infected wounds were treated with the nanoclay films for a duration of twenty-one days on by following protocols approved by the Animal Ethics Committee. We evaluated wound contraction, proinflammatory mediators, and growth factors levels by analyzing blood samples. Histopathological changes and skin integrity were assessed through H&E staining. Statistical analysis was performed using SPSS software (version 2; Chicago, IL, USA) with significance set at p < 0.05. Our findings demonstrated a significant dose-dependent increase in wound contraction in the 2%, 4%, and 8% AMF-Me.mo treatment groups throughout the study (p < 0.001). Moreover, macroscopic analysis revealed comparable effects (p > 0.05) between the 8% AMF-Me.mo treatment group and the standard treatment. Histopathological examination confirmed the preservation of skin architecture and complete epidermal closure in both infected and non-infected wounds treated with AMF-Me.mo-loaded nanofilms. RT-PCR analysis revealed elevated concentrations of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF), along with decreased levels of tumor necrosis factor-alpha (TNF-α) in AMF-Me.mo-loaded nanofilm treatment groups. Additionally, the antimicrobial activity of AMF-Me.mo-loaded nanofilms contributed to the decontamination of the wound site, positioning them as potential candidates for effective wound healing. However, further extensive clinical trials-based studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Akram Ashames
- College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (H.Y.); (R.R.B.)
- Medical and Bio-Allied Health Sciences Research Centre, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Munaza Ijaz
- Department of Microbiology, University of Central Punjab, Lahore 54000, Pakistan;
| | - Manal Buabeid
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi P.O. Box 3798, United Arab Emirates;
| | - Haya Yasin
- College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (H.Y.); (R.R.B.)
| | - Sidra Yaseen
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| | - Richie R. Bhandare
- College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (H.Y.); (R.R.B.)
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| |
Collapse
|
5
|
Gumber S, Kanwar S, Mazumder K. Properties and antimicrobial activity of wheat-straw nanocellulose-arabinoxylan acetate composite films incorporated with silver nanoparticles. Int J Biol Macromol 2023; 246:125480. [PMID: 37348584 DOI: 10.1016/j.ijbiomac.2023.125480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
In the current study, the novel eco-friendly and biodegradable nanocomposite films (NC-AXAc) were prepared from wheat-straw NC and AXAc with improved functional properties. NC derived from wheat-straw cellulose has a fibre-like structure with mean-particle size in the 340-520 nm range. AX derived AXAc was prepared with Degree of Substitution (DS) in the range of 1.85-1.89. Furthermore, to enhance antimicrobial properties, AgNPs were prepared via the reduction method using NaBH4 and added into the concentration of 4 × 10-4M into the emulsion forming composite films. The silver nanoparticles (AgNPs) incorporated in the composite exhibited an average size of 40-70 nm and a surface plasmon resonance (SPR) absorption peak at 395 nm. The high-resolution XPS spectrum of the Ag element showed that the two peaks at around 374.2 eV (Ag3d3/2) and 368.2 eV (Ag3d5/2) clearly revealed the metallic Ag existence in composite films. SEM analysis revealed the coarse and heterogeneous morphology of AgNPs incorporated films. The AgNPs incorporated composites exhibited good mechanical, thermal stability, and antimicrobial activity. The results suggested that AgNPs incorporated NC-AXAc composites could be used as a potential biodegradable antimicrobial nanocomposite in active food packaging systems for shelf-life extension of perishable commodities.
Collapse
Affiliation(s)
- Sakshi Gumber
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121 001, Haryana (NCR Delhi), India
| | - Swati Kanwar
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Koushik Mazumder
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India.
| |
Collapse
|
6
|
Post grafted gallic acid to chitosan-Ag hybrid nanoparticles via free radical-induced grafting reactions. Int J Biol Macromol 2023; 233:123395. [PMID: 36702225 DOI: 10.1016/j.ijbiomac.2023.123395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
The present study proposes two unique systems using free radical-induced grafting reactions to combine Ag, chitosan (CS) and gallic acid (GA) into a single particulate nanostructure. GA-grafted-CS (GA-g-CS) was used to reduce Ag+ to Ag0, and producing Ag-GA-g-CSNPs (hybrid NPs I). Also, GA was grafted into CS-AgNPs, to form GA-g-CS AgNPs (hybrid NPs II). Although there were previous attempts to graft GA into CS, this is first time to graft GA into CS-AgNPs. The study aimed to enhance biocompatibility, antibacterial and antioxidant properties of CS-AgNPs via grafted GA. Grafting GA into CS-AgNPs was confirmed by UV-Vis, DLS, DSC/TGA, XRD, EDX and FTIR. The morphology and size of NPs were studied by TEM and SEM. The decrease of ζ-potential from +50 mV in CS-Ag NPs to +33 and + 29 mV, in the presented 2 nanoforms hybrid NPs I and II, respectively, is an indication for the successful GA graft. Among all samples, hybrid NPs II showed lower toxicity, higher antioxidant and antibacterial activity. The obtained results revealed that grafting GA to CS-AgNPs, as a new method to combine Ag, CS and GA in a uniparticulate structure, is a unique process which may deserve a more future consideration.
Collapse
|
7
|
Moreira VM, Leite JMDS, Medeiros KDA, Assis KMAD, Borges JC, Santana LMB, Moreira LMCDC, Alves LP, Oliveira TKBD, Silveira JWDSD, Silva DTCD, Damasceno BPGDL. Pentoxifylline/Chitosan Films on Wound Healing: In Vitro/In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15041122. [PMID: 37111607 PMCID: PMC10143649 DOI: 10.3390/pharmaceutics15041122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
This study aimed to develop films of chitosan (CSF) associated with pentoxifylline (PTX) for healing cutaneous wounds. These films were prepared at two concentrations, F1 (2.0 mg/mL) and F2 (4.0 mg/mL), and the interactions between the materials, structural characteristics, in vitro release, and morphometric aspects of skin wounds in vivo were evaluated. The formation of the CSF film with acetic acid modifies the polymeric structure, and the PTX demonstrates interaction with the CSF, in a semi-crystalline structure, for all concentrations. The release for all films was proportional to the concentration, with two phases: a fast one of ≤2 h and a slow one of >2 h, releasing 82.72 and 88.46% of the drug after 72 h, being governed by the Fickian diffusion mechanism. The wounds of the mice demonstrate a reduction of up to 60% in the area on day 2 for F2 when compared to CSF, F1, and positive control, and this characteristic of faster healing speed for F2 continues until the ninth day with wound reduction of 85%, 82%, and 90% for CSF, F1, and F2, respectively. Therefore, the combination of CSF and PTX is effective in their formation and incorporation, demonstrating that a higher concentration of PTX accelerates skin-wound reduction.
Collapse
Affiliation(s)
- Vandiara Martins Moreira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Joandra Maísa da Silva Leite
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Kaline de Araújo Medeiros
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Karoll Moangella Andrade de Assis
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Joyce Cordeiro Borges
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Lucas Matheus Barreto Santana
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Lívia Maria Coelho de Carvalho Moreira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Larissa Pereira Alves
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | | | - João Walter de Souza da Silveira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Dayanne Tomaz Casimiro da Silva
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| |
Collapse
|
8
|
da Silva DJ, Gramcianinov GB, Jorge PZ, Malaquias VB, Mori AA, Hirata MH, Lopes SAM, Bueno LA, Champeau M, Carastan DJ. PVC containing silver nanoparticles with antimicrobial properties effective against SARS-CoV-2. Front Chem 2023; 11:1083399. [PMID: 36993814 PMCID: PMC10042293 DOI: 10.3389/fchem.2023.1083399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Poly (vinyl chloride) (PVC) is commonly used to manufacture biomedical devices and hospital components, but it does not present antimicrobial activity enough to prevent biofouling. With the emergence of new microorganisms and viruses, such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that was responsible for the global pandemic caused by Coronavirus Disease 2019 (COVID-19), it is evident the importance of the development of self-disinfectant PVC for hospital environments and medical clinics where infected people remain for a long time. In this contribution, PVC nanocomposites with silver nanoparticles (AgNPs) were prepared in the molten state. AgNPs are well-known as antimicrobial agents suitable for designing antimicrobial polymer nanocomposites. Adding 0.1 to 0.5 wt% AgNPs significantly reduced Young's modulus and ultimate tensile strength of PVC due to the emergence of microstructural defects in the PVC/AgNP nanocomposites, but the impact strength did not change significantly. Furthermore, nanocomposites have a higher yellowness index (YI) and lower optical bandgap values than PVC. The PVC/AgNP nanocomposites present virucidal activity against SARS-CoV-2 (B.1.1.28 strain) within 48 h when the AgNP content is at least 0.3 wt%, suitable for manufacturing furniture and hospital equipment with self-disinfectant capacity to avoid secondary routes of COVID-19 contagion.
Collapse
Affiliation(s)
- Daniel J. da Silva
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Guilherme B. Gramcianinov
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Pamela Z. Jorge
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Vanessa B. Malaquias
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Augusto A. Mori
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mário H. Hirata
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Sergio A. M. Lopes
- BRGoods Indústria e Comércio de Produtos Hospitalares, Indaiatuba, SP, Brazil
| | - Luciano A. Bueno
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Mathilde Champeau
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Danilo J. Carastan
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, SP, Brazil
| |
Collapse
|
9
|
Baqir Y, Tunio MT, Ilyas SZ, Agathopoulos S, Mufti H, Jalil A, Hassan A. Green synthesis and first-principles calculations of a highly efficient antibacterial agent: CuO/Ag nanocomposites. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Buabeid M, Arafa ESA, Yaseen HS, Umar MI, Murtaza G. Anti-inflammatory effect of simvastatin by impeding TNF-α and interleukin-1ß pathways: antiangiogenic activity of simvastatin and simvastatin-loaded silver nanoparticles. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:208-217. [PMID: 35866995 DOI: 10.1080/21691401.2022.2098306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE The present study was carried out to evaluate anti-inflammatory and antiangiogenic attributes of simvastatin and its nanofilms containing silver nanoparticles. METHODS Silver nanoparticles and simvastatin-loaded nanocomposite (SNSN) films were formulated by using polymeric solution (pectin + sericin) through casting solution method. Different in vitro and in vivo anti-inflammatory assays were performed. In addition, chick chorioallantoic membrane assay (CAM) was also employed for angiogenesis activity. RESULTS FTIR spectra of the film depicted the presence of intact simvastatin. Differential scanning calorimetry exhibited no endothermic expression in F9 film thermogram. The simvastatin release from all films exhibited a burst effect. Cotton-pellet induced granuloma model study showed that high dose of simvastatin and indomethacin produced comparable (p < 0.05) anti-inflammatory effect. Noteworthy, RT-PCR showed dose-dependent, anti-oedematous effect of simvastatin through downregulation of serum TNF-α and interleukin-1ß levels. While results of CAM assay exhibited remarkable anti-angiogenic potential of SNSN films showing dissolved blood vessels network macroscopically. CONCLUSION To reiterate, simvastatin and its SNSN films can add significant contribution to the field of biomedicines due to their promising anti-inflammatory and antiangiogenic properties, however, clinical studies are required to validate their commercial use.
Collapse
Affiliation(s)
- Manal Buabeid
- College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
- Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, UAE
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
- Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, UAE
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hafiza Sidra Yaseen
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | | | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
11
|
Yang D, Liu Q, Gao Y, Wan S, Meng F, Weng W, Zhang Y. Characterization of silver nanoparticles loaded chitosan/polyvinyl alcohol antibacterial films for food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Bai MY, Zhou Q, Zhang J, Li T, Cheng J, Liu Q, Xu WR, Zhang YC. Antioxidant and antibacterial properties of essential oils-loaded β-cyclodextrin-epichlorohydrin oligomer and chitosan composite films. Colloids Surf B Biointerfaces 2022; 215:112504. [PMID: 35453062 DOI: 10.1016/j.colsurfb.2022.112504] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/11/2023]
Abstract
Chitosan (CS) is becoming increasingly popular in food packaging due to its natural degradability and great film-forming properties. Nevertheless, its poor antibacterial properties and inadequate antioxidant properties prevent it from being used effectively. In this study, β-cyclodextrin-epichlorohydrin (β-CD-EP) oligomers were prepared and encapsulated with natural essential oils cinnamaldehyde and thymol, and then the inclusion complexes (IC) were incorporated into chitosan in various contents to afford a series of CS-IC composite films. The impacts of IC on the morphological, mechanical, thermal, and water resistance properties, antioxidant and antibacterial activities of chitosan films, as well as the loading and sustained release behavior of IC, were thoroughly examined. The results turned out that the essential oils were well-loaded with high encapsulation efficiency and showed a significant slow-release effect. It was also found that the tensile strength and the elongation at break decreased with increasing IC contents, while the thermal stability was enhanced. The incorporation of IC dramatically promoted the antioxidant and antibacterial properties of the chitosan films towards Gram-positive bacteria. Based on our findings, chitosan films containing essential oils-loaded β-CD-EP oligomers may serve as an effective food packaging material.
Collapse
Affiliation(s)
- Mei-Yan Bai
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Qi Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Jie Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China; Hainan Health Management College, Haikou 570228, China
| | - Ting Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Jun Cheng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Qun Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China.
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
13
|
Mumtaz S, Ali S, Mumtaz S, Mughal TA, Tahir HM, Shakir HA. Chitosan conjugated silver nanoparticles: the versatile antibacterial agents. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04321-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Xia Y, He L, Feng J, Xu S, Yao L, Pan G. Waterproof and Moisture-Permeable Polyurethane Nanofiber Membrane with High Strength, Launderability, and Durable Antimicrobial Properties. NANOMATERIALS 2022; 12:nano12111813. [PMID: 35683667 PMCID: PMC9182593 DOI: 10.3390/nano12111813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/31/2022]
Abstract
Nanofiber membrane has high biological protection function because of its good waterproof and moisture permeability properties. However, this membrane usually lacks active antimicrobial properties, limiting the application in reusable bioprotective textiles. Herein, waterborne polyurethane-capped Ag nanoparticles (AgNPs) were synthesized by reducing silver nitrate in water by sodium borohydride in the presence of polyurethane. AgNP-embedded thermoplastic urethane (TPU) nanofiber membrane was prepared by electrospinning a mixed solution of AgNPs and TPU. As-prepared membranes with Ag content of 50-300 mg·kg-1 have an average diameter of 0.75, 0.64, and 0.63 μm and good fiber uniformity. The doping of AgNP-embedded nanomembrane showed increased breaking force probably because of the induced crystallization effect. Test results showed that as-prepared TPU nanofiber membrane with silver content as low as 100 mg·kg-1 showed good washing resistance. The antibacterial rates of E. coli and S. aureus remained 99.99% with 50 times of soaping or chlorine washing. The corresponding waterproof and moisture permeability properties of nanofiber membrane with a thickness of 0.1 mm remained nearly unchanged, i.e., moisture permeability of around 2600 g·m-2 per 24 h and the hydrostatic pressure resistance of around 400 Pa after 50 times of soaping or chlorine washing.
Collapse
Affiliation(s)
- Yong Xia
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong 226019, China
| | - Lifen He
- Jiangsu Jicui Advanced Fiber Material Research Institute Co., Ltd., Nantong 226010, China
| | - Jundan Feng
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong 226019, China
| | - Sijun Xu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong 226019, China
| | - Lirong Yao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong 226019, China
| | - Gangwei Pan
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong 226019, China
| |
Collapse
|
15
|
Yang J, Zhang X, Chen L, Zhou X, Fan X, Hu Y, Niu X, Xu X, Zhou G, Ullah N, Feng X. Antibacterial aerogels with nano‑silver reduced in situ by carboxymethyl cellulose for fresh meat preservation. Int J Biol Macromol 2022; 213:621-630. [PMID: 35623462 DOI: 10.1016/j.ijbiomac.2022.05.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/20/2023]
Abstract
Bacterial cellulose (BC) was used as a reinforcing agent, citric acid (CA) as a cross-linking agent, and CMC@AgNPs as antibacterial nanomaterials, in which CMC@AgNPs were reduced from AgNO3 in situ by carboxymethyl cellulose (CMC) as a reducing agent and stabilizer to fight microbial corruption. Its potential application in packaging fresh meat has been investigated. Results showed that the antibacterial CMC@AgNPs/BC/CA aerogels with excellent structural integrity and outstanding water absorption were developed by adding 0.3% BC and 0.25% CA. The CMC@AgNPs/BC/CA aerogel significantly reduced the color change and the total viable bacterial counts (TVC) in fresh meat after 7 days of refrigerated storage. The results indicated that CMC@AgNPs/BC/CA aerogels can effectively extend the shelf life of fresh meat, and can be used for meat packaging as a biologically active absorption pad.
Collapse
Affiliation(s)
- Jingwen Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xianhao Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Xi Zhou
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiaojing Fan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yayun Hu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xuening Niu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinglian Xu
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanghong Zhou
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Niamat Ullah
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Silver Nanoparticles for Conductive Inks: From Synthesis and Ink Formulation to Their Use in Printing Technologies. METALS 2022. [DOI: 10.3390/met12020234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Currently, silver nanoparticles have attracted large interest in the photonics, electrics, analytical, and antimicrobial/biocidal fields due to their excellent optical, electrical, biological, and antibacterial properties. The versatility in generating different sizes, shapes, and surface morphologies results in a wide range of applications of silver nanoparticles in various industrial and health-related areas. In industrial applications, silver nanoparticles are used to produce conductive inks, which allows the construction of electronic devices on low-cost and flexible substrates by using various printing techniques. In order to achieve successful printed patterns, the necessary formulation and synthesis need to be engineered to fulfil the printing technique requirements. Additional sintering processes are typically further required to remove the added polymers, which are used to produce the desired adherence, viscosity, and reliable performance. This contribution presents a review of the synthesis of silver nanoparticles via different methods (chemical, physical and biological methods) and the application of silver nanoparticles under the electrical field. Formulation of silver inks and formation of conductive patterns by using different printing techniques (inkjet printing, screen printing and aerosol jet printing) are presented. Post-printing treatments are also discussed. A summary concerning outlooks and perspectives is presented at the end of this review.
Collapse
|
17
|
Chauhan A, Sillu D, Dhiman NK, Agnihotri S. Silver-Based Nano-formulations for Treating Antibiotic-Resistant Microbial Strains. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:279-309. [DOI: 10.1007/978-3-031-10220-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Ibrahim MS, Abd El-Mageed HR, Azmy AF, El-Deeb MM, Kamal EHM, Abd El-Salam HM. Synthesis, characterization, and molecular docking analysis of Chitosan-gr-Polysulphanilic acid as antimicrobial water-soluble polymers. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2006656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohamed S. Ibrahim
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, Beni Suef, Egypt
| | - H. R. Abd El-Mageed
- Faculty of Science, Micro-Analysis and Environmental Research and Community Services Center, Beni-Suef University, Beni Suef, Egypt
| | - Ahmed F. Azmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - M. M. El-Deeb
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, Beni Suef, Egypt
| | - Emad H. M. Kamal
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, Beni Suef, Egypt
| | - H. M. Abd El-Salam
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
19
|
High-Throughput Fabrication of Antibacterial Starch/PBAT/AgNPs@SiO 2 Films for Food Packaging. NANOMATERIALS 2021; 11:nano11113062. [PMID: 34835826 PMCID: PMC8625267 DOI: 10.3390/nano11113062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
In this current work, antimicrobial films based on starch, poly(butylene adipate-co-terephthalate) (PBAT), and a commercially available AgNPs@SiO2 antibacterial composite particle product were produced by using a melt blending and blowing technique. The effects of AgNPs@SiO2 at various loadings (0, 1, 2, 3, and 4 wt%) on the physicochemical properties and antibacterial activities of starch/PBAT composite films were investigated. AgNPs@SiO2 particles were more compatible with starch than PBAT, resulting in preferential distribution of AgNPs@SiO2 in the starch phase. Infusion of starch/PBAT composite films with AgNPs@SiO2 marginally improved mechanical and water vapor barrier properties, while surface hydrophobicity increased as compared with films without AgNPs@SiO2. The composite films displayed superior antibacterial activities against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The sample loaded with 1 wt% AgNPs@SiO2 (SPA-1) showed nearly 90% inhibition efficiency on the tested microorganisms. Furthermore, a preliminary study on peach and nectarine at 53% RH and 24 °C revealed that SPA-1 film inhibited microbial spoilage and extended the product shelf life as compared with SPA-0 and commercial LDPE packaging materials. The high-throughput production method and strong antibacterial activities of the starch/PBAT/AgNPs@SiO2 composite films make them promising as antimicrobial packaging materials for commercial application.
Collapse
|
20
|
Murugesan S, Scheibel T. Chitosan‐based
nanocomposites for medical applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvakumar Murugesan
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Department of Metallurgical and Materials Engineering National Institute of Technology Karnataka Mangalore India
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI) University Bayreuth Bayreuth Germany
| |
Collapse
|
21
|
Mohamed AS, Bin Dajem S, Al-Kahtani M, Ali SB, Ibrahim E, Morsy K, Fahmy SR. Silver/chitosan nanocomposites induce physiological and histological changes in freshwater bivalve. J Trace Elem Med Biol 2021; 65:126719. [PMID: 33517023 DOI: 10.1016/j.jtemb.2021.126719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Bivalves can accumulate and concentrate most pollutants, even if they are present in somewhat low concentrations. The present study aimed to use freshwater bivalveas for the first time as vital indicator for silver/chitosan nanocomposites (Ag-CS NCs) in the freshwater environment. METHODS Following the preparation and characterization of Ag-CS NCs by using UV-vis spectrophotometer, X-ray diffraction, transmission electron microscopy, and acute toxicity study, the animals exposed to three different dose of nano chitosan (CS), AgNPs, and Ag-CS NCs (12.5, 25 and 50 mg/L) for consecutive 6 days. RESULTS Ag-CS particles were in size range of 8-19 nm. The nominal concentrations for Ag-CS NCs were 12.5, 25 and 50 mg Ag L-1 were corresponding to measured concentration of AgNPs 0.37, 0.81, and 1.65 mg Ag L-1, respectively. All concentrations of Ag-CS NCs caused a significant increase in MDA and NO, while GSH and CAT levels decreased significantly in all organs. Histological investigation of the gills, labial palp and foot tissues showed alternation after exposure to Ag-CS NCs, especially at dose 50 mg/L. CONCLUSION The present study showed that exposure to Ag-CS NCs caused oxidative stress responses in Coelatura aegyptiaca and histological changes in the organs. These physiological and histological changes observed after exposure to Ag-CS NCs were most likely the result of the action of AgNPs themselves while the effect of chitosan on these changes was negligible. We concluded that Coelatura aegyptiaca was a sensitive bio-indicator for monitoring of the past and the present water pollution by nanoparticles.
Collapse
Affiliation(s)
| | - Saad Bin Dajem
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.
| | - Mohammed Al-Kahtani
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.
| | - Sara Bayoumi Ali
- Zoology Department, Faculty of Science, Cairo University, Egypt.
| | - Essam Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, Egypt.
| | - Kareem Morsy
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.
| | | |
Collapse
|
22
|
Kritchenkov AS, Egorov AR, Abramovich RA, Kurliuk AV, Shakola TV, Kultyshkina EK, Ballesteros Meza MJ, Pavlova AV, Suchkova EP, Le Nhat Thuy G, Van Tuyen N, Khrustalev VN. Water-soluble triazole chitin derivative and its based nanoparticles: Synthesis, characterization, catalytic and antibacterial properties. Carbohydr Polym 2021; 257:117593. [PMID: 33541634 DOI: 10.1016/j.carbpol.2020.117593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
In this work, we treated chitin with 2-(azidomethyl)oxirane and successfully involved the resultant azido chitin derivatives in the ultrasound-assisted Cu(I)-catalyzed azido-alkyne click (CuAAC) reaction with propargylic ester of N,N,N-trimethyl glycine. Thus, we obtained novel water-soluble triazole chitin derivatives. The triazole chitin derivatives and their nanoparticles are characterized by a high in vitro antibacterial activity, which is the same or even higher than that of commercial antibiotics ampicillin and gentamicin. The obtained derivatives are non-toxic. Moreover, the obtained water-soluble polymers are highly efficient green catalysts for the aldol reaction in green solvent water. The catalysts can be easily extracted from the reaction mixture by its precipitation with green solvent ethanol followed by centrifugation and they can be reused at least 10 times.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101, St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk, 210009, Belarus.
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Rimma A Abramovich
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk, 210009, Belarus
| | - Tatsiana V Shakola
- Vitebsk State Medical University, Frunze av. 27, Vitebsk, 210009, Belarus
| | - Ekaterina K Kultyshkina
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Moises J Ballesteros Meza
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Anastasia V Pavlova
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Elena P Suchkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101, St. Petersburg, Russian Federation
| | - Giang Le Nhat Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| |
Collapse
|
23
|
Mallakpour S, Okhovat M. Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity. Int J Biol Macromol 2021; 175:330-340. [PMID: 33556403 DOI: 10.1016/j.ijbiomac.2021.01.210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 12/25/2022]
Abstract
Biocompatible nanocomposites (NCs) with antibacterial activity containing organic matrix and inorganic nanoparticles (NPs) are vital for providing a suitable substrate for hydroxyapatite (HA) formation. Therefore, we fabricated a series of biocompatible NCs of chitosan (CS) and tragacanth gum (TG) and different percentages of ZnO NPs and ZnO@Ag NPs as fillers into the CS-TG blend. The characteristics of the NCs were distinguished with the field-emission scanning electron microscope (FE-SEM), X-Ray diffraction, Fourier transform infrared, and transmission electron microscopy (TEM). The CS-TG/ZnO@Ag(1:0.500) NC 8 wt% showed a rough surface according to FE-SEM. Moreover, the TEM image of CS-TG/ZnO NC 8 wt% depicted a uniform dispersion of NPs into the matrix. The biocompatibility of these NCs was evaluated by the formation of HA on their surfaces. The outcomes depicted the deposition of HA on the surface of all NCs. Also, CS-TG/ZnO@Ag(1:0.500) NC 8 wt% exhibited the most HA deposition on its surface. The antibacterial activity of these NCs toward Staphylococcus aureus and Escherichia coli bacteria was evaluated. The CS-TG/ZnO@Ag(1:0.500) NC 8 wt% exhibited a higher inhibition zone diameter in comparison to the ZnO@Ag (1:0.500) NPs for the S. aureus bacteria. Generally, antibacterial activity of the NCs containing ZnO@Ag NPs are more than NCs containing ZnO NPs.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Milad Okhovat
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
24
|
Colino CI, Lanao JM, Gutierrez-Millan C. Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111843. [PMID: 33579480 DOI: 10.1016/j.msec.2020.111843] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023]
Abstract
The growing problem of resistant infections due to antibiotic misuse is a worldwide concern that poses a grave threat to healthcare systems. Thus, it is necessary to discover new strategies to combat infectious diseases. In this review, we provide a selective overview of recent advances in the use of nanocomposites as alternatives to antibiotics in antimicrobial treatments. Metals and metal oxide nanoparticles (NPs) have been associated with inorganic and organic supports to improve their antibacterial activity and stability as well as other properties. For successful antibiotic treatment, it is critical to achieve a high drug concentration at the infection site. In recent years, the development of stimuli-responsive systems has allowed the vectorization of antibiotics to the site of infection. These nanomaterials can be triggered by various mechanisms (such as changes in pH, light, magnetic fields, and the presence of bacterial enzymes); additionally, they can improve antibacterial efficacy and reduce side effects and microbial resistance. To this end, various types of modified polymers, lipids, and inorganic components (such as metals, silica, and graphene) have been developed. Applications of these nanocomposites in diverse fields ranging from food packaging, environment, and biomedical antimicrobial treatments to diagnosis and theranosis are discussed.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain.
| | - Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| |
Collapse
|
25
|
Nandana CN, Christeena M, Bharathi D. Synthesis and Characterization of Chitosan/Silver Nanocomposite Using Rutin for Antibacterial, Antioxidant and Photocatalytic Applications. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01947-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Preparation of organic-inorganic chitosan@silver/sepiolite composites with high synergistic antibacterial activity and stability. Carbohydr Polym 2020; 249:116858. [DOI: 10.1016/j.carbpol.2020.116858] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
|
27
|
Shang H, Zhou Z, Wu X, Li X, Xu Y. Sunlight-Induced Synthesis of Non-Target Biosafety Silver Nanoparticles for the Control of Rice Bacterial Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2007. [PMID: 33053680 PMCID: PMC7600880 DOI: 10.3390/nano10102007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
Silver is an important and efficient bactericide. Nanoscale silver has a large specific surface area, high target adhesion, strong permeability and high bactericidal activity. At present, the control of plant bacterial diseases is difficult, and the resistance of plant bacterial pathogens develops rapidly. Silver nanoparticles are expected to become a new generation of agrochemical to control plant bacterial diseases. In this study, a simple and green natural sunlight-induced method was used to prepare carboxymethylcellulose sodium-stabilized silver nanoparticles (CMC-SNs) with a particle size of around 13.53 ± 4.72 nm. CMC-SNs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD) and UV-vis spectroscopy and found to be spherical and evenly dispersed. The bacteriostatic activity of the CMC-SNs toward Xanthomonas oryzae pv. oryzae (Xoo) was tested. The minimum inhibitory concentration (MIC) of CMC-SNs to Xoo was 1 mg/L, and the minimum bactericidal concentration (MBC) was 2 mg/L. In addition, the antibacterial mechanism was studied by scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM), which confirmed that the CMC-SNs had high antibacterial activity. In order to verify its impact on the environment, we conducted an acute toxicity test on zebrafish and found that Half lethal concentration (LC50) > 100 mg/L in zebrafish, or no acute toxicity. The ability of CMC-SNs to control rice bacterial blight was verified by a pot experiment.
Collapse
Affiliation(s)
| | | | - Xuemin Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agriculture University, Beijing 100083, China; (H.S.); (Z.Z.)
| | - Xuefeng Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agriculture University, Beijing 100083, China; (H.S.); (Z.Z.)
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agriculture University, Beijing 100083, China; (H.S.); (Z.Z.)
| |
Collapse
|
28
|
Bactericides Properties of Chitosan Metal Quantum Dots Microbial Pathogenicity Against E. coli, S. aureus, and S. Typhi. INT J POLYM SCI 2020. [DOI: 10.1155/2020/5920941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The nanotechnology is considered as a tool to overcome antibiotic-resistant infections. The aim of this study was to investigate the antibacterial properties of quantum dots (QDs) of Au, Ag, and Cu supported in chitosan against Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 29213), and Salmonella Typhi (ATCC 9993) strains. The QDs were synthesized by the method (Chemical Liquid Deposition, CLD) using 2-ethoxyethanol as solvent (1×10−3 M approximate dispersion concentration). Then, NPs supported in chitosan were synthesized by solvated metal atom dispersion (SMAD) in two concentrations, labelled [A] and [B] (0.05 and 0.1 g/L) for each metal with chitosan resulting in an average size of Au 10±2.0, Ag 6±1.3, and Cu 10±2.4 nm, respectively. Several other techniques were performed such as TEM, SEM/EDX, TGA, DSC, and FT-IR for characterizing QDs. The antibacterial assay was performed with 8 agents on cultures of E. coli, S. aureus, and S. Typhi by disk diffusion, broth macrodilution, and determining death curve to the most sensitive pathogen. The antibacterial effect of the nanoparticles was compared using the diameter of growth inhibition zone by agar disk diffusion and through the minimal inhibitory concentration (MIC) and minimal bactericide concentration (MBC) obtained by macrodilution in batch culture with an initial inoculum of 5×105 CFU/mL. The highest bactericidal effect was obtained with nanoparticles of Au, Ag, and Cu (0.1 g/L) with MIC and MBC of 200 and 400 mg/mL, respectively. The greatest bactericidal effect considering the three pathogens turned out to be Ag QDs (0.05 and 0.1 g/L). A bactericidal effect of metal nanoparticles is affected mainly by the electronegativity, the concentration of nanoparticles, and the bacterial age culture.
Collapse
|
29
|
Khan Z. Chitosan capped Au@Pd@Ag trimetallic nanoparticles: Synthesis, stability, capping action and adsorbing activities. Int J Biol Macromol 2020; 153:545-560. [DOI: 10.1016/j.ijbiomac.2020.02.304] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
|
30
|
Synergistic antibacterial activity of alpha mangostin and resveratrol loaded polymer-based films against bacteria infected wound. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Ibrahim YHE, Regdon G, Kristó K, Kelemen A, Adam ME, Hamedelniel EI, Sovány T. Design and characterization of chitosan/citrate films as carrier for oral macromolecule delivery. Eur J Pharm Sci 2020; 146:105270. [DOI: 10.1016/j.ejps.2020.105270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/31/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
|
32
|
Mizwari ZM, Oladipo AA, Yilmaz E. Chitosan/metal oxide nanocomposites: synthesis, characterization, and antibacterial activity. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1725753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zirar M Mizwari
- Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, TR North Cyprus, Turkey
- Department of Medical Laboratory Technology, Shaqlawa Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | - Akeem Adeyemi Oladipo
- Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, TR North Cyprus, Turkey
| | - Elvan Yilmaz
- Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, TR North Cyprus, Turkey
| |
Collapse
|
33
|
Shah A, Ashames AA, Buabeid MA, Murtaza G. Synthesis, in vitro characterization and antibacterial efficacy of moxifloxacin-loaded chitosan-pullulan-silver-nanocomposite films. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101366] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Kritchenkov AS, Egorov AR, Kurasova MN, Volkova OV, Meledina TV, Lipkan NA, Tskhovrebov AG, Kurliuk AV, Shakola TV, Dysin AP, Egorov MY, Savicheva EA, dos Santos WM. Novel non-toxic high efficient antibacterial azido chitosan derivatives with potential application in food coatings. Food Chem 2019; 301:125247. [DOI: 10.1016/j.foodchem.2019.125247] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
|
35
|
Kritchenkov AS, Egorov AR, Krytchankou IS, Dubashynskaya NV, Volkova OV, Shakola TV, Kurliuk AV, Skorik YA. Synthesis of novel 1H-tetrazole derivatives of chitosan via metal-catalyzed 1,3-dipolar cycloaddition. Catalytic and antibacterial properties of [3-(1H-tetrazole-5-yl)ethyl]chitosan and its nanoparticles. Int J Biol Macromol 2019; 132:340-350. [DOI: 10.1016/j.ijbiomac.2019.03.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 11/29/2022]
|
36
|
Rajivgandhi G, Maruthupandy M, Veeramani T, Quero F, Li WJ. Anti-ESBL investigation of chitosan/silver nanocomposites against carbapenem resistant Pseudomonas aeruginosa. Int J Biol Macromol 2019; 132:1221-1234. [DOI: 10.1016/j.ijbiomac.2019.03.238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 12/20/2022]
|
37
|
Kritchenkov AS, Egorov AR, Dysin AP, Volkova OV, Zabodalova LA, Suchkova EP, Kurliuk AV, Shakola TV. Ultrasound-assisted Cu(I)-catalyzed azide-alkyne click cycloaddition as polymer-analogous transformation in chitosan chemistry. High antibacterial and transfection activity of novel triazol betaine chitosan derivatives and their nanoparticles. Int J Biol Macromol 2019; 137:592-603. [PMID: 31252019 DOI: 10.1016/j.ijbiomac.2019.06.190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
In this work, we involved ultrasound-assisted click CuAAC in chitosan chemistry. Ultrasound-mediated CuAAC between propargylic ester of betaine and azido chitosan derivative proceeds fast in water under aerobic conditions and gives rise novel water-soluble triazole betaine chitosan derivatives. Using ionic gelation technique, we prepared and characterized nanoparticles from the synthesized chitosan derivatives. We studied antibacterial and transfection activity of the novel chitosan derivatives and their nanoparticles. The nanoparticles with size ca. 100 nm and ζ-potential ca. +65 mV proved to possess outstanding antibacterial activity, which is much more than that of the triazole betaine derivatives in their native form, and it is equal to the activity of ampicillin and gentamicin. Opposite, triazole betaine chitosan derivatives in their native form are characterized by remarkable transfection activity as compared with their nanoparticles. The most active triazole betaine chitosan derivatives are derivatives of moderate molecular weight with moderate degree of substitution. Their transfection activity is extremely high for chitosan species and it is comparable (values of the same order) with activity of Lipofectin - commercially available gene delivery vector.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation; Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation; Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation.
| | - Anton R Egorov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation; Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Artem P Dysin
- Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Olga V Volkova
- Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Ludmila A Zabodalova
- Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Elena P Suchkova
- Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Tatsiana V Shakola
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| |
Collapse
|
38
|
Pu S, Li J, Sun L, Zhong L, Ma Q. An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles. Carbohydr Polym 2019; 211:161-172. [DOI: 10.1016/j.carbpol.2019.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
|
39
|
Physicochemical and functional properties of chitosan-based nano-composite films incorporated with biogenic silver nanoparticles. Carbohydr Polym 2019; 211:124-132. [DOI: 10.1016/j.carbpol.2019.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/20/2022]
|
40
|
Jamróz E, Kulawik P, Kopel P. The Effect of Nanofillers on the Functional Properties of Biopolymer-based Films: A Review. Polymers (Basel) 2019; 11:E675. [PMID: 31013855 PMCID: PMC6523406 DOI: 10.3390/polym11040675] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Waste from non-degradable plastics is becoming an increasingly serious problem. Therefore, more and more research focuses on the development of materials with biodegradable properties. Bio-polymers are excellent raw materials for the production of such materials. Bio-based biopolymer films reinforced with nanostructures have become an interesting area of research. Nanocomposite films are a group of materials that mainly consist of bio-based natural (e.g., chitosan, starch) and synthetic (e.g., poly(lactic acid)) polymers and nanofillers (clay, organic, inorganic, or carbon nanostructures), with different properties. The interaction between environmentally friendly biopolymers and nanofillers leads to the improved functionality of nanocomposite materials. Depending on the properties of nanofillers, new or improved properties of nanocomposites can be obtained such as: barrier properties, improved mechanical strength, antimicrobial, and antioxidant properties or thermal stability. This review compiles information about biopolymers used as the matrix for the films with nanofillers as the active agents. Particular emphasis has been placed on the influence of nanofillers on functional properties of biopolymer films and their possible use within the food industry and food packaging systems. The possible applications of those nanocomposite films within other industries (medicine, drug and chemical industry, tissue engineering) is also briefly summarized.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Institute of Chemistry, University of Agriculture in Cracow, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Piotr Kulawik
- Department of Animal Products Processing, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|