1
|
Grieco A, Boneta S, Gavira JA, Pey AL, Basu S, Orlans J, de Sanctis D, Medina M, Martin‐Garcia JM. Structural dynamics and functional cooperativity of human NQO1 by ambient temperature serial crystallography and simulations. Protein Sci 2024; 33:e4957. [PMID: 38501509 PMCID: PMC10949395 DOI: 10.1002/pro.4957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
The human NQO1 (hNQO1) is a flavin adenine nucleotide (FAD)-dependent oxidoreductase that catalyzes the two-electron reduction of quinones to hydroquinones, being essential for the antioxidant defense system, stabilization of tumor suppressors, and activation of quinone-based chemotherapeutics. Moreover, it is overexpressed in several tumors, which makes it an attractive cancer drug target. To decipher new structural insights into the flavin reductive half-reaction of the catalytic mechanism of hNQO1, we have carried serial crystallography experiments at new ID29 beamline of the ESRF to determine, to the best of our knowledge, the first structure of the hNQO1 in complex with NADH. We have also performed molecular dynamics simulations of free hNQO1 and in complex with NADH. This is the first structural evidence that the hNQO1 functional cooperativity is driven by structural communication between the active sites through long-range propagation of cooperative effects across the hNQO1 structure. Both structural results and MD simulations have supported that the binding of NADH significantly decreases protein dynamics and stabilizes hNQO1 especially at the dimer core and interface. Altogether, these results pave the way for future time-resolved studies, both at x-ray free-electron lasers and synchrotrons, of the dynamics of hNQO1 upon binding to NADH as well as during the FAD cofactor reductive half-reaction. This knowledge will allow us to reveal unprecedented structural information of the relevance of the dynamics during the catalytic function of hNQO1.
Collapse
Grants
- P18-RT-2413 Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- RTI2018-096246-B-I00 ERDF/Spanish Ministry of Science, Innovation and Universities-State Research Agency
- E35-23R Gobierno de Aragón
- B-BIO-84-UGR20 ERDF/Counseling of Economic Transformation, Industry, Knowledge and Universities
- CNS2022-135713 The European Union NextGenerationEU/PRTR
- 2019-T1/BMD-15552 Comunidad de Madrid
- MCIN/AEI/PID2022-136369NB-I00 MCIN/AEI/10.13039/501100011033/ERDF
- Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- ERDF/Spanish Ministry of Science, Innovation and Universities‐State Research Agency
- Gobierno de Aragón
- ERDF/Counseling of Economic Transformation, Industry, Knowledge and Universities
- Comunidad de Madrid
- MCIN/AEI/10.13039/501100011033/ERDF
Collapse
Affiliation(s)
- Alice Grieco
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC)MadridSpain
| | - Sergio Boneta
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
| | - José A. Gavira
- Laboratory of Crystallographic StudiesIACT (CSIC‐UGR)ArmillaSpain
| | - Angel L. Pey
- Departamento de Química FísicaUnidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de GranadaGranadaSpain
| | - Shibom Basu
- European Molecular Biology LaboratoryGrenobleFrance
| | | | | | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
| | - Jose Manuel Martin‐Garcia
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC)MadridSpain
| |
Collapse
|
2
|
Phenotypic Modulation of Cancer-Associated Antioxidant NQO1 Activity by Post-Translational Modifications and the Natural Diversity of the Human Genome. Antioxidants (Basel) 2023; 12:antiox12020379. [PMID: 36829939 PMCID: PMC9952366 DOI: 10.3390/antiox12020379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Human NAD(P)H:quinone oxidoreductase 1 (hNQO1) is a multifunctional and antioxidant stress protein whose expression is controlled by the Nrf2 signaling pathway. hNQO1 dysregulation is associated with cancer and neurological disorders. Recent works have shown that its activity is also modulated by different post-translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, and these may synergize with naturally-occurring and inactivating polymorphisms and mutations. Herein, I describe recent advances in the study of the effect of PTMs and genetic variations on the structure and function of hNQO1 and their relationship with disease development in different genetic backgrounds, as well as the physiological roles of these modifications. I pay particular attention to the long-range allosteric effects exerted by PTMs and natural variation on the multiple functions of hNQO1.
Collapse
|
3
|
Gil-Martínez J, Bernardo-Seisdedos G, Mato JM, Millet O. The use of pharmacological chaperones in rare diseases caused by reduced protein stability. Proteomics 2022; 22:e2200222. [PMID: 36205620 DOI: 10.1002/pmic.202200222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.
Collapse
Affiliation(s)
- Jon Gil-Martínez
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,ATLAS Molecular Pharma, Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Pacheco-Garcia JL, Cagiada M, Tienne-Matos K, Salido E, Lindorff-Larsen K, L. Pey A. Effect of naturally-occurring mutations on the stability and function of cancer-associated NQO1: Comparison of experiments and computation. Front Mol Biosci 2022; 9:1063620. [PMID: 36504709 PMCID: PMC9730889 DOI: 10.3389/fmolb.2022.1063620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Recent advances in DNA sequencing technologies are revealing a large individual variability of the human genome. Our capacity to establish genotype-phenotype correlations in such large-scale is, however, limited. This task is particularly challenging due to the multifunctional nature of many proteins. Here we describe an extensive analysis of the stability and function of naturally-occurring variants (found in the COSMIC and gnomAD databases) of the cancer-associated human NAD(P)H:quinone oxidoreductase 1 (NQO1). First, we performed in silico saturation mutagenesis studies (>5,000 substitutions) aimed to identify regions in NQO1 important for stability and function. We then experimentally characterized twenty-two naturally-occurring variants in terms of protein levels during bacterial expression, solubility, thermal stability, and coenzyme binding. These studies showed a good overall correlation between experimental analysis and computational predictions; also the magnitude of the effects of the substitutions are similarly distributed in variants from the COSMIC and gnomAD databases. Outliers in these experimental-computational genotype-phenotype correlations remain, and we discuss these on the grounds and limitations of our approaches. Our work represents a further step to characterize the mutational landscape of NQO1 in the human genome and may help to improve high-throughput in silico tools for genotype-phenotype correlations in this multifunctional protein associated with disease.
Collapse
Affiliation(s)
| | - Matteo Cagiada
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, La Laguna, TenerifeTenerife, Spain
| | - Kresten Lindorff-Larsen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Granada, Spain,*Correspondence: Angel L. Pey,
| |
Collapse
|
5
|
Pacheco-Garcia JL, Anoz-Carbonell E, Loginov DS, Vankova P, Salido E, Man P, Medina M, Palomino-Morales R, Pey AL. Different phenotypic outcome due to site-specific phosphorylation in the cancer-associated NQO1 enzyme studied by phosphomimetic mutations. Arch Biochem Biophys 2022; 729:109392. [PMID: 36096178 DOI: 10.1016/j.abb.2022.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Protein phosphorylation is a common phenomenon in human flavoproteins although the functional consequences of this site-specific modification are largely unknown. Here, we evaluated the effects of site-specific phosphorylation (using phosphomimetic mutations at sites S40, S82 and T128) on multiple functional aspects as well as in the structural stability of the antioxidant and disease-associated human flavoprotein NQO1 using biophysical and biochemical methods. In vitro biophysical studies revealed effects of phosphorylation at different sites such as decreased binding affinity for FAD and structural stability of its binding site (S82), conformational stability (S40 and S82) and reduced catalytic efficiency and functional cooperativity (T128). Local stability measurements by H/D exchange in different ligation states provided structural insight into these effects. Transfection of eukaryotic cells showed that phosphorylation at sites S40 and S82 may reduce steady-levels of NQO1 protein by enhanced proteasome-induced degradation. We show that site-specific phosphorylation of human NQO1 may cause pleiotropic and counterintuitive effects on this multifunctional protein with potential implications for its relationships with human disease. Our approach allows to establish relationships between site-specific phosphorylation, functional and structural stability effects in vitro and inside cells paving the way for more detailed analyses of phosphorylation at the flavoproteome scale.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Cellular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Dmitry S Loginov
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Pavla Vankova
- Institute of Biotechnology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Cellular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Rogelio Palomino-Morales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences and Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
6
|
Pacheco-Garcia JL, Loginov DS, Anoz-Carbonell E, Vankova P, Palomino-Morales R, Salido E, Man P, Medina M, Naganathan AN, Pey AL. Allosteric Communication in the Multifunctional and Redox NQO1 Protein Studied by Cavity-Making Mutations. Antioxidants (Basel) 2022; 11:antiox11061110. [PMID: 35740007 PMCID: PMC9219786 DOI: 10.3390/antiox11061110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Allosterism is a common phenomenon in protein biochemistry that allows rapid regulation of protein stability; dynamics and function. However, the mechanisms by which allosterism occurs (by mutations or post-translational modifications (PTMs)) may be complex, particularly due to long-range propagation of the perturbation across protein structures. In this work, we have investigated allosteric communication in the multifunctional, cancer-related and antioxidant protein NQO1 by mutating several fully buried leucine residues (L7, L10 and L30) to smaller residues (V, A and G) at sites in the N-terminal domain. In almost all cases, mutated residues were not close to the FAD or the active site. Mutations L→G strongly compromised conformational stability and solubility, and L30A and L30V also notably decreased solubility. The mutation L10A, closer to the FAD binding site, severely decreased FAD binding affinity (≈20 fold vs. WT) through long-range and context-dependent effects. Using a combination of experimental and computational analyses, we show that most of the effects are found in the apo state of the protein, in contrast to other common polymorphisms and PTMs previously characterized in NQO1. The integrated study presented here is a first step towards a detailed structural–functional mapping of the mutational landscape of NQO1, a multifunctional and redox signaling protein of high biomedical relevance.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (J.L.P.-G.); (A.L.P.); Tel.: +34-958243173 (A.L.P.)
| | - Dmitry S. Loginov
- Institute of Microbiology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic; (D.S.L.); (P.M.)
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-C.); (M.M.)
| | - Pavla Vankova
- Institute of Biotechnology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic;
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Rogelio Palomino-Morales
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias y Centro de Investigaciones Biomédicas (CIBM), Universidad de Granada, 18016 Granada, Spain;
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320 Tenerife, Spain;
| | - Petr Man
- Institute of Microbiology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic; (D.S.L.); (P.M.)
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-C.); (M.M.)
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (J.L.P.-G.); (A.L.P.); Tel.: +34-958243173 (A.L.P.)
| |
Collapse
|
7
|
Targeting HIF-1α Function in Cancer through the Chaperone Action of NQO1: Implications of Genetic Diversity of NQO1. J Pers Med 2022; 12:jpm12050747. [PMID: 35629169 PMCID: PMC9146583 DOI: 10.3390/jpm12050747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
HIF-1α is a master regulator of oxygen homeostasis involved in different stages of cancer development. Thus, HIF-1α inhibition represents an interesting target for anti-cancer therapy. It was recently shown that the HIF-1α interaction with NQO1 inhibits proteasomal degradation of the former, thus suggesting that targeting the stability and/or function of NQO1 could lead to the destabilization of HIF-1α as a therapeutic approach. Since the molecular interactions of NQO1 with HIF-1α are beginning to be unraveled, in this review we discuss: (1) Structure–function relationships of HIF-1α; (2) our current knowledge on the intracellular functions and stability of NQO1; (3) the pharmacological modulation of NQO1 by small ligands regarding function and stability; (4) the potential effects of genetic variability of NQO1 in HIF-1α levels and function; (5) the molecular determinants of NQO1 as a chaperone of many different proteins including cancer-associated factors such as HIF-1α, p53 and p73α. This knowledge is then further discussed in the context of potentially targeting the intracellular stability of HIF-1α by acting on its chaperone, NQO1. This could result in novel anti-cancer therapies, always considering that the substantial genetic variability in NQO1 would likely result in different phenotypic responses among individuals.
Collapse
|
8
|
Pacheco-Garcia JL, Anoz-Carbonell E, Vankova P, Kannan A, Palomino-Morales R, Mesa-Torres N, Salido E, Man P, Medina M, Naganathan AN, Pey AL. Structural basis of the pleiotropic and specific phenotypic consequences of missense mutations in the multifunctional NAD(P)H:quinone oxidoreductase 1 and their pharmacological rescue. Redox Biol 2021; 46:102112. [PMID: 34537677 PMCID: PMC8455868 DOI: 10.1016/j.redox.2021.102112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 10/31/2022] Open
Abstract
The multifunctional nature of human flavoproteins is critically linked to their ability to populate multiple conformational states. Ligand binding, post-translational modifications and disease-associated mutations can reshape this functional landscape, although the structure-function relationships of these effects are not well understood. Herein, we characterized the structural and functional consequences of two mutations (the cancer-associated P187S and the phosphomimetic S82D) on different ligation states which are relevant to flavin binding, intracellular stability and catalysis of the disease-associated NQO1 flavoprotein. We found that these mutations affected the stability locally and their effects propagated differently through the protein structure depending both on the nature of the mutation and the ligand bound, showing directional preference from the mutated site and leading to specific phenotypic manifestations in different functional traits (FAD binding, catalysis and inhibition, intracellular stability and pharmacological response to ligands). Our study thus supports that pleitropic effects of disease-causing mutations and phosphorylation events on human flavoproteins may be caused by long-range structural propagation of stability effects to different functional sites that depend on the ligation-state and site-specific perturbations. Our approach can be of general application to investigate these pleiotropic effects at the flavoproteome scale in the absence of high-resolution structural models.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Pavla Vankova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 2, 128 43, Czech Republic
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, 600036, India
| | - Rogelio Palomino-Morales
- Departmento de Bioquímica y Biología Molecular I, Facultad de Ciencias y Centro de Investigaciones Biomédicas (CIBM), Universidad de Granada, Granada, Spain
| | - Noel Mesa-Torres
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, 600036, India
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
9
|
Pacheco-García JL, Cano-Muñoz M, Sánchez-Ramos I, Salido E, Pey AL. Naturally-Occurring Rare Mutations Cause Mild to Catastrophic Effects in the Multifunctional and Cancer-Associated NQO1 Protein. J Pers Med 2020; 10:E207. [PMID: 33153185 PMCID: PMC7711955 DOI: 10.3390/jpm10040207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
The functional and pathological implications of the enormous genetic diversity of the human genome are mostly unknown, primarily due to our unability to predict pathogenicity in a high-throughput manner. In this work, we characterized the phenotypic consequences of eight naturally-occurring missense variants on the multifunctional and disease-associated NQO1 protein using biophysical and structural analyses on several protein traits. Mutations found in both exome-sequencing initiatives and in cancer cell lines cause mild to catastrophic effects on NQO1 stability and function. Importantly, some mutations perturb functional features located structurally far from the mutated site. These effects are well rationalized by considering the nature of the mutation, its location in protein structure and the local stability of its environment. Using a set of 22 experimentally characterized mutations in NQO1, we generated experimental scores for pathogenicity that correlate reasonably well with bioinformatic scores derived from a set of commonly used algorithms, although the latter fail to semiquantitatively predict the phenotypic alterations caused by a significant fraction of mutations individually. These results provide insight into the propagation of mutational effects on multifunctional proteins, the implementation of in silico approaches for establishing genotype-phenotype correlations and the molecular determinants underlying loss-of-function in genetic diseases.
Collapse
Affiliation(s)
- Juan Luis Pacheco-García
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.P.-G.); (M.C.-M.); (I.S.-R.)
| | - Mario Cano-Muñoz
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.P.-G.); (M.C.-M.); (I.S.-R.)
| | - Isabel Sánchez-Ramos
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.P.-G.); (M.C.-M.); (I.S.-R.)
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, 38320 Tenerife, Spain;
| | - Angel L. Pey
- Departamento de Química Física y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
10
|
Pey AL. Towards Accurate Genotype-Phenotype Correlations in the CYP2D6 Gene. J Pers Med 2020; 10:jpm10040158. [PMID: 33049937 PMCID: PMC7711719 DOI: 10.3390/jpm10040158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Establishing accurate and large-scale genotype-phenotype correlations and predictions of individual response to pharmacological treatments are two of the holy grails of Personalized Medicine. These tasks are challenging and require an integrated knowledge of the complex processes that regulate gene expression and, ultimately, protein functionality in vivo, the effects of mutations/polymorphisms and the different sources of interindividual phenotypic variability. A remarkable example of our advances in these challenging tasks is the highly polymorphic CYP2D6 gene, which encodes a cytochrome P450 enzyme involved in the metabolization of many of the most marketed drugs (including SARS-Cov-2 therapies such as hydroxychloroquine). Since the introduction of simple activity scores (AS) over 10 years ago, its ability to establish genotype-phenotype correlations on the drug metabolizing capacity of this enzyme in human population has provided lessons that will help to improve this type of score for this, and likely many other human genes and proteins. Multidisciplinary research emerges as the best approach to incorporate additional concepts to refine and improve such functional/activity scores for the CYP2D6 gene, as well as for many other human genes associated with simple and complex genetic diseases.
Collapse
Affiliation(s)
- Angel L Pey
- Departamento de Química Física, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
11
|
Anoz-Carbonell E, Timson DJ, Pey AL, Medina M. The Catalytic Cycle of the Antioxidant and Cancer-Associated Human NQO1 Enzyme: Hydride Transfer, Conformational Dynamics and Functional Cooperativity. Antioxidants (Basel) 2020; 9:E772. [PMID: 32825392 PMCID: PMC7554937 DOI: 10.3390/antiox9090772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Human NQO1 [NAD(H):quinone oxidoreductase 1] is a multi-functional and stress-inducible dimeric protein involved in the antioxidant defense, the activation of cancer prodrugs and the stabilization of oncosuppressors. Despite its roles in human diseases, such as cancer and neurological disorders, a detailed characterization of its enzymatic cycle is still lacking. In this work, we provide a comprehensive analysis of the NQO1 catalytic cycle using rapid mixing techniques, including multiwavelength and spectral deconvolution studies, kinetic modeling and temperature-dependent kinetic isotope effects (KIEs). Our results systematically support the existence of two pathways for hydride transfer throughout the NQO1 catalytic cycle, likely reflecting that the two active sites in the dimer catalyze two-electron reduction with different rates, consistent with the cooperative binding of inhibitors such as dicoumarol. This negative cooperativity in NQO1 redox activity represents a sort of half-of-sites activity. Analysis of KIEs and their temperature dependence also show significantly different contributions from quantum tunneling, structural dynamics and reorganizations to catalysis at the two active sites. Our work will improve our understanding of the effects of cancer-associated single amino acid variants and post-translational modifications in this protein of high relevance in cancer progression and treatment.
Collapse
Affiliation(s)
- Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences, The University of Brighton, Brighton BN2 4GJ, UK;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|
12
|
Vankova P, Salido E, Timson DJ, Man P, Pey AL. A Dynamic Core in Human NQO1 Controls the Functional and Stability Effects of Ligand Binding and Their Communication across the Enzyme Dimer. Biomolecules 2019; 9:biom9110728. [PMID: 31726777 PMCID: PMC6921033 DOI: 10.3390/biom9110728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023] Open
Abstract
Human NAD(P)H:quinone oxidoreductase 1 (NQO1) is a multi-functional protein whose alteration is associated with cancer, Parkinson's and Alzheimer´s diseases. NQO1 displays a remarkable functional chemistry, capable of binding different functional ligands that modulate its activity, stability and interaction with proteins and nucleic acids. Our understanding of this functional chemistry is limited by the difficulty of obtaining structural and dynamic information on many of these states. Herein, we have used hydrogen/deuterium exchange monitored by mass spectrometry (HDXMS) to investigate the structural dynamics of NQO1 in three ligation states: without ligands (NQO1apo), with FAD (NQO1holo) and with FAD and the inhibitor dicoumarol (NQO1dic). We show that NQO1apo has a minimally stable folded core holding the protein dimer, with FAD and dicoumarol binding sites populating binding non-competent conformations. Binding of FAD significantly decreases protein dynamics and stabilizes the FAD and dicoumarol binding sites as well as the monomer:monomer interface. Dicoumarol binding further stabilizes all three functional sites, a result not previously anticipated by available crystallographic models. Our work provides an experimental perspective into the communication of stability effects through the NQO1 dimer, which is valuable for understanding at the molecular level the effects of disease-associated variants, post-translational modifications and ligand binding cooperativity in NQO1.
Collapse
Affiliation(s)
- Pavla Vankova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic;
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de La Laguna, 38320 Tenerife, Spain;
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK;
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic;
- Correspondence: (P.M.); (A.L.P.)
| | - Angel L. Pey
- Department of Physical Chemistry and Unit of Excellence in Chemistry, University of Granada, Av. Fuentenueva s/n, E-18071 Granada, Spain
- Correspondence: (P.M.); (A.L.P.)
| |
Collapse
|
13
|
Beaver SK, Mesa-Torres N, Pey AL, Timson DJ. NQO1: A target for the treatment of cancer and neurological diseases, and a model to understand loss of function disease mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:663-676. [PMID: 31091472 DOI: 10.1016/j.bbapap.2019.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
NAD(P)H quinone oxidoreductase 1 (NQO1) is a multi-functional protein that catalyses the reduction of quinones (and other molecules), thus playing roles in xenobiotic detoxification and redox balance, and also has roles in stabilising apoptosis regulators such as p53. The structure and enzymology of NQO1 is well-characterised, showing a substituted enzyme mechanism in which NAD(P)H binds first and reduces an FAD cofactor in the active site, assisted by a charge relay system involving Tyr-155 and His-161. Protein dynamics play important role in physio-pathological aspects of this protein. NQO1 is a good target to treat cancer due to its overexpression in cancer cells. A polymorphic form of NQO1 (p.P187S) is associated with increased cancer risk and certain neurological disorders (such as multiple sclerosis and Alzheimer´s disease), possibly due to its roles in the antioxidant defence. p.P187S has greatly reduced FAD affinity and stability, due to destabilization of the flavin binding site and the C-terminal domain, which leading to reduced activity and enhanced degradation. Suppressor mutations partially restore the activity of p.P187S by local stabilization of these regions, and showing long-range allosteric communication within the protein. Consequently, the correction of NQO1 misfolding by pharmacological chaperones is a viable strategy, which may be useful to treat cancer and some neurological conditions, targeting structural spots linked to specific disease-mechanisms. Thus, NQO1 emerges as a good model to investigate loss of function mechanisms in genetic diseases as well as to improve strategies to discriminate between neutral and pathogenic variants in genome-wide sequencing studies.
Collapse
Affiliation(s)
- Sarah K Beaver
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Noel Mesa-Torres
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain
| | - Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain.
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
14
|
Anion-specific interaction with human NQO1 inhibits flavin binding. Int J Biol Macromol 2019; 126:1223-1233. [PMID: 30615965 DOI: 10.1016/j.ijbiomac.2019.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
Ion binding to biomacromolecules can modulate their activity and stability in vivo. It is of particular interest to understand the structural and energetic basis of anion binding to functional sites of biomacromolecules. In this work, binding of anions to the FAD binding pocket of human NAD(P)H:quinone oxidoreductase 1 (NQO1), a flavoprotein associated with cancer due to a common polymorphism causing a P187S amino acid substitution, was investigated. It is known that NQO1 stability in vivo is strongly modulated by binding of its flavin cofactor. Herein, binding and protein stability analyses were carried out to show that anion binding to the apo-state of NQO1 P187S inhibits FAD binding with increasing strength following the chaotropic behavior of anions. These inhibitory effects were significant for some anions even at low millimolar concentrations. Additional pH dependent analyses suggested that protonation of histidine residues in the FAD binding pocket was not critical for anion or flavin binding. Overall, this detailed biophysical analysis helps to understanding how anions modulate NQO1 functionality in vitro, thus allowing hypothesize that NQO1 stability in vivo could be modulated by differential anion binding and subsequent inhibition of FAD binding.
Collapse
|
15
|
NAD(P)H quinone oxidoreductase (NQO1): an enzyme which needs just enough mobility, in just the right places. Biosci Rep 2019; 39:BSR20180459. [PMID: 30518535 PMCID: PMC6328894 DOI: 10.1042/bsr20180459] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
NAD(P)H quinone oxidoreductase 1 (NQO1) catalyses the two electron reduction of quinones and a wide range of other organic compounds. Its physiological role is believed to be partly the reduction of free radical load in cells and the detoxification of xenobiotics. It also has non-enzymatic functions stabilising a number of cellular regulators including p53. Functionally, NQO1 is a homodimer with two active sites formed from residues from both polypeptide chains. Catalysis proceeds via a substituted enzyme mechanism involving a tightly bound FAD cofactor. Dicoumarol and some structurally related compounds act as competitive inhibitors of NQO1. There is some evidence for negative cooperativity in quinine oxidoreductases which is most likely to be mediated at least in part by alterations to the mobility of the protein. Human NQO1 is implicated in cancer. It is often over-expressed in cancer cells and as such is considered as a possible drug target. Interestingly, a common polymorphic form of human NQO1, p.P187S, is associated with an increased risk of several forms of cancer. This variant has much lower activity than the wild-type, primarily due to its substantially reduced affinity for FAD which results from lower stability. This lower stability results from inappropriate mobility of key parts of the protein. Thus, NQO1 relies on correct mobility for normal function, but inappropriate mobility results in dysfunction and may cause disease.
Collapse
|
16
|
Medina-Carmona E, Rizzuti B, Martín-Escolano R, Pacheco-García JL, Mesa-Torres N, Neira JL, Guzzi R, Pey AL. Phosphorylation compromises FAD binding and intracellular stability of wild-type and cancer-associated NQO1: Insights into flavo-proteome stability. Int J Biol Macromol 2018; 125:1275-1288. [PMID: 30243998 DOI: 10.1016/j.ijbiomac.2018.09.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
Over a quarter million of protein phosphorylation sites have been identified so far, although the effects of site-specific phosphorylation on protein function and stability, as well as their possible impact in the phenotypic manifestation in genetic diseases are vastly unknown. We investigated here the effects of phosphorylating S82 in human NADP(H):quinone oxidoreductase 1, a representative example of disease-associated flavoprotein in which protein stability is coupled to the intracellular flavin levels. Additionally, the cancer-associated P187S polymorphism causes inactivation and destabilization of the enzyme. By using extensive in vitro and in silico characterization of phosphomimetic S82D mutations, we showed that S82D locally affected the flavin binding site of the wild-type (WT) and P187S proteins thus altering flavin binding affinity, conformational stability and aggregation propensity. Consequently, the phosphomimetic S82D may destabilize the WT protein intracellularly by promoting the formation of the degradation-prone apo-protein. Noteworthy, WT and P187S proteins respond differently to the phosphomimetic mutation in terms of intracellular stability, further supporting differences in molecular recognition of these two variants by the proteasomal degradation pathway. We propose that phosphorylation could have critical consequences on stability and function of human flavoproteins, important for our understanding of genotype-phenotype relationships in their related genetic diseases.
Collapse
Affiliation(s)
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, 18071 Granada, Spain
| | | | - Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, 18071 Granada, Spain
| | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. del Ferrocarril s/n, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de los Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
| | - Rita Guzzi
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy; Molecular Biophysics Laboratory, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
17
|
Medina-Carmona E, Betancor-Fernández I, Santos J, Mesa-Torres N, Grottelli S, Batlle C, Naganathan AN, Oppici E, Cellini B, Ventura S, Salido E, Pey AL. Insight into the specificity and severity of pathogenic mechanisms associated with missense mutations through experimental and structural perturbation analyses. Hum Mol Genet 2018; 28:1-15. [DOI: 10.1093/hmg/ddy323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/09/2018] [Indexed: 12/21/2022] Open
Abstract
Abstract
Most pathogenic missense mutations cause specific molecular phenotypes through protein destabilization. However, how protein destabilization is manifested as a given molecular phenotype is not well understood. We develop here a structural and energetic approach to describe mutational effects on specific traits such as function, regulation, stability, subcellular targeting or aggregation propensity. This approach is tested using large-scale experimental and structural perturbation analyses in over thirty mutations in three different proteins (cancer-associated NQO1, transthyretin related with amyloidosis and AGT linked to primary hyperoxaluria type I) and comprising five very common pathogenic mechanisms (loss-of-function and gain-of-toxic function aggregation, enzyme inactivation, protein mistargeting and accelerated degradation). Our results revealed that the magnitude of destabilizing effects and, particularly, their propagation through the structure to promote disease-associated conformational states largely determine the severity and molecular mechanisms of disease-associated missense mutations. Modulation of the structural perturbation at a mutated site is also shown to cause switches between different molecular phenotypes. When very common disease-associated missense mutations were investigated, we also found that they were not among the most deleterious possible missense mutations at those sites, and required additional contributions from codon bias and effects of CpG sites to explain their high frequency in patients. Our work sheds light on the molecular basis of pathogenic mechanisms and genotype–phenotype relationships, with implications for discriminating between pathogenic and neutral changes within human genome variability from whole genome sequencing studies.
Collapse
Affiliation(s)
- Encarnación Medina-Carmona
- Department of Physical Chemistry, University of Granada, Granada, Spain
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, Perugia
| | - Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases, Hospital Universitario de Canarias, Tenerife, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Silvia Grottelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, Perugia
| | - Cristina Batlle
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, India
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, Verona, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, Perugia
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases, Hospital Universitario de Canarias, Tenerife, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain
| |
Collapse
|