1
|
Kandile NG, Ahmed ME, Mohamed MI, Mohamed HM. Therapeutic applications of sustainable new chitosan derivatives and its nanocomposites: Fabrication and characterization. Int J Biol Macromol 2024; 254:127855. [PMID: 37939771 DOI: 10.1016/j.ijbiomac.2023.127855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Chitosan (CS) is a biologically active biopolymer used in different medical applications due to its biodegradability, biocompatibility, and nontoxicity. Nanotechnology is an exciting and quick developing field in medical applications. Nanoparticles have shown great potential in the treatment of cancer and inflammation. In the present work modification of chitosan and its (Ag, Au, or ZnO) nanocomposites by N-aminophthalimide (NAP) occurred through the reaction with epichlorohydrin (ECH) as a crosslinker in the presence or absence of glutaraldehyde (GA) under different reaction conditions using microwave irradiation to give modified chitosan derivatives CS-2, CS-6, and their nanocomposites. Modified chitosan derivatives were characterized using different tools. CS-2 and CS-6 derivatives displayed enhancement of thermal stability and crystallinity compared to chitosan. Additionally, CS-2, CS-6, and their nanocomposites exhibited improvements in antitumor activity against HeLa cancer cells and enzymatic inhibitory against trypsin and α-chymotrypsin enzymes compared to chitosan. However, CS-2 revealed the highest cell growth inhibition% toward HeLa cells (89.02 ± 1.46 %) and the enzymatic inhibitory toward α-chymotrypsin enzyme (17.13 ± 1.59 %). Furthermore, CS-Au-2 showed the highest enzymatic inhibitory against trypsin enzyme (28.14 ± 1.76 %). These results suggested that the new chitosan derivatives CS-2, CS-6, and their nanocomposites could be a platform for medical applications against HeLa cells, trypsin, and α-chymotrypsin enzymes.
Collapse
Affiliation(s)
- Nadia G Kandile
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Marwa ElS Ahmed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Mansoura I Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Hemat M Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt.
| |
Collapse
|
2
|
Hosseinpour Moghadam N, Najafi R, Ghanbariasad A, Shiralizadeh Dezfuli A, Jalali A. Improving the selective naked-eye detection of COVID-19 mediated by simultaneously using three different target oligonucleotides coated on plasmonic AuNPs/hexagonal Ag@AuNPs. J Biomol Struct Dyn 2023; 41:14372-14381. [PMID: 36995117 DOI: 10.1080/07391102.2023.2193989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/10/2023] [Indexed: 03/31/2023]
Abstract
The localized surface plasmon resonance (LSPR) phenomenon provides a versatile property in biosensor technology. This uncommon feature was utilized to produce a homogeneous optical biosensor to detect COVID-19 by the naked-eye readout. In this work, we synthesized two types of plasmonic nanoparticles: (i) AuNPs and (ii) hexagonal core-shell nanoparticles-Au shell on AgNPs (Au@AgNPs). We report herein the development of two colorimetric biosensors employing the efficient targeting and the binding ability for three regions of the COVID-19 genome, that is, S-gene, N-gene and E-gene, at the same time. Two AuNPs and Ag@AuNPs individually coated with three different targets oligonucleotide sequence (TOs) (AuNPs-TOs-mix and Ag@AuNPs-TOs-mix) for simultaneous detection of S-gene, N-gene and E-gene of the COVID-19 virus, using the LSPR and naked-eye methods in the laboratory and biological samples. The target COVID-19 genome RNA detected using the AuNPs-TOs-mix and Ag@AuNPs-TOs-mix can achieve the same sensitivity. The detection ranges by the AuNPs-TOs-mix and Ag@AuNPs-TOs-mix are both sufficiently improved in equal amounts in comparison to any of the AuNPs-TOs and Ag@AuNPs-TOs. The sensitivity of the current COVID-19 biosensors were 94% and 96% based on the number of positive samples detected for AuNPs-TOs-mix and Ag@AuNPs-TOs-mix, respectively. Moreover, all the real-time PCR confirmed negative samples obtained the same results by the biosensor; accordingly, the specificity of this approach got to 100%. The current study reports a selective, reliable, reproducible and visual 'naked-eye' detection of COVID-19, devoid of the requirement of any sophisticated instrumental techniques.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Mahaki H, Mansourian M, Meshkat Z, Avan A, Shafiee MH, Mahmoudian RA, Ghorbani E, Ferns GA, Manoochehri H, Menbari S, Sheykhhasan M, Tanzadehpanah H. Nanoparticles Containing Oxaliplatin and the Treatment of Colorectal Cancer. Curr Pharm Des 2023; 29:3018-3039. [PMID: 37990895 DOI: 10.2174/0113816128274742231103063738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly widespread malignancy and ranks as the second most common cause of cancer-related mortality. OBJECTIVE Cancer patients, including those with CRC, who undergo chemotherapy, are often treated with platinum- based anticancer drugs such as oxaliplatin (OXA). Nevertheless, the administration of OXA is associated with a range of gastrointestinal problems, neuropathy, and respiratory tract infections. Hence, it is necessary to devise a potential strategy that can effectively tackle these aforementioned challenges. The use of nanocarriers has shown great potential in cancer treatment due to their ability to minimize side effects, target drugs directly to cancer cells, and improve drug efficacy. Furthermore, numerous studies have been published regarding the therapeutic efficacy of nanoparticles in the management of colorectal cancer. METHODS In this review, we present the most relevant nanostructures used for OXA encapsulation in recent years, such as solid lipid nanoparticles, liposomes, polysaccharides, proteins, silica nanoparticles, metal nanoparticles, and synthetic polymer-carriers. Additionally, the paper provides a summary of the disadvantages and limits associated with nanoparticles. RESULTS The use of different carriers for the delivery of oxaliplatin increased the efficiency and reduced the side effects of the drug. It has been observed that the majority of research investigations have focused on liposomes and polysaccharides. CONCLUSION This potentially auspicious method has the potential to enhance results and enhance the quality of life for cancer patients undergoing chemotherapy. However, additional investigation is required to ascertain the most suitable medium for the transportation of oxaliplatin and to assess its efficacy through clinical trials.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Mansourian
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | | | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shaho Menbari
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohsen Sheykhhasan
- Qom University of Medical Science and Health Services Mesenchymal Stem Cells Qom Iran
- Department of Mesenchymal Stem Cells, Qom University of Medical Science and Health Services, Qom, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Isotherm, Thermodynamics, and Kinetics of Methyl Orange Adsorption onto Magnetic Resin of Chitosan Microspheres. Int J Mol Sci 2022; 23:ijms232213839. [PMID: 36430316 PMCID: PMC9692306 DOI: 10.3390/ijms232213839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Severe environmental pollution problems arising from toxic dyestuffs (e.g., methyl orange) are receiving increasing attention. Therefore, dyes' safe removal has become a research hotspot. Among the many physical-chemical removal techniques, adsorption using renewable biological resources has proved to be more advantageous over others due to its effectiveness and economy. Chitosan is a natural, renewable biopolymer obtained by deactivated chitin. Thus, the magnetic resin of chitosan microspheres (MRCM), prepared by reversed-phase suspension cross-linking polymerization, was used to remove methyl orange from a solution in a batch adsorption system. The main results are as follows: (1) The results of physical and swelling properties of MRCM indicated that MRCM was a type of black spherical, porous, water-absorbing, and weak alkali exchange resin, and it had the ability to adsorb methyl orange when it was applied in solutions above pH 2.0. (2) In batch adsorption studies, the maximum adsorption capacity was obtained at pH 5; the adsorption equilibrium time was 140 min; and the maximum adsorption was reached at 450 mg/L initial concentration. (3) Among the three isotherm adsorption models, Langmuir achieved the best fit for the adsorption of methyl orange onto MRCM. (4) The adsorption thermodynamics indicated that the adsorption was spontaneous, with increasing enthalpy, and was driven by the entropy. (5) The pseudo-second-order kinetics equation was most suitable to describe the adsorption kinetics, and the adsorption kinetics was also controlled by the liquid-film diffusion dynamics. Consequently, MRCM with relatively higher methyl orange adsorption exhibited the great efficiency for methyl orange removal as an environment-friendly sorbent. Thus, the findings are useful for methyl orange pollution control in real-life wastewater treatment applications.
Collapse
|
5
|
Babamoradi J, Ghorbani-Vaghei R, Alavinia S. Click synthesis of 1,2,3-triazoles using copper iodide nanoparticles anchored poly(sulfonamide-thiazole) modified layered double hydroxides/chitosan nanocomposite. Int J Biol Macromol 2022; 209:1542-1552. [PMID: 35461861 DOI: 10.1016/j.ijbiomac.2022.04.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022]
Abstract
Click synthesis is a class of biocompatible small molecule reactions commonly used in bioconjugation. This research presents a recyclable environmentally-friendly catalyst for 1,2,3-triazoles. To this end, we immobilized poly sulfonamide-thiazole (PST), a new group of sulfonamides, on the surface of layered double hydroxides/chitosan (LDH@CS). Afterward, it was decorated using copper iodide nanoparticles (CuI NPs). LDH@CS@PST/Cu was characterized various techniques, including HNMR, 13CNMR, FE-SEM, FT-IR, XRD, EDX, ICP-OES, and TGA/DTA. Overall, the results revealed that LDH@CS@PST/Cu is a promising green efficient for the domino reaction of phenacyl bromides with phenylacetylene and sodium azide.
Collapse
Affiliation(s)
- Jamshid Babamoradi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683 Hamadan, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683 Hamadan, Iran.
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683 Hamadan, Iran
| |
Collapse
|
6
|
Preparation of Doxorubicin-Loaded Carboxymethyl-β-Cyclodextrin/Chitosan Nanoparticles with Antioxidant, Antitumor Activities and pH-Sensitive Release. Mar Drugs 2022; 20:md20050278. [PMID: 35621929 PMCID: PMC9146362 DOI: 10.3390/md20050278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
In this study, chitosan nanoparticles (HF-CD NPs) were synthesized by an ionic gelation method using negatively charged carboxymethyl-β-cyclodextrin and positively charged 2-hydroxypropyltrimethyl ammonium chloride chitosan bearing folic acid. The surface morphology of HF-CD NPs was spherical or oval, and they possessed relatively small particle size (192 ± 8 nm) and positive zeta potential (+20 ± 2 mV). Meanwhile, doxorubicin (Dox) was selected as model drug to investigate the prepared nanoparticles’ potential to serve as a drug delivery carrier. The drug loading efficiency of drug-loaded nanoparticles (HF-Dox-CD NPs) was 31.25%. In vitro release profiles showed that Dox release of nanoparticles represented a pH-sensitive sustained and controlled release characteristic. At the same time, the antioxidant activity of nanoparticles was measured, and chitosan nanoparticles possessed good antioxidant activity and could inhibit the lipid peroxidation inside the cell and avoid material infection. Notably, CCK-8 assay testified that the nanoparticles were safe drug carriers and significantly enhanced the antitumor activity of Dox. The nanoparticles possessed good antioxidant activity, pH-sensitive sustained controlled release, enhanced antitumor activity, and could be expected to serve as a drug carrier in future with broad application prospects.
Collapse
|
7
|
Mi Y, Chen Y, Gu G, Miao Q, Tan W, Li Q, Guo Z. New synthetic adriamycin-incorporated chitosan nanoparticles with enhanced antioxidant, antitumor activities and pH-sensitive drug release. Carbohydr Polym 2021; 273:118623. [PMID: 34561017 DOI: 10.1016/j.carbpol.2021.118623] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
In this paper, adriamycin-incorporated chitosan nanoparticles were synthesized by ionic gelation using negatively charged carboxymethyl chitosan and positively charged 2-hydroxypropyltrimethyl ammonium chloride chitosan. The method was efficient to obtain nanoparticles with low polydispersity index and small hydrodynamic diameter. And high zeta potential value indicated that nanoparticles had good stability. The adriamycin release of nanoparticles represented a significant response to pH, with the fastest release in phosphate buffer solution at pH 6.8. Meanwhile, the antioxidant efficiency of nanoparticles was assayed, and nanoparticles represented significant enhancement in radicals scavenging activity. The assay of cell viability by CCK-8 test exhibited that nanoparticles led to statistically significant decrease in cell viability for four kinds of cancer cells (HEPG-2, A549, MCF-7, and BGC-823). It was indicated that the nanoparticles with enhanced biological activity, reduced cytotoxicity, and pH-sensitive release could be served as potential drug carrier in drug delivery system.
Collapse
Affiliation(s)
- Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guodong Gu
- Alliance Pharma, Inc., 17 Lee Boulevard, Malvern, PA 19355, USA
| | - Qin Miao
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Teepoo S, Laochai T. Reusable Optical Biosensor Based on Poly (Vinyl) Alcohol - Chitosan Cryogel with Incorporated Magnetic Nanoparticles for the Determination of Sucrose in Sugar Cane and Sugar. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1968889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Thidarut Laochai
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| |
Collapse
|
9
|
Starch-based magnetic nanocomposite as an efficient absorbent for anticancer drug removal from aqueous solution. Int J Biol Macromol 2021; 184:509-521. [PMID: 34171254 DOI: 10.1016/j.ijbiomac.2021.06.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022]
Abstract
In this study, carboxymethyl cassava starch (CMCS)-functionalized magnetic nanoparticles (CMCS@Fe3O4) were synthesized via a simple one-pot co-precipitation method using CMCS materials with varying degrees of substitution, and used for the adsorption/removal of doxorubicin hydrochloride (Dox; a clinically available anti-cancer drug) from aqueous solution. The adsorption of Dox was studied using experimental conditions with varied pH, temperature, initial Dox concentration, and CMCS@Fe3O4 dosage. The CMCS@Fe3O4 adsorbents were characterized by scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometry. Each CMCS@Fe3O4 adsorbent exhibited a cubic inverse spinel iron oxide phase, small particle size, favorable magnetic properties, and good thermal stability. Batch adsorption experiments showed that the Dox adsorption efficiency reached 85.46% at a CMCS@Fe3O4 concentration of 20 mg mL-1 at 303 K in pH 7.0. The adsorption experimental results indicated that the adsorption kinetics followed a pseudo-second-order model and the Langmuir equation. Considering the environmentally nontoxic nature of Fe3O4 and starch, the CMCS@Fe3O4 material demonstrated significant potential for removing Dox from aqueous solution and in magnetic targeted drug delivery systems for synergistic tumor treatments.
Collapse
|
10
|
Zhang N, Jia C, Ma X, Li J, Wang S, Yue B, Huang M. Hierarchical Core-Shell Fe₃O₄@mSiO₂@Chitosan Nanoparticles for pH-Responsive Drug Delivery. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:3020-3027. [PMID: 33653475 DOI: 10.1166/jnn.2021.19154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hierarchical nanoparticles are of great interest because they possess unique physicochemical properties and multiple functionalities, providing a wealth of possibilities for various applications. In this work, we have developed a well-designed method to prepare hierarchical magnetic nanoparticles Fe₃O₄@mSiO₂@CS by integrating a solvothermal method for synthesizing the Fe₃O₄ core, a dualtemplating micelle system for preparing a layer of mesoporous silica (mSiO₂) shell, and a silane coupling method via γ-glycidoxypropyltrimethoxysilane for binding a chitosan (CS) layer on the silica surface. The porous hierarchical nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering nanoparticle size analyzer, and specific surface area and pore size analyzer. The loading capacity and the release behavior of the as-prepared nanoparticles for doxorubicin hydrochloride were studied, and it was found that the drug release rate was faster at pH 6.0 than at pH 7.4, revealing the pH-responsive property of the nanoparticles.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chengzheng Jia
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xingyue Ma
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinfeng Li
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shige Wang
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bingbing Yue
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingxian Huang
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
11
|
Pourjafar M, Samadi P, Karami M, Najafi R. Assessment of clinicopathological and prognostic relevance of BMI-1 in patients with colorectal cancer: A meta-analysis. Biotechnol Appl Biochem 2020; 68:1313-1322. [PMID: 33086431 DOI: 10.1002/bab.2053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
B-cell-specific Moloney leukemia virus insertion site 1 (BMI-1) is one of the stemness markers. The prognostic and clinicopathological effects of BMI-1 expression in colorectal cancer (CRC) have been in dispute with different studies. Eligible studies were retrieved from international databases up to December 2019. Studies with a relationship between the clinicopathological and prognostic value of CRC patients with BMI-1 expression were selected. The correlations in the random-effect model were evaluated using the hazard ratios, odds ratio, and 95% confidence intervals (CIs). A total of nine studies comprising Asian cases (seven studies) and European cases (two studies) covering 1,294 samples of CRC were included for this meta-analysis. The analysis suggested that in Asian cases, increased expression of BMI-1 was associated with poor overall survival (OS) and death-free survival, whereas in European populations, high expression of BMI-1 was associated with better OS. Also, overexpression of BMI-1 in the Asian population was associated with the tumor size, distant metastasis, and patient's gender and age. Results suggested that high expression of BMI-1 can be involved in the progression and invasion of CRC, and so its inhibitor-based therapies could be used to prevent the progression of CRC.
Collapse
Affiliation(s)
- Mona Pourjafar
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Manoochehr Karami
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Afzali S, Karami M, Kheyripour N, Ranjbar A. Investigating the Effect of Fresh Frozen Plasma and Albumin on DNA Damage and Oxidative Stress Biomarkers in Poisoning Cases by Organophosphates. Drug Res (Stuttg) 2020; 71:10-16. [PMID: 33022718 DOI: 10.1055/a-1261-9151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The efficacy of albumin and fresh frozen plasma (FFP) and their effects on biomarkers of oxidative stress has been evaluated. In a randomized clinical control trial, 33 poisoned patients by Organophosphate (OP) were enrolled in the research and divided into three groups. The first group underwent conventional treatments by atropine and pralidoxime (control group); the second and third groups, in addition to traditional treatments, received albumin and FFP. Cholinesterase (ChE) enzyme activity, total antioxidant capacity (TAC), serum thiol groups (TTG), malonyl aldehyde (MDA) and DNA damage were measured in all treatment and control groups. Patients were matched in terms of demographic characteristics at the beginning of the study. ChE activity was increased in all three groups during treatment, which was more noticeable in the FFP group and was statistically significant in both albumin and FFP group compared to the control group (p<0.05). TAC increased, and TTG decreased in FFP and albumin groups compared to the control group; no significant difference was observed. MDA decreased in albumin and FFP and was significantly different in the FFP group compared to the control group (p<0.05). The amount of DNA damage in FFP and albumin groups decreased, and there was a significant difference compared to the control group (p<0.05). According to the results of this study, due to the decrease of oxidative damage parameters and the increase of antioxidant parameters in albumin and specially FFP groups, FFP may be considered as an adjunctive treatment for OP poisoning.
Collapse
Affiliation(s)
- Saeed Afzali
- Department of Forensic Medicine and Toxicology, School of Medicine, Hamadan University of Medical Sciences, Hamadan
| | - Manoochehr Karami
- Department of Epidemiology, School of Public Health Hamadan University of Medical Sciences, Hamadan
| | - Nejat Kheyripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Akram Ranjbar
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan.,Department of Pharmacology Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan
| |
Collapse
|
13
|
Synthesis and DNA interaction studies of Ni(II), Cu(II) and Co(II) complexes with a polyamine ligand containing homopiperazine; X-ray crystal structure of Cu(II) complex. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01253-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Khoei SG, Sadeghi H, Samadi P, Najafi R, Saidijam M. Relationship between Sphk1/S1P and microRNAs in human cancers. Biotechnol Appl Biochem 2020; 68:279-287. [PMID: 32275078 DOI: 10.1002/bab.1922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Sphingosine kinases type 1 (SphK1) is a key enzyme in the phosphorylation of sphingosine to sphingosine 1-phosphate (S1P). Different abnormalities in SphK1 functions may correspond with poor prognosis in various cancers. Additionally, upregulated SphK1/S1P could promote cancer cell proliferation, angiogenesis, mobility, invasion, and metastasis. MicroRNAs as conserved small noncoding RNAs play major roles in cancer initiation, progression, metastasis, etc. Their posttranscriptionally mechanisms could affect the development of cancer growth or tumorigenesis suppression. The growing number of studies has described that various microRNAs can be regulated by SphK1, and its expression level can also be regulated by microRNAs. In this review, the relationship of SphK1 and microRNA functions and their interaction in human malignancies have been discussed. Based on them novel treatment strategies can be introduced.
Collapse
Affiliation(s)
- Saeideh Gholamzadeh Khoei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Sadeghi
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Shahabadi N, Razlansari M. In vitro spectroscopic investigation of groove binding interaction of Fe 3O 4@CaAl-LDH@L-Dopa with calf thymus DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1020-1035. [PMID: 32345148 DOI: 10.1080/15257770.2020.1740929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The principal goal of this study is to evaluate the interaction of Fe3O4@CaAl-LDH@L-Dopa and Fe3O4@CaAl-LDH nanoparticles with calf thymus DNA. The magnetic nanoparticles were previously prepared by a chemical co-precipitation method, and the surface of the Fe3O4 nanoparticles was coated with CaAl layered double hydroxides. The antiparkinsonian drug "L-Dopa" was carried by this core-shell nanostructure to achieve the drug delivery system with suitable properties for biological applications. Also, the interaction of Fe3O4@CaAl-LDH@L-Dopa and Fe3O4@CaAl-LDH nanoparticles with CT-DNA was studied using, UV-Visible spectroscopy, viscosity, circular dichroism (CD), and fluorescence spectroscopy techniques. The results of investigations demonstrated that Fe3O4@CaAl-LDH@L-Dopa and Fe3O4@CaAl-LDH nanoparticles have interacted via minor groove binding and intercalated to CT-DNA, respectively.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), University of Medical Sciences, Kermanshah, Iran
| | - Mahtab Razlansari
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
16
|
Bi S, Sun X, Li X, Zhao R, Shao D. Depicting the binding of furazolidone/furacilin with DNA by multiple spectroscopies, voltammetric as well as molecular docking. LUMINESCENCE 2019; 35:493-502. [DOI: 10.1002/bio.3754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Shuyun Bi
- College of ChemistryChangchun Normal University Changchun China
| | - Xiaoyue Sun
- College of ChemistryChangchun Normal University Changchun China
| | - Xu Li
- College of ChemistryChangchun Normal University Changchun China
| | - Rui Zhao
- College of ChemistryChangchun Normal University Changchun China
| | - Di Shao
- College of ChemistryChangchun Normal University Changchun China
| |
Collapse
|
17
|
Gunalan S, Somarathinam K, Bhattacharya J, Srinivasan S, Jaimohan SM, Manoharan R, Ramachandran S, Kanagaraj S, Kothandan G. Understanding the dual mechanism of bioactive peptides targeting the enzymes involved in Renin Angiotensin System (RAS): An in-silico approach. J Biomol Struct Dyn 2019; 38:5044-5061. [PMID: 31755358 DOI: 10.1080/07391102.2019.1695668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding the dual inhibition mechanism of food derivative peptides targeting the enzymes (Renin and Angiotensin Converting enzyme) in the Renin Angiotensin System. Two peptides RALP and WYT were reported to possess antihypertensive activity targeting both renin and ACE, and we have used molecular docking and molecular dynamics simulation, in order to understand the underlying mechanism. The selected peptides (RALP and WYT) from the series of peptides reported were docked to renin and ACE and two binding modes were selected based on the binding energy, interaction pattern and clusters of docking simulation. The enzyme-peptide complexes for renin and ACE (Renin/RALP1,2; ACE/RALP1,2; Renin/WYT1,2 and ACE/WYT1,2) were subjected to molecular dynamics simulation. Our results identified that the peptides inhibiting renin, tends to move out of the binding pockets (S1' S2') which is critical for potent binding and occupies the less important pockets (S4 and S3). This could possibly be the reason for its low potency. Whereas, the same peptides targeting ACE, tends to be intact in the pocket because of the metal ion coordination and there is an ample room to improve on its efficacy. Our results further pave way for the biochemist, medicinal chemist to design dual peptides targeting the RAS effectively. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Seshan Gunalan
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Kanagasabai Somarathinam
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Jayanti Bhattacharya
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Shantkriti Srinivasan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnakoil, India
| | - S M Jaimohan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, India
| | - Ravi Manoharan
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai, India
| | - Sowmya Ramachandran
- Medical Biotechnology Lab, Department of Biotechnology, Faculity of Natural Science, Ramanujam Block, Jamia Millia Islamia (Central University), New Delhi, India
| | - Sekar Kanagaraj
- Laboratory for Structural Biology and Biocomputing, Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Gugan Kothandan
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| |
Collapse
|
18
|
Bao W, Liu R, Xia G, Wang F, Chen B. Applications of daunorubicin-loaded PLGA-PLL-PEG-Tf nanoparticles in hematologic malignancies: an in vitro and in vivo evaluation. Drug Des Devel Ther 2019; 13:1107-1115. [PMID: 31040647 PMCID: PMC6459145 DOI: 10.2147/dddt.s195832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background With the development of drug delivery, novel tools and technological approaches have captured the attention of researchers in recent years. Several target drug delivery systems (DDSs) including nanoparticles (NPs) have been developed as an important strategy to deliver classical medicine. Objective The objective of this study was to evaluate the application of novel daunorubicin (DNR)-loaded poly(lactic-co-glycolic acid)-poly-l-lysine-polyethylene glycol-transferrin (Tf) nanoparticles (DNR-loaded NPs) in hematologic malignancies in vitro and in vivo. Materials and methods DNR-loaded NPs were prepared by the modified double-emulsion solvent evaporation/diffusion method, and its microscopic form was observed under scanning electron microscope. Intracellular distribution of DNR was directly detected by fluorescence microscopy. After establishment of a tumor xenograft model by injecting K562 cells into the left leg of nude mice, the therapeutic effect of the DNR-loaded NPs on the growth of tumors was measured by calculating the tumor size, and the relative expression of Caspase-3 protein was detected by immunohistochemical staining. Furthermore, intracellular concentration of DNR and the extent of cell apoptosis in primary leukemia cells were quantified by flow cytometry. Results DNR-loaded NPs had a spherical shape of about 180 nm in diameter. DNR-loaded NP group showed a significant enhancement of cellular uptake in K562 cells compared with DNR group. Tumor inhibition rate was higher in DNR-loaded NP group in comparison with DNR group, and the relative expression of Caspase-3 protein was upregulated in DNR-loaded NP group compared with DNR group. Furthermore, DNR-loaded NPs obviously increased intracellular concentration of DNR in primary leukemia cells compared with DNR group, but there was no significant difference in primary cell apoptosis between the two groups. These findings suggest that the novel NP DDS can enhance the performance of conventional antitumor drugs and may be suitable for further application in the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Wen Bao
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, People's Republic of China,
| | - Ran Liu
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, People's Republic of China,
| | - Guohua Xia
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, People's Republic of China,
| | - Fei Wang
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, People's Republic of China,
| | - Baoan Chen
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, People's Republic of China,
| |
Collapse
|
19
|
Mahaki H, Tanzadehpanah H, Abou-Zied OK, Moghadam NH, Bahmani A, Salehzadeh S, Dastan D, Saidijam M. Cytotoxicity and antioxidant activity of Kamolonol acetate from Ferula pseudalliacea, and studying its interactions with calf thymus DNA (ct-DNA) and human serum albumin (HSA) by spectroscopic and molecular docking techniques. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Hosseinpour Moghadam N, Salehzadeh S, Rakhtshah J, Hosseinpour Moghadam A, Tanzadehpanah H, Saidijam M. Preparation of a highly stable drug carrier by efficient immobilization of human serum albumin (HSA) on drug-loaded magnetic iron oxide nanoparticles. Int J Biol Macromol 2019; 125:931-940. [DOI: 10.1016/j.ijbiomac.2018.12.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/27/2018] [Accepted: 12/16/2018] [Indexed: 12/12/2022]
|