1
|
Zvereva M. The Use of AgNP-Containing Nanocomposites Based on Galactomannan and κ-Carrageenan for the Creation of Hydrogels with Antiradical Activity. Gels 2024; 10:800. [PMID: 39727558 DOI: 10.3390/gels10120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Series of composites containing 2.5-17.0% Ag and consisting of spherical silver nanoparticles with sizes ranging from 5.1 to 18.3 nm and from 6.4 to 21.8 nm for GM- and κ-CG-based composites, respectively, were prepared using the reducing and stabilizing ability of the natural polysaccharides galactomannan (GM) and κ-carrageenan (κ-CG). The antiradical activity of the obtained composites was evaluated using the decolorization of ABTS+· solution. It was found that the IC50 value of a composite's aqueous solution depends on the type of stabilizing ligand, the amount of inorganic phases, and the average size of AgNPs, and varies in the range of 0.015-0.08 mg·mL-1 and 0.03-0.59 mg·mL-1 for GM-AgNPs - κ-CG-AgNPs composites, respectively. GM-AgNPs - κ-CG-AgNPs hydrogels were successfully prepared and characterized on the basis of composites containing 2.5% Ag (demonstrating the most pronounced antiradical activity in terms of IC50 values per mole amount of Ag). It was found that the optimal ratio of composites that provided the best water-holding capacity and prolonged complete release of AgNPs from the hydrogel composition was 1:1. The influence of Ca2+ cations on the co-gel formation of the GM-AgNPs - κ-CG-AgNPs system, as well as the expression of their water-holding capacity and the rate of AgNPs release from the hydrogel carrier, was evaluated.
Collapse
Affiliation(s)
- Marina Zvereva
- A.E. Favorsky Irkutsk Institute of Chemistry, 664033 Irkutsk, Russia
| |
Collapse
|
2
|
Eze FN, Eze RC, Okpara KE, Adekoya AE, Kalu HN. Design and development of locust bean gum-endowed/Phyllanthus reticulatus anthocyanin- functionalized biogenic gold nanosystem for enhanced antioxidative and anticancer chemotherapy. Int J Biol Macromol 2024; 275:133687. [PMID: 38972650 DOI: 10.1016/j.ijbiomac.2024.133687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Herein, the design and fabrication of an anticancer nanoplatform (LBG/PRA-NG) based on locust bean gum-stabilized nanogold and functionalized with Phyllanthus reticulatus anthocyanins was described. LBG/PRA-NG was prepared in an eco-friendly, one-pot approach at room temperature, mediated by the anthocyanins and gum as bio-reductant and stabilizer, respectively. The nanostructure was elaborately characterized by FESEM, TEM, UV-visible, DLS, Zeta potential, FTIR, XRD, TGA/DTG, and XPS analysis. Its anticancer attributes were examined based on cytotoxicity on MCF-7 and MDA-MB-231 breast cancer cell lines, as well as the generation of intracellular reactive oxygen species. The results revealed the successful formation of a homogenous and highly stable nanocomposite (LBG/PRA-NG), with quasi-spherical shape, small size (14.73 nm), Zeta potential and PDI values of -58.30 mV and 0.237, respectively. The presence of a plasmonic peak at 525 nm was indicative of AuNPs. Compared to the galactomannan and anthocyanin, LBG/PRA-NG exhibited superior antioxidative properties with IC50 values of 35.44 μg/mL against DPPH and 24.55 μg/mL against ABTS+. Notably, LBG/PRA-NG also demonstrated enhanced anticancer properties relative to LBG and anthocyanins, with IC50 values of 16.17 μg/mL and 25.06 μg/mL against MCF-7 and MDA-MB-231 cells. Meanwhile, the normal cells (HEK-293 and L929) resisted the innocuous effects of LBG/PRA-NG. Furthermore, treatment of breast cancer cells with LBG/PRA-NG drastically elevated the intracellular ROS levels. This suggested that the anticancer activity of LBG/PRA-NG may be mediated via amplification of ROS/oxidative stress-induced apoptosis. Altogether, these findings indicate the remarkable potential of LBG/PRA-NC in the development of anticancer therapy.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- College of Agricultural and Natural Sciences, Joseph Ayo Babalola University, Ikeji-Arakeji, Osun State, Nigeria.
| | - Roseline Chika Eze
- Faculty of Environment and Resource Studies, Mahidol University, Salaya District, Nakhon Pathom 73170, Thailand.
| | - Kingsley Ezechukwu Okpara
- Institute of Geosciences and Environmental Management, Rivers State University, P.M.B. 5080 Port Harcourt, Nigeria
| | - Ademola Ezekiel Adekoya
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, 612 00 Brno-Královo Pole, Czechia.
| | - Helen Nwaocha Kalu
- College of Agricultural Economics, Rural Sociology and Extension, Michael Okpara University of Agriculture Umudike, P.M.B. 7267 Umuahia, Abia State, Nigeria
| |
Collapse
|
3
|
M G A, K S A, B S U, P L R, H P S, J S, Joseph MM, T T S. HER2 siRNA Facilitated Gene Silencing Coupled with Doxorubicin Delivery: A Dual Responsive Nanoplatform Abrogates Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25710-25726. [PMID: 38739808 DOI: 10.1021/acsami.4c02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The present study investigated the concurrent delivery of antineoplastic drug, doxorubicin, and HER2 siRNA through a targeted theranostic metallic gold nanoparticle designed using polysaccharide, PSP001. The as-synthesized HsiRNA@PGD NPs were characterized in terms of structural, functional, physicochemical, and biological properties. HsiRNA@PGD NPs exposed adequate hydrodynamic size, considerable ζ potential, and excellent drug/siRNA loading and encapsulation efficiency. Meticulous exploration of the biocompatible dual-targeted nanoconjugate exhibited an appealing biocompatibility and pH-sensitive cargo release kinetics, indicating its safety for use in clinics. HsiRNA@PGD NPs deciphered competent cancer cell internalization, enhanced cytotoxicity mediated via the induction of apoptosis, and excellent downregulation of the overexpressing target HER2 gene. Further in vivo explorations in the SKBR3 xenograft breast tumor model revealed the appealing tumor reduction properties, selective accumulation in the tumor site followed by significant suppression of the HER2 gene which contributed to the exclusive abrogation of breast tumor mass by the HsiRNA@PGD NPs. Compared to free drugs or the monotherapy constructs, the dual delivery approach produced a synergistic suppression of breast tumors both in vitro and in vivo. Hence the drawings from these findings implicate that the as-synthesized HsiRNA@PGD NPs could offer a promising platform for chemo-RNAi combinational breast cancer therapy.
Collapse
Affiliation(s)
- Archana M G
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| | - Anusree K S
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| | - Unnikrishnan B S
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
- Centre for Nanotechnology, Indian Institute of Technology (IIT), Roorkee 247667, Uttarakhand, India
| | - Reshma P L
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| | - Syama H P
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| | - Sreekutty J
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| | - Manu M Joseph
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Department of Life Sciences, CHRIST University, Banglore 560029, India
| | - Sreelekha T T
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| |
Collapse
|
4
|
Eze FN, Jayeoye TJ, Eze RC. Construction, characterization and application of locust bean gum/Phyllanthus reticulatus anthocyanin - based plasmonic silver nanocomposite for sensitive detection of ferrous ions. ENVIRONMENTAL RESEARCH 2023; 228:115864. [PMID: 37031721 DOI: 10.1016/j.envres.2023.115864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
Iron is a transition metal of tremendous eco-physiological significance. This work aimed at constructing a simple plasmonic Ag-nanocomposite (LBG/PRAg-NC) based on locust bean gum and Phyllanthus reticulatus anthocyanin in a sustainable manner for the optical detection of ferrous ions (Fe2+) in aqueous solution. LBG/PRAg-NC was prepared via a green chemistry route and thoroughly characterized for its physico-chemical and plasmonic attributes. Successful synthesis of LBG/PRAg-NC under room temperature with Phyllanthus reticulatus anthocyanin as reductant and locust bean gum as stabilizer was accomplished within 15 min. LBG/PRAg-NC exhibited small size (∼8.04 nm), spherically shaped nanosilver, with good colloidal dispersion, stability and prominent SPR absorption peak at 420 nm. XPS analysis revealed the existence of both Ag0 and Ag + species embedded in the biopolymer support. Furthermore, LBG/PRAg-NC was highly selective for Fe2+ as opposed to other interferents including Fe3+. The presence of Fe2+ engendered a redox oxidation of the analyte by the Ag+ species, prompting a rapid, concentration dependent increase in color and SPR absorption band intensity of LBG/PRAg-NC colloidal solution. In aqueous solution, the probe displayed a good linear range for Fe2+ (0.1-100 μM), and a low detection limit (LOD of 0.38 μM). The obtained detection limit is much lower than the guideline limit of Fe2+ content in drinking water, ∼5 μM. Additionally, the probe was successfully applied in determination of Fe2+ in aqueous solutions of apple juice, iron supplement tablet, and tap water, with commendable analytical performances. Therefore, our research findings demonstrate a facile, efficacious, cost-effective, and eco-friendly approach for the sustainable synthesis of plasmonic Ag-nanocomposites based solely on locust bean gum and Phyllanthus reticulatus anthocyanin. Importantly, these results validate the capacity of plasmonic Ag-nanocomposite constructed via green chemistry route as a simple, rapid, and selective probe for effective monitoring of trace amounts of Fe2+ in aqueous environment.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery Systems Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkla, Thailand.
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Roseline Chika Eze
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
5
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
6
|
Wang R, Li R, Zheng P, Yang Z, Qian C, Wang Z, Qian S. Silver Nanoparticles Modified with Polygonatum sibiricum Polysaccharide Improve Biocompatibility and Infected Wound Bacteriostasis. J Microbiol 2023:10.1007/s12275-023-00042-8. [PMID: 37052796 DOI: 10.1007/s12275-023-00042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023]
Abstract
Silver nanoparticles (AgNPs) exhibit strong antibacterial activity and do not easily induce drug resistance; however, the poor stability and biocompatibility in solution limit their widespread application. In this study, AgNPs were modified with Polygonatum sibiricum Polysaccharide (PSP) to synthesize PSP@AgNPs with good stability, biocompatibility, and antibacterial activity. When PSP@AgNP synthesis was performed under a reaction time of 70 min, a reaction temperature of 35 °C, and an AgNO3-to-PSP volume ratio of 1:1, the synthesized PSP@AgNPs were more regular and uniform than AgNPs, and their particle size was around 10 nm. PSP@AgNPs exhibited lower cytotoxicity and hemolysis, and stronger bacteriostatic activity. PSP@AgNPs damage the integrity and internal structure of cells, resulting in the leakage of intracellular nucleic acids and proteins. The rate of cell membrane damage in Escherichia coli and Staphylococcus aureus treated with PSP@AgNPs increased by 38.52% and 43.75%, respectively, compared with that of AgNPs. PSP@AgNPs inhibit the activities of key enzymes related to antioxidant, energy and substance metabolism in cells. The inhibitory effects on the activities of superoxide dismutase (SOD), catalase (CAT), adenosine triphosphate enzyme (ATPase), malate dehydrogenase (MDH), and succinate dehydrogenase (SDH) in E. coli and S. aureus cells were significantly higher than those of AgNPs. In addition, compared with AgNPs, PSP@AgNPs promote faster healing of infected wounds. Therefore, PSP@AgNPs represent potential antibacterial agents against wound infections.
Collapse
Affiliation(s)
- Ruonan Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China
| | - Rongyu Li
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, People's Republic of China
| | - Peng Zheng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China
| | - Zicheng Yang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China
| | - Cheng Qian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China
| | - Zhou Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China
| | - Senhe Qian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China.
| |
Collapse
|
7
|
Polysaccharide guided tumor delivery of therapeutics: A bio-fabricated galactomannan-gold nanosystem for augmented cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
HP S, BS U, J S, MG A, Joseph MM, GU P, KS A, PL R, R S, TT S. Bio fabrication of galactomannan capped silver nanoparticles to apprehend Ehrlich ascites carcinoma solid tumor in mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Das M, Joshi A, Devkar R, Seshadri S, Thakore S. Tumor homing dextran and curcumin derived amphiphilic functional polymer self-assembling to tubustecan nanoarchitectures: A strategy of adorning the golden spice (curcumin) for taming the red devil (Dox). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Galactomannan armed superparamagnetic iron oxide nanoparticles as a folate receptor targeted multi-functional theranostic agent in the management of cancer. Int J Biol Macromol 2022; 219:740-753. [PMID: 35907463 DOI: 10.1016/j.ijbiomac.2022.07.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) represent a versatile class of theranostics with profound applications in biomedicine. An eco-friendly modification of SPIONs was attempted with a 110 kDa galactomannan (PSP001) isolated from the fruit rind of Punica granatum. The PSP001 appended SPIONs favor unique advantages including tumor-targeted accumulation and improved biocompatibility. The antineoplastic agent methotrexate (MTX) was covalently attached with the galactomannan in the SPIONs to yield PSP-IO NPs that demonstrated a reduction-sensitive drug release kinetics favoring MTX accumulation selectively in the tumor cells. Folate receptor (FR) targeted cancer cell uptake followed by the stimuli-responsive release of the payload favored improved biocompatibility and lack of toxicity in BALB/c mice. Superior tumor reduction capacity with marked survival benefits was observed in Ehrlich ascites carcinoma (EAC) bearing solid tumor mice. Phantom imaging of the carrier (PSP-IO) and the drug-loaded (PSP-IO-MTX NPs) nano-constructs generated an r2 relaxivity of 335.3 mM-1 S-1 and 333.79 mM-1 S-1 respectively indicating the remarkable contrast in magnetic resonance imaging (MRI) which was confirmed in syngraft and xenograft murine models. It is worth mentioning that PSP-IO-MTX NPs with a facile fabrication process offered an affordable nano-theranostic agent for targeted concurrent MR imaging and FR-mediated targeted tumor therapy favoring bed-side applications.
Collapse
|
11
|
Jing Y, Cheng W, Ma Y, Zhang Y, Li M, Zheng Y, Zhang D, Wu L. Structural Characterization, Antioxidant and Antibacterial Activities of a Novel Polysaccharide From Zingiber officinale and Its Application in Synthesis of Silver Nanoparticles. Front Nutr 2022; 9:917094. [PMID: 35719161 PMCID: PMC9204034 DOI: 10.3389/fnut.2022.917094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/13/2022] [Indexed: 01/02/2023] Open
Abstract
A novel polysaccharide (ZOP) was extracted from Zingiber officinale with ultrasonic assisted extraction method. ZOP monosaccharide composition and mole ratio is GlcA: GalA: Glc: Gal: Ara = 1.97:1.15:94.33:1.48:1.07. Then, the particle size of ZOP-NPs prepared by nano-precipitation method was 230.5 nm, and the polydispersity index (PDI) was 0.260. Using ZOP and ZOP-NPs as reductants and stabilizers, ZOP-AgNPs and ZOP-NPs-AgNPs were prepared. They were characterized by ultraviolet-visible spectrophotometer (UV-Vis), fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD). The silver chelation rate of polysaccharide silver nanoparticles (AgNPs) ranged from 68.70 to 82.12%. ZOP-AgNPs (0.5%, w/v; 1%, w/v) and ZOP-NPs-AgNPs (0.5%, w/v; 1%, w/v) exhibited a narrow particle size distribution of 31.1, 34.6, 25.1 and 27.6 nm, respectively. And the zeta potential values of them were−19.4,−21.6,−19.7,−23.8mV, respectively. The antioxidant and antibacterial activities of ZOP-NPs-AgNPs were superior to those of ZOP, ZOP-NPs and ZOP-AgNPs.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Wenjing Cheng
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yunfeng Ma
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yameng Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Mingsong Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Lanfang Wu
| |
Collapse
|
12
|
Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, Hansbro PM, Chellappan DK, Singh SK. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Pharmacotherapy 2022; 150:112951. [PMID: 35447546 DOI: 10.1016/j.biopha.2022.112951] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
The current advancements in nanotechnology are as an outcome of the development of engineered nanoparticles. Various metallic nanoparticles have been extensively explored for various biomedical applications. They attract lot of attention in biomedical field due to their significant inert nature, and nanoscale structures, with size similar to many biological molecules. Their intrinsic characteristics which include electronic, optical, physicochemical and, surface plasmon resonance, that can be changed by altering certain particle characteristics such as size, shape, environment, aspect ratio, ease of synthesis and functionalization properties have led to numerous applications in various fields of biomedicine. These include targeted drug delivery, sensing, photothermal and photodynamic therapy, imaging, as well as the modulation of two or three applications. The current article also discusses about the various properties of metallic nanoparticles and their applications in cancer imaging and therapeutics. The associated bottlenecks related to their clinical translation are also discussed.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | | | - Fayez Ghadeer Alanazi
- Lemon Pharmacies, Eastern region, Kingdom of Saudi Arabia, Hafr Al Batin 39957, Saudi Arabia
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
13
|
Eze FN, Ovatlarnporn C, Jayeoye TJ, Nalinbenjapun S, Sripetthong S. One-pot biofabrication and characterization of Tara gum/Riceberry phenolics-silver nanogel: A cytocompatible and green nanoplatform with multifaceted biological applications. Int J Biol Macromol 2022; 206:521-533. [PMID: 35231534 DOI: 10.1016/j.ijbiomac.2022.02.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/05/2022]
Abstract
This work proposed a one-pot green route for the development of a biocompatible Tara gum-Riceberry phenolics‑silver nanosphere hybrid nanocomposite (TG/RiPE-SNG) with manifold biological potentialities. The reaction system comprised of AgNO3 as nanosilver precursor, Riceberry phenolic extract as the green in situ reductant, and Tara gum as stabilizing and anchoring agent. TG/RiPE-SNG was extensively characterized using UV-vis spectroscopy, FTIR, RAMAN, TEM, FESEM, EDX, DLS/zeta potential, XRD, and TGA analyses. Small, stable, spherical, well-dispersed SNP with an average particle size of 13.01 nm and λmax of 421 nm were synthesized in situ, and uniformly distributed within the gel-like TG/RiPE composite. The prepared nanocomposite demonstrated superior antibacterial properties (MIC of 12.5 μg/mL) against S. aureus and S. epidermidis compared to the gum or extract. Additionally, TG/RiPE-SNG exhibited strong light barrier, tyrosinase inhibitory and antioxidant functionalities. TG/RiPE-SNG also exhibited high stability at different pH and was more thermally stable relative to the plain TG/RiPE composite. Furthermore, TG/RiPE-SNG showed good biocompatibility towards mouse L929 fibroblasts and rat erythrocytes. The obtained findings revealed a simple, benign, and inexpensive approach using only natural ingredients for the preparation of gum-based biopolymer-nanosilver hybrid nanocomposite and underscored the strong attributes of TG/RiPE-SNP as a nanomaterial with desirable biomedical potentials.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Chitchamai Ovatlarnporn
- Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Physical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike (AE-FUNAI), P.M.B. 1010, Abakaliki, Ebonyi State, Nigeria
| | - Sirinporn Nalinbenjapun
- Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sasikarn Sripetthong
- Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
14
|
Wong TL, Strandberg KR, Croley CR, Fraser SE, Nagulapalli Venkata KC, Fimognari C, Sethi G, Bishayee A. Pomegranate bioactive constituents target multiple oncogenic and oncosuppressive signaling for cancer prevention and intervention. Semin Cancer Biol 2021; 73:265-293. [DOI: 10.1016/j.semcancer.2021.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/01/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
|
15
|
Shahrajabian MH, Sun W, Marmitt DJ, Cheng Q. Diosgenin and galactomannans, natural products in the pharmaceutical sciences. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00288-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diosgenin is an isospirostane derivative, which is a steroidal sapogenin and the product of acids or enzymes hydrolysis process of dioscin and protodioscin. Galactomannans are heteropolysaccharides composed of D-mannose and D-galactose, which are major sources of locust bean, guar, tara and fenugreek.
Methods
Literature survey was accomplished using multiple databases including PubMed, Science Direct, ISI web of knowledge and Google Scholar.
Results
Four major sources of seed galactomannans are locust bean (Ceratonia siliqua), guar (Cyamopsis tetragonoloba), tara (Caesalpinia spinosa Kuntze), and fenugreek (T.foenum-graecum). Diosgenin has effect on immune system, lipid system, inflammatory and reproductive systems, caner, metabolic process, blood system, blood glucose and calcium regulation. The most important pharmacological benefits of galactomannan are antidiabetic, antioxidant, anticancer, anticholinesterase, antiviral activities, and appropriate for dengue virus and gastric diseases.
Conclusions
Considering the importance of diosgenin and galactomannans, the obtained findings suggest potential of diosgenin and galactomannans as natural products in pharmaceutical industries.
Collapse
|
16
|
Jing Y, Li J, Zhang Y, Zhang R, Zheng Y, Hu B, Wu L, Zhang D. Structural characterization and biological activities of a novel polysaccharide from Glehnia littoralis and its application in preparation of nano-silver. Int J Biol Macromol 2021; 183:1317-1326. [PMID: 33933541 DOI: 10.1016/j.ijbiomac.2021.04.178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 01/20/2023]
Abstract
A novel polysaccharide (GLP) with a molecular weight of 1.37 × 105 Da was purified from the roots of G. littoralis. Using monosaccharide composition, methylation analysis, GC-MS, 1D and 2D NMR, the structure of GLP was determined to be a 1 → 4)-α-D-Glcp glycoside linkage, while the terminal group of 1→)-α-D-Glcp was bonded to the main chain via O-6. Then, GLP-NPs were prepared by nano-precipitation method, the particle size of GLP-NPs was 288.4 nm and PDI was 0.340. GLP-NPs-AgNPs were prepared using GLP-NPs as reducing agent. GLP-NPs-AgNPs were characterized by ultraviolet-visible spectrophotometer (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM) and X-ray diffraction (XRD). The yield of GLP-NPs-AgNPs was 38.77%, the particle size was 12.5 nm and the chelation rate of silver nanoparticles with polysaccharides was 67.5%. GLP-NPs-AgNPs had better antioxidant and antibacterial activities than GLP and GLP-NPs. In the present work, a simple and eco-friendly approach for the synthesis of silver nanoparticles (AgNPs) using G. littoralis polysaccharides nanoparticles (GLP-NPs) as reducing agent.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Jiaying Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yuwei Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Ruijuan Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Beibei Hu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China.
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China.
| |
Collapse
|
17
|
Morais M, Teixeira AL, Dias F, Machado V, Medeiros R, Prior JAV. Cytotoxic Effect of Silver Nanoparticles Synthesized by Green Methods in Cancer. J Med Chem 2020; 63:14308-14335. [PMID: 33231444 DOI: 10.1021/acs.jmedchem.0c01055] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a major public health problem, but despite the several treatment approaches available, patients develop resistance in short time periods, making overcoming resistance or finding more efficient treatments an imperative challenge. Silver nanoparticles (AgNPs) have been described as an alternative option due to their physicochemical properties. The scope of this review was to systematize the available scientific information concerning these characteristics in AgNPs synthesized according to green chemistry's recommendations as well as their cytotoxicity in different cancer models. This is the first paper analyzing, correlating, and summarizing AgNPs' main parameters that modulate their cellular effect, including size, shape, capping, and surface plasmon resonance profile, dose range, and exposure time. It highlights the strong dependence of AgNPs' cytotoxic effects on their characteristics and tumor model, making evident the strong need of standardization and full characterization. AgNPs' application in oncology research is a new, open, and promising field and needs additional studies.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,Research Department, LPCC-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,Research Department, LPCC-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Praça de 9 de Abril 349, 4249-004 Porto, Portugal
| | - João A V Prior
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Characterization of biogenically synthesized silver nanoparticles for therapeutic applications and enzyme nanocomplex generation. 3 Biotech 2020; 10:462. [PMID: 33088659 DOI: 10.1007/s13205-020-02450-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
The present study describes green synthesis of silver nanoparticles (AgNPs) and inulin hydrolyzing enzyme nanocomplexes (ENC) using Azadirachta indica (Ai) and Punica granatum (Pg) leaf extracts. Surface topology and physico-chemical characteristics of AgNPs were studied using surface plasmon resonance (SPR), FTIR, SEM, AFM and EDX analyses. Particle size analysis using dynamic light scattering and AFM studies revealed that Ai-AgNPs (76.4 nm) were spherical in shape having central bigger nano-regime with smaller surroundings while Pg-AgNPs (72.1 nm) and ENCs (Inulinase-Pg-AgNPs ~ 145 nm) were spherical particles having smooth surfaces. Pg-AgNPs exhibited significant photocatalysis of a thiazine dye, methylene blue. Both Ai- and Pg-AgNPs showed selective antibacterial action by inhibiting pathogenic Bacillus cereus, while the probiotic Lactobacillus strains remained unaffected. Ai-AgNPs showed potential anti-biofilm effect (30% viability) on B. cereus biofilms. Pg-AgNPs showed anti-cancer effect against human colon cancer cell lines (Caco-2) resulting in 40% cell death in 48 h. Enzymes (inulinase, L-asparaginase and glucose oxidase) were successfully immobilized onto nanoparticles together with the biogenic synthesis of AgNPs and recyclability of the Inulinase-Pg-AgNPs complex was demonstrated. The study elaborates characteristics of green synthesized nanoparticles and their potential applications as anti-cancer, antibacterial and antioxidant nano drugs that could be used in food and nutraceutical industries. Enzyme immobilization on AgNPs without any toxic cross-linker opens up newer possibilites in enzyme-nanocomplex research.
Collapse
|
19
|
Yadav H, Maiti S. Research progress in galactomannan-based nanomaterials: Synthesis and application. Int J Biol Macromol 2020; 163:2113-2126. [DOI: 10.1016/j.ijbiomac.2020.09.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
|
20
|
A biocompatible glycol-capped nano-delivery system with stimuli-responsive drug release kinetics abrogates cancer cell survival. Int J Biol Macromol 2020; 165:568-581. [PMID: 32961196 DOI: 10.1016/j.ijbiomac.2020.09.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
An eco-friendly polysaccharide (PSP001) isolated from the fruit rind of Punica granatum is a biodegradable polymer with immunostimulatory and anticancer properties. PSP001 was employed for the stimuli-responsive targeted delivery of antineoplastic agent doxorubicin (Dox) by the fabrication of Dox-holding PSP nanoparticles (DPN). The galactose moieties of PSP001 were occupied as an effective tumor-targeted motif against the over-expressed asialoglycoprotein and galectin receptors of cancers. DPN followed a pH-sensitive cargo release kinetics, competent cancer cell internalization profile, and appealing biocompatibility towards peripheral red blood cells. The selective execution of caspase-mediated programmed cell death by the DPN on cancer cells was confirmed with multiple apoptosis studies. Extensive toxicity profiling on BALB/c mice rules out any palpable signs of abnormality with DPN administration while bare Dox produced vital signs of toxicity. Studies on syngraft solid tumor-bearing mice uncovered the tumor homing nature of DPN with the subsequent release of the entrapped drug which further translated in the direction of a significant reduction in the tumor payload and enhanced survival benefits, thus offering a robust approach towards endurable cancer management.
Collapse
|
21
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
22
|
Polysaccharide enabled biogenic fabrication of pH sensing fluorescent gold nanoclusters as a biocompatible tumor imaging probe. Mikrochim Acta 2020; 187:246. [PMID: 32215724 DOI: 10.1007/s00604-020-4189-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
Abstract
A biocompatible natural polysaccharide (PSP001) isolated from the fruit rind of Punica granatum was conjugated with L-cysteine (Y) to be used as a skeleton for the fabrication of fluorescent gold nanoclusters (AuNCs) represented as PSP-Y-AuNCs. With an average size of ~ 6 nm, PSP-Y-AuNCs demonstrated high quantum yield (31%), with a pH-sensitive fluorescence emission behavior. An emission maximum of 520 nm was obtained at acidic pH, which was blue shifted with increasing pH. This feature provides the possibilities for accurate ratiometric pH imaging. The PSP-Y-AuNCs not only demonstrated excellent biocompatibility with cancer cells and isolated peripheral lymphocytes and red blood cells but also demonstrated to be an active molecular imaging probe with appealing cellular uptake efficiency. The investigations with BALB/c mice further confirmed the non-toxic nature and in vivo imaging potential of the AuNCs. Estimation of the bio-distribution on solid tumor bearing syngeneic murine models revealed a tumor-targeted enhanced fluorescence emission pattern which is attributed to the pH responsive fluorescence behavior and the acidic microenvironment of the tumor. These findings were further confirmed with an impressive tumor accumulation pattern displayed in a xenograft of human cancer bearing nude mice. On account of their impressive biocompatibility and photophysical features, PSP-Y-AuNCs can exploited for the real-time fluorescence imaging of cancer tissues. Graphical abstract Fluorescent gold nanoclusters (PSP-Y-AuNCs) fabricated using a non-toxic natural polysaccharide (PSP001) demonstrated pH sensitive fluorescence emission pattern. The increased fluorescence readouts at acidic conditions and excellent biocompatibility made the PSP-Y-AuNCs an appealing candidate for in vivo tumor imaging applications.
Collapse
|
23
|
Kumari R, Saini AK, Kumar A, Saini RV. Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. J Biol Inorg Chem 2019; 25:23-37. [PMID: 31641851 DOI: 10.1007/s00775-019-01729-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/11/2019] [Indexed: 12/09/2022]
Abstract
The current study was carried out to synthesize silver nanoparticles (AgNPs) via bioactive fraction of Pinus roxburghii needles using a simple, cost-effective, and eco-friendly green chemistry method. As butanol fraction of P. roxburghii exhibited maximum anticancer activity on lung adenocarcinomas (A549) as compared to other fractions therefore, butanol fraction was used to synthesize silver nanoparticles (PNb-AgNPs). The characterization studies by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED) confirmed the synthesis of the nanoparticles. The field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) analysis showed the spherical structure of nanoparticles with an average diameter of approximately 80 nm. Interestingly, PNb-AgNPs exhibited significant cytotoxicity towards both A549 and prostatic small cell carcinomas (PC-3) with IC50 values of 11.28 ± 1.28 μg/ml and 56.27 ± 1.17 μg/ml, respectively, while lacking toxicity against normal human breast epithelial cells (fR2) and human peripheral blood lymphocytes (PBL). Further, enhanced reactive oxygen species generation, mitochondrial depolarization, apoptotic cell population (sub-G1) and DNA fragmentation observed in cancer cells were treated with PNb-AgNPs. Apoptosis was demonstrated by caspase-3 and PARP-1 activation in PNb-AgNPs-pretreated cancer cells. These results strongly suggest that PNb-AgNPs are capable of inducing cancer cell death and could act as a therapeutic nanoformulation for cancer.
Collapse
Affiliation(s)
- Reena Kumari
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Adesh K Saini
- Faculty of Basic Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Amit Kumar
- Faculty of Basic Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Reena V Saini
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
24
|
|
25
|
Saravanakumar K, Chelliah R, MubarakAli D, Oh DH, Kathiresan K, Wang MH. Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Sci Rep 2019; 9:5787. [PMID: 30962456 PMCID: PMC6453883 DOI: 10.1038/s41598-019-42112-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Silver nanoparticles (AgNPs) are gaining importance in health and environment. This study synthesized AgNPs using the bark extract of a plant, Toxicodendron vernicifluum (Tv) as confirmed by a absorption peak at 420 nm corresponding to the Plasmon resonance of AgNPs. The AgNPs were spherical, oval-shaped with size range of 2–40 nm as evident by field emission transmission electron microscopy (FE-TEM) and particle size analysis (PSA). The particles formed were crystalline by the presence of (111), (220) and (200) planes, as revealed by X ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The presence of amine, amide, phenolic, and alcoholic aromatics derived from Tv extract was found to be capping and or reducing agents as evident by Fourier-transform infrared spectroscopy (FTIR) spectra. The Tv-AgNPs were observed to be biocompatible to chick embryonic and NIH3T3 cells at various concentrations. Interestingly, Tv-AgNPs at the concentration of 320 µg. mL−1 induced 82.5% of cell death in human lung cancer, A549 cells and further 95% of cell death with annexin V FITC/PI based apoptosis. The Tv-AgNPs selectively targeted and damaged the cancer cells through ROS generation. The Tv-AgNPs displayed minimal inhibitory concentration (MIC) of 8.12 µg.mL−1 and 18.14 µg.mL−1 against STEC and H. pylori respectively. This multi-potent property of Tv-AgNPs was due to shape and size specific property that facilitated easy penetration into the bacterial and cancer cells for targeted therapy.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Kandasamy Kathiresan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
26
|
Saravanakumar K, Wang MH. Biogenic silver embedded magnesium oxide nanoparticles induce the cytotoxicity in human prostate cancer cells. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
|