1
|
Yan L, Huang B, Wang X, Jiang Y, Liu J, Jia X, Feng L, Yang B. The carrier function and inhibition effect on benign prostatic hyperplasia of a glucan from Epimedium brevicornu Maxim. Carbohydr Polym 2024; 340:122316. [PMID: 38858029 DOI: 10.1016/j.carbpol.2024.122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Epimedium, a traditional Chinese medicine commonly used as a dietary supplement, contains polysaccharides and flavonoids as its main bioactive ingredients. In this study, a neutral homogeneous polysaccharide (EPSN-1) was isolated from Epimedium brevicornu Maxim. EPSN-1 was identified as a glucan with a backbone of →4)-α-D-Glcp-(1→, branched units comprised α-D-Glcp-(1→6)-α-D-Glcp-(1→, β-D-Glcp-(1→6)-β-D-Glcp-(1→ and α-D-Glcp-(1→ connected to the C6 position of backbone. The conformation of EPSN-1 in aqueous solution indicated its potential to form nanoparticles. This paper aims to investigate the carrier and pharmacodynamic activity of EPSN-1. The findings demonstrated that, on the one hand, EPSN-1, as a functional ingredient, may load Icariin (ICA) through non-covalent interactions, improving its biopharmaceutical properties such as solubility and stability, thereby improving its intestinal absorption. Additionally, as an effective ingredient, EPSN-1 could help maintain the balance of the intestinal environment by increasing the abundance of Parabacteroides, Lachnospiraceae UGG-001, Anaeroplasma, and Eubacterium xylanophilum group, while decreasing the abundance of Allobaculum, Blautia, and Adlercreutzia. Overall, this dual action of EPSN-1 sheds light on the potential applications of natural polysaccharides, highlighting their dual role as carriers and contributors to biological activity.
Collapse
Affiliation(s)
- Lingling Yan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Bin Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xueqing Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuchen Jiang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jialing Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
2
|
Yu X, Miao Z, Zhang L, Zhu L, Sheng H. Extraction, purification, structure characteristics, biological activities and pharmaceutical application of Bupleuri Radix Polysaccharide: A review. Int J Biol Macromol 2023; 237:124146. [PMID: 36965565 DOI: 10.1016/j.ijbiomac.2023.124146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Bupleuri Radix (BR), as a well-known plant medicine of relieving exterior syndrome, has a long history of usage in China. Bupleuri Radix Polysaccharide (BRP), as the main component and an important bioactive substance of BR, has a variety of pharmacological activities, including immunoregulation, antioxidant, antitumor, anti-diabetic and anti-aging, etc. In this review, the advancements on extraction, purification, structure characteristics, biological activities and pharmaceutical application of BRP from different sources (Bupleurum chinense DC., Bupleurum scorzonerifolium Willd., Bupleurum falcatum L. and Bupleurum smithii Woiff. var. Parvifolium Shan et Y. Li.) are summarized. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research on BRP, and new valuable insights for the future researches of BRP are proposed.
Collapse
Affiliation(s)
- Xinyue Yu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Zhuang Miao
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Lizhen Zhang
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Liqiao Zhu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| | - Huagang Sheng
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| |
Collapse
|
3
|
Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. PHYTOCHEMISTRY 2022; 197:113128. [PMID: 35183567 DOI: 10.1016/j.phytochem.2022.113128] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Stilbenes are some of the important phenolic compounds originating from plant families like Vitaceae, Leguminaceae, Gnetaceae, and Dipterocarpaceae. Structurally, they have a C6-C2-C6 skeleton, usually with two isomeric forms. Stilbenes are biosynthesized due to biotic and abiotic stresses such as microbial infections, high temperatures, and oxidation. This review aims to provide a comprehensive overview of stilbenes' botanical sources, chemistry, biosynthetic pathways, pharmacology, and clinical applications and challenges based on up-to-date data. All included studies were collected from PubMed, ScienceDirect, Google Scholar, and CNKI, and the presented data from these indexed studies were analyzed and summarized. A total of 459 natural stilbene compounds from 45 plant families and 196 plant species were identified. Pharmacological studies also show that stilbenes have various activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, anti-degenerative diseases, anti-diabetic, neuroprotective, anti-aging, and cardioprotective effects. Stilbene synthase (STS) is the key enzyme involved in stilbene biosynthetic pathways. Studies on the therapeutic application of stilbenes pinpoint that challenges such as low bioavailability and isomerization are the major bottlenecks for their development as therapeutic drugs. Although the medicinal uses of several stilbenes have been demonstrated in vivo and in vitro, studies on the development of stilbenes deserve more attention in the future.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiaoyan Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Yanjie Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
4
|
Liu S, Yang Q, Zhang J, Yang M, Wang Y, Sun T, Ma C, Abd El-Aty AM. Enhanced stability of stilbene-glycoside-loaded nanoparticles coated with carboxymethyl chitosan and chitosan hydrochloride. Food Chem 2022; 372:131343. [PMID: 34656910 DOI: 10.1016/j.foodchem.2021.131343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/12/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023]
Abstract
Stilbene-glycoside (THSG) is a promising dietary supplement with remarkable biological properties, however, its poor stability and low oral bioavailability hinder its application as an ingredient in functional foods. Herein, stilbene-glycoside-loaded nanoparticles (THSG-NPs) coated with carboxymethyl chitosan (CMC) and chitosan hydrochloride (CHC) using a complex coacervation method were successfully prepared for enhancing the stability of THSG. The optimized preparation parameters were 2.5 mg/mL CMC, 1.0 mg/mL CHC, 1.5 mg/mL THSG and preparation temperature of 25 °C, under which the experimentally designed particles averaged 381.9 nm with encapsulation efficiency (EE) of 68.6%. Solid-state characterization was assessed by Fourier transform infrared spectroscope and Differential scanning calorimetry. THSG-NPs showed significant protective effects against heat and solar radiation and exhibited remarkable pH-dependent and controlled release. This work demonstrated that enhanced stability and delayed release of THSG could be achieved using THSG-NPs, which could contribute to its potential application in the functional foods industry.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Qianyu Yang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Jing Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mengnan Yang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanhui Wang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Ting Sun
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
5
|
Wang C, Dai S, Gong L, Fu K, Ma C, Liu Y, Zhou H, Li Y. A Review of Pharmacology, Toxicity and Pharmacokinetics of 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside. Front Pharmacol 2022; 12:791214. [PMID: 35069206 PMCID: PMC8769241 DOI: 10.3389/fphar.2021.791214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Polygonum multiflorum Thunb. (He-shou-wu in Chinese), a Chinese botanical drug with a long history, is widely used to treat a variety of chronic diseases in clinic, and has been given the reputation of “rejuvenating and prolonging life” in many places. 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside (TSG, C20H22O9) is the main and unique active ingredient isolated from Polygonum multiflorum Thunb., which has extensive pharmacological activities. Modern pharmacological studies have confirmed that TSG exhibits significant activities in treating various diseases, including inflammatory diseases, neurodegenerative diseases, cardiovascular diseases, hepatic steatosis, osteoporosis, depression and diabetic nephropathy. Therefore, this review comprehensively summarizes the pharmacological and pharmacokinetic properties of TSG up to 2021 by searching the databases of Web of Science, PubMed, ScienceDirect and CNKI. According to the data, TSG shows remarkable anti-inflammation, antioxidation, neuroprotection, cardiovascular protection, hepatoprotection, anti-osteoporosis, enhancement of memory and anti-aging activities through regulating multiple molecular mechanisms, such as NF-κB, AMPK, PI3K-AKT, JNK, ROS-NO, Bcl-2/Bax/Caspase-3, ERK1/2, TGF-β/Smad, Nrf2, eNOS/NO and SIRT1. In addition, the toxicity and pharmacokinetics of TSG are also discussed in this review, which provided direction and basis for the further development and clinical application of TSG.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Wang B, Wang X, Xiong Z, Lu G, Ma W, Lv Q, Wang L, Jia X, Feng L. A review on the applications of Traditional Chinese medicine polysaccharides in drug delivery systems. Chin Med 2022; 17:12. [PMID: 35033122 PMCID: PMC8760834 DOI: 10.1186/s13020-021-00567-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 01/03/2023] Open
Abstract
Traditional Chinese medicine polysaccharides (TCMPs) are plentiful and renewable resources with properties such as biocompatibility, hydrophilicity, biodegradability, and low cytotoxicity. Because the polysaccharide molecular chain contains a variety of active groups, different polysaccharide derivatives can be easily produced through chemical modification. They have been increasingly used in drug delivery systems (DDS). However, the potential of polysaccharides is usually ignored due to their structural complexity, poor stability or ambiguity of mechanisms of actions. This review summarized the applications of TCMPs in DDS around four main aspects. The general characteristics of TCMPs as drug delivery carriers, as well as the relationships between structure and function of them were summarized. Meanwhile, the direction of preparing multifunctional drug delivery materials with synergistic effect by using TCMPs was discussed. This review aims to become a reference for further research of TCMPs and their derivatives, especially applications of them as carriers in pharmaceutical preparation industry.
Collapse
|
7
|
You G, Feng T, Zhang H, Sun L, Mou J, Wang M, Ren X. Comparative study on the stability/intestinal absorption kinetics of 2,3,5,4′-tetrahydroxy-stilbene-2-O-β-D-glucoside derived from Polygoni Multiflori Radix and its herb pairs. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1966441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Guangjiao You
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huijie Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiajia Mou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Sun L, You G, Zheng F, Wang M, Ren X, Deng Y. In vitro and in vivo evaluation of the influences of polysaccharides derived from Glycyrrhiza uralensis on three alkaloids and potential interaction mechanisms. Int J Biol Macromol 2020; 157:452-460. [DOI: 10.1016/j.ijbiomac.2020.04.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 11/25/2022]
|
9
|
Fu Z, Han L, Zhang P, Mao H, Zhang H, Wang Y, Gao X, Liu E. Cistanche polysaccharides enhance echinacoside absorption in vivo and affect the gut microbiota. Int J Biol Macromol 2020; 149:732-740. [PMID: 31987946 DOI: 10.1016/j.ijbiomac.2020.01.216] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/30/2019] [Accepted: 01/22/2020] [Indexed: 01/08/2023]
Abstract
The polysaccharides and phenylethanoid glycosides from Cistanche deserticola have been demonstrated with various health benefits, however the interactive effect between these two kinds of compounds in vivo are not in detail known. The objective of this study was to investigate the synergistic actions of cistanche polysaccharides with phenylethanoid glycoside and the effects of polysaccharides on gut microbiota. Sprague-Dawley rats were fed with different kinds of cistanche polysaccharides for 20 days, on the last day, all rats were administered the echinacoside at 100 mg/kg. The results were compared mainly on the difference of pharmacokinetic parameters, gut microbiota composition, and short chain fatty acids contents. The results indicated that all the cistanche polysaccharides, including crude polysaccharide, high molecular weight polysaccharide and low molecular weight polysaccharide, could regulate the gut microbiota diversity, increase beneficial bacteria and particularly enhance the growth of Prevotella spp. as well as improve the production of short chain fatty acids and the absorption of echinacoside. By exploring the synergistic actions of polysaccharides with small molecules, these findings suggest that cistanche polysaccharides, particularly low molecular weight polysaccharides, could be used as a gut microbiota manipulator for health promotion.
Collapse
Affiliation(s)
- Zhifei Fu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Peng Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Haoping Mao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Han Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China.
| | - Erwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China.
| |
Collapse
|
10
|
Liu F, Sun L, You G, Liu H, Ren X, Wang M. Effects of Astragalus polysaccharide on the solubility and stability of 15 flavonoids. Int J Biol Macromol 2020; 143:873-880. [DOI: 10.1016/j.ijbiomac.2019.09.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/22/2019] [Indexed: 02/02/2023]
|