1
|
Chakraborty A, Ghosh R, Barik S, Mohapatra SS, Biswas A, Chowdhuri S. Deciphering inhibitory activity of marine algae Ecklonia cava phlorotannins against SARS CoV-2 main protease: A coupled in-silico docking and molecular dynamics simulation study. Gene 2024; 926:148620. [PMID: 38821329 DOI: 10.1016/j.gene.2024.148620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The onset of COVID-19 due to the SARS CoV-2 virus has spurred an urgent need for potent therapeutics and vaccines to combat this global pandemic. The main protease (Mpro) of the virus, crucial in its replication, has become a focal point in developing anti-COVID-19 drugs. The cysteine protease Mpro in SARS CoV-2 bears a significant resemblance to the same protease found in SARS CoV-1. Previous research highlighted phlorotannins derived from Ecklonia cava, an edible marine algae, as inhibitors of SARS CoV-1 Mpro activity. However, it remains unclear whether these marine-derived phlorotannins also exert a similar inhibitory effect on SARS CoV-2 Mpro. To unravel this, our study utilized diverse in-silico methodologies. We explored the pharmacological potential of various phlorotannins (phloroglucinol, triphloretol-A, eckol, 2-phloroeckol, 7-phloroeckol, fucodiphloroethol G, dieckol, and phlorofucofuroeckol-A) and assessed their binding efficacies alongside established Mpro inhibitors (N3 and lopinavir) through molecular docking studies. Among these compounds, five phlorotannins (eckol, 2-phloroeckol, 7-phloroeckol, dieckol, and phlorofucofuroeckol-A) exhibited potent binding affinities comparable to or surpassing N3 and lopinavir, interacting especially with the catalytic residues His41 and Cys145 of Mpro. Moreover, molecular dynamics simulations revealed that these five Mpro-phlorotannin complexes displayed enhanced stability and maintained comparable or slightly reduced compactness. They exhibited reduced conformational changes and increased expansion relative to the Mpro-N3 and/or Mpro-lopinavir complex. Our MM-GBSA analysis further supported these findings. Overall, our investigation highlights the potential of these five phlorotannins in inhibiting the proteolytic function of SARS CoV-2 Mpro, offering promise for anti-COVID-19 drug development.
Collapse
Affiliation(s)
- Ayon Chakraborty
- University Institute of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
2
|
Barik S, Panda AK, Biswas VK, Das S, Chakraborty A, Beura S, Modak R, Raghav SK, Kar RK, Biswas A. Lysine acetylation of Hsp16.3: Effect on its structure, chaperone function and influence towards the growth of Mycobacterium tuberculosis. Int J Biol Macromol 2024; 268:131763. [PMID: 38657928 DOI: 10.1016/j.ijbiomac.2024.131763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Hsp16.3 plays a vital role in the slow growth of Mycobacterium tuberculosis via its chaperone function. Many secretory proteins, including Hsp16.3 undergo acetylation in vivo. Seven lysine (K) residues (K64, K78, K85, K114, K119, K132 and K136) in Hsp16.3 are acetylated inside pathogen. However, how lysine acetylation affects its structure, chaperone function and pathogen's growth is still elusive. We examined these aspects by executing in vitro chemical acetylation (acetic anhydride modification) and by utilizing a lysine acetylation mimic mutant (Hsp16.3-K64Q/K78Q/K85Q/K114Q/K119Q/K132Q/K136Q). Far- and near-UV CD measurements revealed that the chemically acetylated proteins(s) and acetylation mimic mutant has altered secondary and tertiary structure than unacetylated/wild-type protein. The chemical modification and acetylation mimic mutation also disrupted the oligomeric assembly, increased surface hydrophobicity and reduced stability of Hsp16.3, as revealed by GF-HPLC, 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid binding and urea denaturation experiments, respectively. These structural changes collectively led to an enhancement in chaperone function (aggregation and thermal inactivation prevention ability) of Hsp16.3. Moreover, when the H37Rv strain expressed the acetylation mimic mutant protein, its growth was slower in comparison to the strain expressing the wild-type/unacetylated Hsp16.3. Altogether, these findings indicated that lysine acetylation improves the chaperone function of Hsp16.3 which may influence pathogen's growth in host environment.
Collapse
Affiliation(s)
- Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Alok Kumar Panda
- Environmental Science Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Viplov Kumar Biswas
- Immunogenomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Sheetal Das
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam, India
| | - Ayon Chakraborty
- University Institute of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, India
| | - Shibangini Beura
- Infection and Epigenetics Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Sunil Kumar Raghav
- Immunogenomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India
| | - Rajiv K Kar
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
3
|
Impact of nanoparticles on amyloid β-induced Alzheimer's disease, tuberculosis, leprosy and cancer: a systematic review. Biosci Rep 2023; 43:232435. [PMID: 36630532 PMCID: PMC9905792 DOI: 10.1042/bsr20220324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Nanotechnology is an interdisciplinary domain of science, technology and engineering that deals with nano-sized materials/particles. Usually, the size of nanoparticles lies between 1 and 100 nm. Due to their small size and large surface area-to-volume ratio, nanoparticles exhibit high reactivity, greater stability and adsorption capacity. These important physicochemical properties attract scientific community to utilize them in biomedical field. Various types of nanoparticles (inorganic and organic) have broad applications in medical field ranging from imaging to gene therapy. These are also effective drug carriers. In recent times, nanoparticles are utilized to circumvent different treatment limitations. For example, the ability of nanoparticles to cross the blood-brain barrier and having a certain degree of specificity towards amyloid deposits makes themselves important candidates for the treatment of Alzheimer's disease. Furthermore, nanotechnology has been used extensively to overcome several pertinent issues like drug-resistance phenomenon, side effects of conventional drugs and targeted drug delivery issue in leprosy, tuberculosis and cancer. Thus, in this review, the application of different nanoparticles for the treatment of these four important diseases (Alzheimer's disease, tuberculosis, leprosy and cancer) as well as for the effective delivery of drugs used in these diseases has been presented systematically. Although nanoformulations have many advantages over traditional therapeutics for treating these diseases, nanotoxicity is a major concern that has been discussed subsequently. Lastly, we have presented the promising future prospective of nanoparticles as alternative therapeutics. In that section, we have discussed about the futuristic approach(es) that could provide promising candidate(s) for the treatment of these four diseases.
Collapse
|
4
|
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. J Biomol Struct Dyn 2022; 40:2647-2662. [PMID: 33140695 PMCID: PMC7663460 DOI: 10.1080/07391102.2020.1841680] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
SARS CoV-2 is the causative agent of the pandemic disease COVID-19. There is an urgent need for effective drugs or vaccines which can effectively combat this outbreak. The main protease (Mpro), a key component for the SARS CoV-2 replication, is considered to be one of the important drug targets for developing anti-COVID-19 drugs. This SARS CoV-2 Mpro/cysteine protease has high sequence similarity with the same protease from SARS CoV-1. Previously, it has been shown experimentally that eight diterpenoids and four biflavonoids derived from the leaf of Torreya nucifera show inhibitory effect on the cleavage/catalytic activity of the SARS CoV-1 Mpro. But whether these phytochemicals exhibit any inhibitory effect on SARS CoV-2 Mpro is unclear. To understand this fact, here, we have adopted various in-silico approaches. Diterpenoids and biflavonoids those qualified pharmacological test (hinokiol, amentoflavone, bilobetin and ginkgetin) and two well-known Mpro inhibitors (N3 and lopinavir) were subjected for molecular docking studies. Only three biflavonoids (amentoflavone, bilobetin and ginkgetin) were selected by comparing their binding affinities with N3 and lopinavir. They interacted with two most important catalytic residues of Mpro (His41 and Cys145). Molecular dynamics studies further revealed that these three Mpro-biflavonoid complexes are highly stable and share a similar degree of compactness. Besides, these complexes experience less conformational fluctuations and more expansion than Mpro-N3 and/or Mpro-lopinavir complex. MM-GBSA and H-bond analysis further corroborated these findings. Altogether, our study suggested that these three biflavonoids could possibly inhibit the proteolytic/catalytic activity of SARS CoV-2 Mpro and might be useful for COVID-19 treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| |
Collapse
|
5
|
Nandi SK, Panda AK, Chakraborty A, Rathee S, Roy I, Barik S, Mohapatra SS, Biswas A. Role of ATP-Small Heat Shock Protein Interaction in Human Diseases. Front Mol Biosci 2022; 9:844826. [PMID: 35252358 PMCID: PMC8890618 DOI: 10.3389/fmolb.2022.844826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 01/18/2023] Open
Abstract
Adenosine triphosphate (ATP) is an important fuel of life for humans and Mycobacterium species. Its potential role in modulating cellular functions and implications in systemic, pulmonary, and ocular diseases is well studied. Plasma ATP has been used as a diagnostic and prognostic biomarker owing to its close association with disease’s progression. Several stresses induce altered ATP generation, causing disorders and illnesses. Small heat shock proteins (sHSPs) are dynamic oligomers that are dominantly β-sheet in nature. Some important functions that they exhibit include preventing protein aggregation, enabling protein refolding, conferring thermotolerance to cells, and exhibiting anti-apoptotic functions. Expression and functions of sHSPs in humans are closely associated with several diseases like cataracts, cardiovascular diseases, renal diseases, cancer, etc. Additionally, there are some mycobacterial sHSPs like Mycobacterium leprae HSP18 and Mycobacterium tuberculosis HSP16.3, whose molecular chaperone functions are implicated in the growth and survival of pathogens in host species. As both ATP and sHSPs, remain closely associated with several human diseases and survival of bacterial pathogens in the host, therefore substantial research has been conducted to elucidate ATP-sHSP interaction. In this mini review, the impact of ATP on the structure and function of human and mycobacterial sHSPs is discussed. Additionally, how such interactions can influence the onset of several human diseases is also discussed.
Collapse
Affiliation(s)
- Sandip K. Nandi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| | - Alok Kumar Panda
- School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Shivani Rathee
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Ipsita Roy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| |
Collapse
|
6
|
Chakraborty A, Ghosh R, Biswas A. Interaction of constituents of MDT regimen for leprosy with Mycobacterium leprae HSP18: impact on its structure and function. FEBS J 2021; 289:832-853. [PMID: 34555271 DOI: 10.1111/febs.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Mycobacterium leprae, the causative organism of leprosy, harbors many antigenic proteins, and one such protein is the 18-kDa antigen. This protein belongs to the small heat shock protein family and is commonly known as HSP18. Its chaperone function plays an important role in the growth and survival of M. leprae inside infected hosts. HSP18/18-kDa antigen is often used as a diagnostic marker for determining the efficacy of multidrug therapy (MDT) in leprosy. However, whether MDT drugs (dapsone, clofazimine, and rifampicin) do interact with HSP18 and how these interactions affect its structure and chaperone function is still unclear. Here, we report evidence of HSP18-dapsone/clofazimine/rifampicin interaction and its impact on the structure and chaperone function of HSP18. These three drugs interact efficiently with HSP18 (having submicromolar binding affinity) with 1 : 1 stoichiometry. Binding of these MDT drugs to the 'α-crystallin domain' of HSP18 alters its secondary structure and tryptophan micro-environment. Furthermore, surface hydrophobicity, oligomeric size, and thermostability of the protein are reduced upon interaction with these three drugs. Eventually, all these structural alterations synergistically decrease the chaperone function of HSP18. Interestingly, the effect of rifampicin on the structure, stability, and chaperone function of this mycobacterial small heat shock protein is more pronounced than the other two MDT drugs. This reduction in the chaperone function of HSP18 may additionally abate M. leprae survivability during multidrug treatment. Altogether, this study provides a possible foundation for rational designing and development of suitable HSP18 inhibitors in the context of effective treatment of leprosy.
Collapse
Affiliation(s)
- Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India
| |
Collapse
|
7
|
Huber TW, Brackens E, Chatterjee P, Villamaria FC, Sisco LE, Williams MD, Coppin JD, Choi H, Jinadatha C. Efficacy of pulsed-xenon ultraviolet light on reduction of Mycobacterium fortuitum. SAGE Open Med 2020; 8:2050312120962372. [PMID: 33101679 PMCID: PMC7550950 DOI: 10.1177/2050312120962372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
Objectives Hospitals and healthcare facilities rely largely on isolation and environmental disinfection to prevent transmission of pathogens. The use of no-touch technology is an accepted practice for environmental decontamination in medical care facilities, but little has been published about the effect of ultraviolet light generated by a portable pulsed-xenon device use on Mycobacteria. We used Mycobacterium fortuitum which is more resistant to ultraviolet radiation and less virulent than Mycobacterium tuberculosis, to determine the effectiveness of portable pulsed-xenon devices on Mycobacterium in a laboratory environment. Methods To determine the effectiveness of pulsed-xenon devices, we measured the bactericidal effect of pulsed-xenon devices on Mycobacterium fortuitum. Results In five separate experiments irradiating an average of 106 organisms, the mean (standard deviation) log-kill at 5 min was 3.98 (0.60), at 10 min was 4.96 (0.42), and at 15 min was 5.64 (0.52). Conclusions Our results demonstrate that using pulsed-xenon devices is a highly effective modality to reduce microbial counts with this relatively ultraviolet germicidal irradiation-resistant mycobacterium in a time-dependent manner.
Collapse
Affiliation(s)
- Thomas W Huber
- Research Service, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Emma Brackens
- Research Service, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Piyali Chatterjee
- Research Service, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Frank C Villamaria
- Research Service, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Lauren E Sisco
- Department of Internal Medicine, Baylor Scott & White Memorial Hospital, Temple, TX
| | - Marjory D Williams
- Research Service, Central Texas Veterans Health Care System, Temple, TX, USA
| | - John David Coppin
- Research Service, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Hosoon Choi
- Research Service, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Chetan Jinadatha
- Department of Internal Medicine, Baylor Scott & White Memorial Hospital, Temple, TX.,Medical Service, Central Texas Veterans Health Care System, Temple, TX, USA.,Department of Medicine, College of Medicine Texas A&M University, Bryan, TX, USA
| |
Collapse
|
8
|
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches. J Biomol Struct Dyn 2020; 39:6747-6760. [PMID: 32762411 PMCID: PMC7484588 DOI: 10.1080/07391102.2020.1802347] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The current COVID-19 pandemic is caused by SARS CoV-2. To date, ∼463,000 people died
worldwide due to this disease. Several attempts have been taken in search of effective
drugs to control the spread of SARS CoV-2 infection. The main protease (Mpro) from SARS
CoV-2 plays a vital role in viral replication and thus serves as an important drug target.
This Mpro shares a high degree of sequence similarity (>96%) with the same protease
from SARS CoV-1 and MERS. It was already reported that Broussonetia
papyrifera polyphenols efficiently inhibit the catalytic activity of SARS CoV-1
and MERS Mpro. But whether these polyphenols exhibit any inhibitory effect on SARS CoV-2
Mpro is far from clear. To understand this fact, here we have adopted computational
approaches. Polyphenols having proper drug-likeness properties and two repurposed drugs
(lopinavir and darunavir; having binding affinity −7.3 to −7.4 kcal/mol) were docked
against SARS CoV-2 Mpro to study their binding properties. Only six polyphenols
(broussochalcone A, papyriflavonol A, 3'-(3-methylbut-2-enyl)-3',4',7-trihydroxyflavane,
broussoflavan A, kazinol F and kazinol J) had interaction with both the
catalytic residues (His41 and Cys145) of Mpro and exhibited good binding affinity (−7.6 to
−8.2 kcal/mol). Molecular dynamic simulations (100 ns) revealed that all Mpro-polyphenol
complexes are more stable, conformationally less fluctuated; slightly less compact and
marginally expanded than Mpro-darunavir/lopinavir complex. Even the number of
intermolecular H-bond and MM-GBSA analysis suggested that these six polyphenols are more
potent Mpro inhibitors than the two repurposed drugs (lopinavir and darunavir) and may
serve as promising anti-COVID-19 drugs. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| |
Collapse
|
9
|
Nandi SK, Chakraborty A, Panda AK, Biswas A. M. leprae HSP18 suppresses copper (II) mediated ROS generation: Effect of redox stress on its structure and function. Int J Biol Macromol 2020; 146:648-660. [DOI: 10.1016/j.ijbiomac.2019.12.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/16/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022]
|
10
|
Chakraborty A, Biswas A. Structure, stability and chaperone function of Mycobacterium leprae Heat Shock Protein 18 are differentially affected upon interaction with gold and silver nanoparticles. Int J Biol Macromol 2020; 152:250-260. [PMID: 32084461 DOI: 10.1016/j.ijbiomac.2020.02.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have several biomedical applications. However, the effective usage of these two nanoparticles is impeded due to limited understanding of their interaction with proteins including small heat shock proteins (sHSPs). Specifically, no evidences of interaction of these two nanoparticles with HSP18 (an antigenic protein) which is an important factor for the growth and survival of M. leprae (the causative organism of leprosy) are available in the literature. Here, we report for the first time evidences of "HSP18-AuNPs/AgNPs interaction" and its impact on the structure and chaperone function of HSP18. Interaction of citrate-capped AuNPs/AgNPs (~20 nm diameter) to HSP18 alters the secondary and tertiary structure of HSP18 in a distinctly opposite manner; while "HSP18-AuNPs interaction" leads to oligomeric association, "HSP18-AgNPs interaction" results in oligomeric dissociation of the protein. Surface hydrophobicity, thermal stability, chaperone function of HSP18 and survival of thermally stressed E. coli harbouring HSP18 are enhanced upon AuNPs interaction, while all of them are reduced upon interaction with AgNPs. Altogether, our study reveals that HSP18 is an important drug target in leprosy and its chaperone function may possibly plays a vital role in the growth and survival of M. leprae pathogen in infected hosts.
Collapse
Affiliation(s)
- Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
11
|
Mitra M, Agarwal P, Kundu A, Banerjee V, Roy S. Investigation of the effect of UV-B light on Arabidopsis MYB4 (AtMYB4) transcription factor stability and detection of a putative MYB4-binding motif in the promoter proximal region of AtMYB4. PLoS One 2019; 14:e0220123. [PMID: 31393961 PMCID: PMC6687144 DOI: 10.1371/journal.pone.0220123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/09/2019] [Indexed: 11/18/2022] Open
Abstract
Here, we have investigated the possible effect of UV-B light on the folding/unfolding properties and stability of Arabidopsis thaliana MYB4 (AtMYB4) transcription factor in vitro by using biophysical approaches. Urea-induced equilibrium unfolding analyses have shown relatively higher stability of the wild-type recombinant AtMYB4 protein than the N-terminal deletion forms after UV-B exposure. However, as compared to wild-type form, AtMYB4Δ2 protein, lacking both the two N-terminal MYB domains, showed appreciable alteration in the secondary structure following UV-B exposure. UV-B irradiated AtMYB4Δ2 also displayed higher propensity of aggregation in light scattering experiments, indicating importance of the N-terminal modules in regulating the stability of AtMYB4 under UV-B stress. DNA binding assays have indicated specific binding activity of AtMYB4 to a putative MYB4 binding motif located about 212 bp upstream relative to transcription start site of AtMYB4 gene promoter, while relatively weak DNA binding activity was detected for another putative MYB4 motif located at -908 bp in AtMYB4 promoter. Gel shift and fluorescence anisotropy studies have shown increased binding affinity of UV-B exposed AtMYB4 to the promoter proximal MYB4 motif. ChIP assay has revealed binding of AtMYB4 to the promoter proximal (-212 position) MYB4 motif (ACCAAAC) in vivo. Docking experiments further revealed mechanistic detail of AtMYB4 interaction with the putative binding motifs. Overall, our results have indicated that the N-terminal 62-116 amino acid residues constituting the second MYB domain plays an important role in maintaining the stability of the C-terminal region and the overall stability of the protein, while a promoter proximal MYB-motif in AtMYB4 promoter may involve in the regulation of its own expression under UV-B light.
Collapse
Affiliation(s)
- Mehali Mitra
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan, West Bengal, India
| | - Puja Agarwal
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan, West Bengal, India
| | - Anurima Kundu
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan, West Bengal, India
| | - Victor Banerjee
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan, West Bengal, India
| |
Collapse
|