1
|
Donia T, Ali EMM, Kalantan AA, Alzahrani FA, Eid TM, Khamis AA. Synergistic anticancer efficacy of polydatin and sorafenib against the MCF-7 breast cancer cell line via inhibiting of PI3K/AKT/mTOR pathway and reducing resistance to treatment. Biochem Biophys Res Commun 2024; 739:150972. [PMID: 39541924 DOI: 10.1016/j.bbrc.2024.150972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Polydatin (PD), a glucoside derivative of resveratrol, has been investigated for its potential to mitigate sorafenib (SOF) side effects and combat multidrug resistance in cancer treatment. The study evaluated its mechanism of action for inhibiting the protein kinase B/mTOR pathway in promoting breast cancer proliferation. The combined PD and SOF have synergistic effects with a combination index (CI) < 1 in the liver (HepG2) and breast (MCF-7) cancer cell lines. Molecular docking studies were conducted to analyze interactions of PD& SOF with protein kinases as well as apoptotic and multidrug resistance proteins, including AKT1, PI3K, mTOR, Apaf-1, and ABCB1 in MCF-7 cells. Experimental validation through real-time PCR confirmed. PD has a strong binding affinity, particularly with AKT1 (-56 kcal/mol) and ABCB1 (-27.16 kcal/mol), a gene associated with multidrug resistance. These interactions were linked to anti-proliferative anti-angiogenic effects and reduced resistance to treatment, demonstrating PD has potential therapeutic benefits. Furthermore, PD combined with SOF induced apoptosis, inhibited cell growth, and arrested MCF-7 cells in the sub-G1 phase with increased intracellular ROS. This was accompanied by reduced expression of AKT1 and ABCB1 genes, reinforcing the anticancer efficacy of PD/SOF combination therapy. In conclusion, the findings suggest that PD/SOF could serve as a promising anticancer treatment strategy, warranting further investigation for potential clinical applications and mechanistic studies in vivo.
Collapse
Affiliation(s)
- Thoria Donia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Ehab M M Ali
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Abdulaziz A Kalantan
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Faisal Ay Alzahrani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, 21911 Rabigh, Saudi Arabia.
| | - Thamir M Eid
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Abeer A Khamis
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
2
|
Baothman O, Ali EMM, Alguridi H, Hosawi S, Konozy EHE, Abu Zeid IM, Ahmad A, Altayb HN. Impact of camel milk lactoferrin peptides against breast cancer cells: in silico and in vitro study. Front Pharmacol 2024; 15:1425504. [PMID: 39629082 PMCID: PMC11612555 DOI: 10.3389/fphar.2024.1425504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/23/2024] [Indexed: 12/06/2024] Open
Abstract
Background and Aims Breast cancer remains a significant global health concern, necessitating the exploration of novel therapeutic strategies. Despite advancements in cancer therapeutics, effective treatments with minimal side effects remain elusive. Natural sources, such as camel milk, harbor bioactive compounds such as lactoferrin peptides, which hold promise as anticancer agents. This study investigated the potential of camel milk-derived lactoferrin peptides against breast cancer cells through a combined in silico and in vitro approach. By integrating computational modeling with experimental assays, we aimed to elucidate the anticancer mechanisms of these peptides and provide insights for their optimization as anticancer therapeutics. Methods In silico analysis involving pepetid design, and validation, then molecular docking and molecular dynamics (MD) simulations was used to explore peptide-protein interactions and stability. Peptides were synthesized and tested for anticancer activity using MTT assays on MCF-7 cells, with HDFa normal cells used as controls. Results Results of this study showed that camel milk-derived lactoferrin peptides, particularly PEP66, exhibited strong anticancer activity against MCF-7 breast cancer cells, with the lowest IC50 value (52.82 μg/mL) compared to other peptides. In silico molecular docking and dynamics simulations revealed that PEP66 formed stable interactions with key residues in the HER2 catalytic site, indicating its potential as an effective anticancer agent. The selectivity index (SI) of PEP66 (3.19) also suggested lower toxicity to normal cells compared to cancer cells, reinforcing its therapeutic potential. Hydrogen bonding analysis highlighted key residues involved in stabilizing peptide-protein complexes, while molecular dynamics simulations demonstrated the stability of these interactions over time. Notably, PEP66 exhibited the highest stability and formed significant interactions with essential residues in the HER2 catalytic site, suggesting its potential as an effective anticancer agent. Conclusion Camel milk-derived lactoferrin peptides show promise as anticancer agents against breast cancer cells. The multidisciplinary approach employed in this study provides valuable insights into the mechanisms underlying their activity, paving the way for rational design strategies to enhance their efficacy. Further experimental validation is warranted to validate the anticancer potential of these peptides and advance their development as novel therapeutic agents for breast cancer treatment.
Collapse
Affiliation(s)
- Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab M. M. Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Biochemistry, Chemistry Department, Faculty of Science Tanta University, Tanta, Egypt
| | - Hassan Alguridi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emadeldin Hassan E. Konozy
- Laboratory of Proteomics and Glycobiology, Biotechnology Department, Africa City of Technology, Khartoum, Sudan
- Biomedical and Clinical Research Centre (BCRC), College of Health and Allied Sciences (CoHAS), University of Cape Coast, Cape Coast, Ghana
| | - Isam M. Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Kesharwani P, Halwai K, Jha SK, Al Mughram MH, Almujri SS, Almalki WH, Sahebkar A. Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers. Mol Cancer 2024; 23:244. [PMID: 39482651 PMCID: PMC11526716 DOI: 10.1186/s12943-024-02163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Chitosan nanoparticles (NPs) are well-recognized as promising vehicles for delivering anticancer drugs due to their distinctive characteristics. They have the potential to enclose hydrophobic anticancer molecules, thereby enhancing their solubilities, permeabilities, and bioavailabilities; without the use of surfactant, i.e., through surfactant-free solubilization. This allows for higher drug concentrations at the tumor sites, prevents excessive toxicity imparted by surfactants, and could circumvent drug resistance. Moreover, biomedical engineers and formulation scientists can also fabricate chitosan NPs to slowly release anticancer agents. This keeps the drugs at the tumor site longer, makes therapy more effective, and lowers the frequency of dosing. Notably, some types of cancer cells (fallopian tube, epithelial tumors of the ovary, and primary peritoneum; lung, kidney, ependymal brain, uterus, breast, colon, and malignant pleural mesothelioma) have overexpression of folate receptors (FRs) on their outer surface, which lets folate-drug conjugate-incorporated NPs to target and kill them more effectively. Strikingly, there is evidence suggesting that the excessively produced FR&αgr (isoforms of the FR) stays consistent throughout treatment in ovarian and endometrial cancer, indicating resistance to conventional treatment; and in this regard, folate-anchored chitosan NPs can overcome it and improve the therapeutic outcomes. Interestingly, overly expressed FRs are present only in certain tumor types, which makes them a promising biomarker for predicting the effectiveness of FR-targeted therapy. On the other hand, the folate-modified chitosan NPs can also enhance the oral absorption of medicines, especially anticancer drugs, and pave the way for effective and long-term low-dose oral metronomic scheduling of poorly soluble and permeable drugs. In this review, we talked briefly about the techniques used to create, characterize, and tailor chitosan-based NPs; and delved deeper into the potential applications of folate-engineered chitosan NPs in treating various cancer types.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Uttar Pradesh, Kanpur, 208016, India
| | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Ahmed TA, Milibary GA, Almehmady AM, Alahmadi AA, Ali EMM, El-Say KM. Improving the Cytotoxic Activity of Hinokitiol from Drug-Loaded Phytosomal Formulation Against Breast Cancer Cell Lines. Int J Nanomedicine 2024; 19:10321-10339. [PMID: 39415963 PMCID: PMC11481998 DOI: 10.2147/ijn.s476667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Background This study investigates the influence of various formulation parameters on the characteristics of hinokitiol-loaded phytosomes and evaluates their anticancer potential against breast cancer cells. Materials and Methods Phytosomal nanoparticles were prepared and characterized for size, zeta potential, and entrapment efficiency. Morphological analysis was conducted using optical microscopy and transmission electron microscopy (TEM). The solubility of hinokitiol at different pH levels was determined, and the in vitro release profile of the optimized phytosomes was assessed. Cytotoxicity assays were performed to evaluate the anticancer efficacy against breast cancer cell lines, and apoptosis induction was examined using Annexin V/propidium iodide staining. Cell cycle analysis was conducted to assess the impact on cell cycle progression. Results The optimized phytosomes demonstrated a size range of 138.4 ± 7.7 to 763.7 ± 15.4 nm, with zeta potentials ranging from -10.2 ± 0.28 to -53.2 ± 1.06 mV and entrapment efficiencies between 29.161 ± 1.163% and 92.77 ± 7.01%. Morphological characterization confirmed uniformity and spherical morphology. Hinokitiol solubility increased with pH, and the release from the optimized phytosomes exhibited sustained patterns. The formulated phytosomes showed superior cytotoxicity, with lower IC50 values compared to pure hinokitiol. Treatment induced significant apoptosis and cell cycle arrest at the G2/M and S phases. Conclusion Hinokitiol-loaded phytosomes demonstrate promising anticancer efficacy against breast cancer cells, highlighting their potential as targeted therapeutic agents for breast cancer therapy.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Alsulaymanyah, Jeddah, 21589, Saudi Arabia
| | - Ghada A Milibary
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amerh A Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
5
|
El-Bendary MM, Akhdhar A, Al-Bogami AS, Domyati D, Kalantan AA, Alzahrani FA, Alamoudi SM, Sheikh RA, Ali EMM. Palladium and platinum complexes based on pyridine bases induced anticancer effectiveness via apoptosis protein signaling in cancer cells. Biometals 2024; 37:905-921. [PMID: 38361146 DOI: 10.1007/s10534-023-00580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024]
Abstract
Palladium and platinum complexes, especially those that include cisplatin, can be useful chemotherapeutic drugs. Alternatives that have less adverse effects and require lower dosages of treatment could be provided by complexes containing pyridine bases. The complexes [Pd(SCN)2(4-Acpy)2] (1), [Pd(N3)2(4-Acpy)2] (2) [Pd(paOH)2].2Cl (3) and [Pt(SCN)2(paO)2] (4) were prepared by self-assembly method at ambient temperature; (4-Acpy = 4-acetylpyridine and paOH = pyridine-2-carbaldehyde-oxime). The structure of complexes 1-4 was confirmed using spectroscopic and X-ray crystallography methods. Complexes 1-4 have similar features in isomerism that include the trans coordination geometry of pyridine ligands with Pd or Pt ion. The 3D network structure of complexes 1-4 was constructed by an infinite number of discrete mononuclear molecules extending via H-bonds. The Pd and Pt complexes 1-4 with pyridine ligands were assessed on MCF-7, T47D breast cancer cells and HCT116 colon cancer cells. The study evaluated cell death through apoptosis and cell cycle phases in MCF-7 cells treated with palladium or platinum conjugated with pyridine base. Upon treatment of MCF-7 with these complexes, the expression of apoptotic signals (Bcl2, p53, Bax and c-Myc) and cell cycle signals (p16, CDK1A, CDK1B) were evaluated. Compared to other complexes and cisplatin, IC50 of complex 1 was lowest in MCF-7 cells and complex 2 in T47D cells. Complex 4 has the highest effectiveness on HCT116. The selective index (SI) of complexes 1-4 has a value of more than two for all cancer cell lines, indicating that the complexes were less toxic to normal cells when given the same dose. MCF-7 cells treated with complex 2 and platinum complex 4 exhibited the highest level of early apoptosis. p16 may be signal arrest cells in Sub G, which was observed in cells treated with palladium complexes that suppress excessive cell proliferation. High c-Myc expression of treated cells with four complexes 1-4 and cisplatin could induce p53. All complexes 1-4 elevated the expression of Bax and triggered by the tumor suppressor gene p53. p53 was downregulating the expression of Bcl2.
Collapse
Affiliation(s)
- Mohamed M El-Bendary
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia.
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abdullah Akhdhar
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia
| | - Abdullah S Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia
| | - Doaa Domyati
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia
| | - Abdulaziz A Kalantan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Faisal Ay Alzahrani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, 21911, Rabigh, Saudi Arabia
| | - Samer M Alamoudi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ryan A Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
6
|
Martínez-Ramírez J, Toldos-Torres M, Benayas E, Villar-Gómez N, Fernández-Méndez L, Espinosa FM, García R, Veintemillas-Verdaguer S, Morales MDP, Serrano MC. Hybrid hydrogels support neural cell culture development under magnetic actuation at high frequency. Acta Biomater 2024; 176:156-172. [PMID: 38281674 DOI: 10.1016/j.actbio.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The combination of hydrogels and magnetic nanoparticles, scarcely explored to date, offers a wide range of possibilities for innovative therapies. Herein, we have designed hybrid 3D matrices integrating natural polymers, such as collagen, chitosan (CHI) and hyaluronic acid (HA), to provide soft and flexible 3D networks mimicking the extracellular matrix of natural tissues, and iron oxide nanoparticles (IONPs) that deliver localized heat when exposed to an alternating magnetic field (AMF). First, colloidally stable nanoparticles with a hydrodynamic radius of ∼20 nm were synthesized and coated with either CHI (NPCHI) or HA (NPHA). Then, collagen hydrogels were homogeneously loaded with these coated-IONPs resulting in soft (E0 ∼ 2.6 kPa), biodegradable and magnetically responsive matrices. Polymer-coated IONPs in suspension preserved primary neural cell viability and neural differentiation even at the highest dose (0.1 mg Fe/mL), regardless of the coating, even boosting neuronal interconnectivity at lower doses. Magnetic hydrogels maintained high neural cell viability and sustained the formation of highly interconnected and differentiated neuronal networks. Interestingly, those hydrogels loaded with the highest dose of NPHA (0.25 mgFe/mg polymer) significantly impaired non-neuronal differentiation with respect to those with NPCHI. When evaluated under AMF, cell viability slightly diminished in comparison with control hydrogels magnetically stimulated, but not compared to their counterparts without stimulation. Neuronal differentiation under AMF was only affected on collagen hydrogels with the highest dose of NPHA, while non-neuronal differentiation regained control values. Taken together, NPCHI-loaded hydrogels displayed a superior performance, maybe benefited from their higher nanomechanical fluidity. STATEMENT OF SIGNIFICANCE: Hydrogels and magnetic nanoparticles are undoubtedly useful biomaterials for biomedical applications. Nonetheless, the combination of both has been scarcely explored to date. In this study, we have designed hybrid 3D matrices integrating both components as promising magnetically responsive platforms for neural therapeutics. The resulting collagen scaffolds were soft (E0 ∼ 2.6 kPa) and biodegradable hydrogels with capacity to respond to external magnetic stimuli. Primary neural cells proved to grow on these substrates, preserving high viability and neuronal differentiation percentages even under the application of a high-frequency alternating magnetic field. Importantly, those hydrogels loaded with chitosan-coated iron oxide nanoparticles displayed a superior performance, likely related to their higher nanomechanical fluidity.
Collapse
Affiliation(s)
- Julia Martínez-Ramírez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Marta Toldos-Torres
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Esther Benayas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Natalia Villar-Gómez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Laura Fernández-Méndez
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Francisco M Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Ricardo García
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Sabino Veintemillas-Verdaguer
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - María Del Puerto Morales
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain.
| |
Collapse
|
7
|
Li T, Ashrafizadeh M, Shang Y, Nuri Ertas Y, Orive G. Chitosan-functionalized bioplatforms and hydrogels in breast cancer: immunotherapy, phototherapy and clinical perspectives. Drug Discov Today 2024; 29:103851. [PMID: 38092146 DOI: 10.1016/j.drudis.2023.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Breast cancer is the most common and malignant tumor among women. Chitosan (CS)-based nanoparticles have been introduced into breast cancer therapy as a way to increase the targeted delivery of drugs and genes to the tumor site. CS nanostructures suppress tumorigenesis by enhancing both the targeted delivery of cargo (drug and gene) and its accumulation in tumor cells. The tumor cells internalize CS-based nanoparticles through endocytosis. Moreover, chitosan nanocarriers can also induce phototherapy-mediated tumor ablation. Smart and multifunctional types of CS nanoparticles, including pH-, light- and redox-responsive nanoparticles, can be used to improve the potential for breast cancer removal. In addition, the acceleration of immunotherapy by CS nanoparticles has also been achieved, and there is potential to develop CS-nanoparticle hydrogels that can be used to suppress tumorigenesis.
Collapse
Affiliation(s)
- Tianfeng Li
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, 518055, China; Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Yuru Shang
- Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology (UIRMI) (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain.
| |
Collapse
|
8
|
Salim EI, Mosbah AM, Elhussiny FA, Hanafy NAN, Abdou Y. Preparation and characterization of cetuximab-loaded egg serum albumin nanoparticles and their uses as a drug delivery system against Caco-2 colon cancer cells. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-022-00153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AbstractTo avoid the harmful side effects of cetuximab and improve its therapeutic efficacy, egg serum albumin (ESA) was used as a targeting drug carrier moiety for cancer therapy against Caco-2 colon cancer cells. The simple improved desolvation method was used to synthesize ESA nanoparticles (ESA-NPs) and cetuximab-loaded albumin nanoparticles (CET-ANPs) with glutaraldehyde as a crosslinking agent. The ESA-NPs and CET-ANPs were spherically shaped, and their sizes and surface potentials were 100 and − 24 nm and 170 and − 20 nm, respectively, as determined using transmission electron microscopy (TEM) and a Zeta potential analyzer. The specific functional groups of the prepared nanoparticles were revealed by FTIR analysis. In the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay, CET-ANPs exerted the highest antitumor activity after 24 h followed by CET, ESA-NPs, and pure ESA. Combination of CET + ESA-NPs at different IC50 concentrations at ratios of 1:1, 1:2, 2:1, 1:4, 4:1, 1:9, or 9:1 showed significant synergistic effects with a combination index (CI) > 1. Furthermore, the CET either loaded with ESA-NPs or administered in combination (CET + ESA NPs) caused significant apoptotic damage, as well as an S-phase or G2/M cell cycle arrest to the cancer cells, respectively. These were directly linked with a significant upregulation of mRNA expression of Caspase3 and Bax genes and an extreme downregulation of the mRNA expression of Bcl2, particularly in the combination treatment group, as compared to the untreated cells. Finally, ESA-NPs improved the effectiveness of cetuximab, strongly caused apoptotic and antiproliferative action with lower systemic toxicity, and could be suggested for the targeted administration of anticancer medications in various nanosystems.
Collapse
|
9
|
Ahmed TA, Ali EMM, Omar AM, Almehmady AM, El‐Say KM. Enhancing Ezetimibe Anticancer Activity Through Development of Drug Nano-Micelles Formulations: A Promising Strategy Supported by Molecular Docking. Int J Nanomedicine 2023; 18:6689-6703. [PMID: 38026536 PMCID: PMC10657552 DOI: 10.2147/ijn.s438704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background Ezetimibe, initially recognized as a cholesterol-lowering agent, has recently attracted attention due to its potential anticancer properties. We aimed to explore an innovative approach of enhancing the drug anticancer activity through the development of drug nano-formulations. Materials and Methods Fifteen different nano-micelles formulations were prepared utilizing D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and pluronic F127. The prepared formulations were characterized for size, polydispersity index (PDI), zeta potential, and entrapment efficiency (EE). The formulations were morphologically characterized using light and transmission electron microscopies and the drug-binding mode with the active site was investigated using the molecular docking. Cell viability against MCF-7 and T47D was studied. Apoptosis and cell cycle were assessed. Results The prepared formulations were in the nano-size range (34.01 ± 2.00-278.34 ± 9.11 nm), zeta potential values were very close to zero, and the TPGS-based micelles formulations showed the highest ezetimibe EE (94.03 ± 1.71%). Morphological study illustrated a well-defined, spherical nanoparticles with a uniform size distribution. Molecular docking demonstrated good interaction of ezetimibe with Interleukin-1 Beta Convertase through multiple hydrogen bonding, covalent bond, and hydrophobic interaction. TPGS-based nano-micelle formulation (F5) demonstrated the lowest IC50 against MCF-7 (4.51 µg/mL) and T47D (8.22 µg/mL) cancer cells. When T47D cells were treated with IC50 concentrations of F5, it exhibited significant inhibition with late apoptosis (43.9%), a response comparable to T47D cells treated with an IC50 dose of ezetimibe. Cell cycle analysis revealed that both ezetimibe and F5-treated T47D cells exhibited an increase in the subG1 phase, indicating reduced DNA content and cell death. Conclusion These findings suggest that F5 could serve as a proficient drug delivery system in augmenting the cytotoxic activity of ezetimibe against breast cancer.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Khalid M El‐Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Al-Zahrani NS, Zamzami MA, Baghdadi MA, El-Gowily AH, Ali EMM. Regulation of Protein-Induced Apoptosis and Autophagy in Human Hepatocytes Treated with Metformin and Paclitaxel In Silico and In Vitro. Biomedicines 2023; 11:2688. [PMID: 37893061 PMCID: PMC10604243 DOI: 10.3390/biomedicines11102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Metformin and paclitaxel therapy offer promising outcomes in the treatment of liver cancer. Combining paclitaxel with metformin enhances treatment effectiveness and mitigates the adverse effects associated with paclitaxel alone. This study explored the anticancer properties of metformin and paclitaxel in HepG2 liver cancer cells, MCF-7 breast cancer cells, and HCT116 colon cancer cells. The results demonstrated that the combination of these agents exhibited a lower IC50 in the tested cell lines compared to paclitaxel monotherapy. Notably, treating the HepG2 cell line with this combination led to a reduction in the G0/G1 phase and an increase in the S and G2/M phases, ultimately triggering early apoptosis. To further investigate the interaction between the cellular proteins with paclitaxel and metformin, an in silico study was conducted using proteins chosen from a protein data bank (PDB). Among the proteins studied, AMPK-α, EGFRK, and FKBP12-mTOR exhibited the highest binding free energy, with values of -11.01, -10.59, and -15.63 kcal/mol, respectively, indicating strong inhibitory or enhancing effects on these proteins. When HepG2 cells were exposed to both paclitaxel and metformin, there was an upregulation in the gene expression of AMPK-α, a key regulator of the energy balance in cancer growth, as well as apoptotic markers such as p53 and caspase-3, along with autophagic markers including beclin1 and ATG4A. This combination therapy of metformin and paclitaxel exhibited significant potential as a treatment option for HepG2 liver cancer. In summary, the combination of metformin and paclitaxel not only enhances treatment efficacy but also reduces side effects. It induces cell cycle alterations and apoptosis and modulates key cellular proteins involved in cancer growth, making it a promising therapy for HepG2 liver cancer.
Collapse
Affiliation(s)
- Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, Collage of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mazin Abdulaziz Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed A. Baghdadi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia;
- Research Group “Cancer, Haemostasis and Angiogenesis”, INSERM U938, Saint-Antoine Research Center, University Institute of Cancerology, Faculty of Medicine, Sorbonne University, 75012 Paris, France
| | - Afnan H. El-Gowily
- Division of Biochemistry, Chemistry Department, Faculty of Science Tanta University, Tanta 31527, Egypt;
| | - Ehab M. M. Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Division of Biochemistry, Chemistry Department, Faculty of Science Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
11
|
Ahmed TA, Ali EMM, Kalantan AA, Almehmady AM, El-Say KM. Exploring the Enhanced Antiproliferative Activity of Turmeric Oil and 6-Mercaptopurine in a Combined Nano-Particulate System Formulation. Pharmaceutics 2023; 15:1901. [PMID: 37514087 PMCID: PMC10385096 DOI: 10.3390/pharmaceutics15071901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
6-Mercaptopurine (6-MP) is a chemotherapeutic agent with inadequate efficacy due to its poor aqueous solubility and limited bioavailability. Turmeric oil is a naturally occurring bioactive substance obtained from the rhizomes of Curcuma longa Linn that has well-known antiproliferative activities. The aim of this study was to develop a 6-MP-loaded turmeric oil-based self-nanoemulsifying drug delivery system (SNEDDS) to improve the anticancer activity of 6-MP. Turmeric oil was extracted and used in a range of 15-25% to develop SNEDDS formulations utilizing tween 80 and dimethyl sulfoxide as the surfactant and cosurfactant, respectively. The size, charge, and effect of the formulations on the viability against HepG2 and MCF-7 cell models, as well as the apoptosis and cell cycle, were analyzed. The prepared SNEDDS formulations were in the size range of 425.7 ± 7.4-303.6 ± 19.3 nm, using a polydispersity index of 0.429-0.692 and electronegative surface charges. Moreover, 6-MP-loaded SNEDDS with 15% turmeric oil content (F1) showed smaller particle sizes and a noticeable antiproliferative activity against both cell line models. Also, F1 showed a higher rate of late apoptosis than the pure drug and the corresponding non-medicated formulation. A morphological study revealed significant changes in the HepG2 cells compared to untreated cells. More cells halted in the S phase, and a marked decrease in the proportions of cells in the G1/G0 phase was observed when using SNEDDS formulation compared to pure drug. Thus, SNEDDS formulation is a promising drug delivery system for improving the antiproliferative activity of 6-MP, especially when turmeric oil is incorporated.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulaziz A Kalantan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Lasri J, Eltayeb NE, Soliman SM, Ali EMM, Alhayyani S, Akhdhar A. Synthesis, Crystal Structure, DFT, and Anticancer Activity of Some Imine-Type Compounds via Routine Schiff Base Reaction: An Example of Unexpected Cyclization to Oxazine Derivative. Molecules 2023; 28:4766. [PMID: 37375321 DOI: 10.3390/molecules28124766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The synthesis, characterization, and anticancer properties of three imine-type compounds 1-3 and an unexpected oxazine derivative 4 are presented. The reaction of p-dimethylaminobenzaldehyde or m-nitrobenzaldehyde with hydroxylamine hydrochloride afforded the corresponding oximes 1-2 in good yields. Additionally, the treatment of benzil with 4-aminoantipyrine or o-aminophenol was investigated. Routinely, the Schiff base (4E)-4-(2-oxo-1,2-diphenylethylideneamino)-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one 3 was obtained in the case of 4-aminoantipyrine. Unexpectedly, the reaction of benzil with o-aminophenol proceeded with cyclization to produce the 2,3-diphenyl-2H-benzo[b][1,4]oxazin-2-ol 4. The structures of compounds 3 and 4 were unambiguously determined by single crystal X-ray diffraction. Hirshfeld analysis of molecular packing revealed the importance of the O…H (11.1%), N…H (3.4%), C…H (29.4%), and C…C (1.6) interactions in the crystal stability of 3. In the case of 4, the O…H (8.8%), N…H (5.7%), and C…H (30.3%) interactions are the most important. DFT calculations predicted that both compounds have a polar nature, and 3 (3.4489 Debye) has higher polarity than 4 (2.1554 Debye). Different reactivity descriptors were calculated for both systems based on the HOMO and LUMO energies. The NMR chemical shifts were calculated and were found well correlated with the experimental data. HepG2 growth was suppressed by the four compounds more than MCF-7. The IC50 values of 1 against HepG2 and MCF-7 cell lines were the lowest, and it is considered the most promising candidate as an anticancer agent.
Collapse
Affiliation(s)
- Jamal Lasri
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, P.O. Box 344, Jeddah 21589, Saudi Arabia
| | - Naser E Eltayeb
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, P.O. Box 344, Jeddah 21589, Saudi Arabia
| | - Saied M Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, Alexandria 21321, Egypt
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, P.O. Box 344, Jeddah 21589, Saudi Arabia
| | - Abdullah Akhdhar
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
13
|
Uzuğ S, Çetin O, Aydın B, İçhedef Ç, Teksöz S. In vitro evaluation of radiolabeled methotrexate loaded magnetic nanoparticle delivery system. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
14
|
Alhayyani S, Akhdhar A, Asseri AH, Mohammed AMA, Hussien MA, Roselin LS, Hosawi S, AlAbbasi F, Alharbi KH, Baty RS, Kalantan AA, Ali EMM. Potential Anticancer Activity of Juniperus procera and Molecular Docking Models of Active Proteins in Cancer Cells. Molecules 2023; 28:molecules28052041. [PMID: 36903287 PMCID: PMC10004709 DOI: 10.3390/molecules28052041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/04/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Medicinal plants provide a wide range of active compounds that can be exploited to create novel medicines with minimal side effects. The current study aimed to identify the anticancer properties of Juniperus procera (J. procera) leaves. Here, we demonstrate that J. procera leaves' methanolic extract suppresses cancer cells in colon (HCT116), liver (HepG2), breast (MCF-7), and erythroid (JK-1) cell lines. By applying GC/MS, we were able to determine the components of the J. procera extract that might contribute to cytotoxicity. Molecular docking modules were created that used active components against cyclin-dependent kinase 5 (Cdk5) in colon cancer, aromatase cytochrome P450 in the breast cancer receptor protein, the -N terminal domain in the erythroid cancer receptor of the erythroid spectrin, and topoisomerase in liver cancer. The results demonstrate that, out of the 12 bioactive compounds generated by GC/MS analysis, the active ingredient 2-imino-6-nitro-2H-1-benzopyran-3-carbothiamide proved to be the best-docked chemical with the chosen proteins impacted by DNA conformational changes, cell membrane integrity, and proliferation in molecular docking studies. Notably, we uncovered the capacity of J. procera to induce apoptosis and inhibit cell growth in the HCT116 cell line. Collectively, our data propose that J. procera leaves' methanolic extract has an anticancer role with the potential to guide future mechanistic studies.
Collapse
Affiliation(s)
- Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Correspondence: ; Tel.: +966-507748344
| | - Abdullah Akhdhar
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdelhafeez M. A. Mohammed
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Department of Chemistry, Faculty of Education, Alzaiem Alazhari University, Khartoum 13311, Sudan
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42521, Egypt
| | - L. Selva Roselin
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Salman Hosawi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad AlAbbasi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khadijah H. Alharbi
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Roua S. Baty
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Abdulaziz A. Kalantan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ehab M. M. Ali
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Division of Biochemistry, Chemistry Department, Faculty of Science Tanta University, Tanta 31527, Egypt
| |
Collapse
|
15
|
Methotrexate loaded in alginate beads for controlled drug release against breast cancer. Gene 2023; 851:146941. [DOI: 10.1016/j.gene.2022.146941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/02/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
|
16
|
Al-Rashdi KS, Babgi BA, Ali EMM, Jedidi A, Emwas AHM, Davaasuren B, Jaremko M, Humphrey MG. Tuning anticancer properties and DNA-binding of Pt( ii) complexes via alteration of nitrogen softness/basicity of tridentate ligands †. RSC Adv 2023; 13:9333-9346. [PMID: 36959884 PMCID: PMC10028500 DOI: 10.1039/d3ra00395g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
Nine tridentate Schiff base ligands of the type (N^N^O) were synthesized from reactions of primary amines {2-picolylamine (Py), N-phenyl-1,2-diaminobenzene (PhN), and N-phenyl-1,2-diaminoethane(EtN)} and salicylaldehyde derivatives {3-ethoxy (OEt), 4-diethylamine (NEt2) and 4-hydroxy (OH)}. Complexes with the general formula Pt(N^N^O)Cl were synthesized by reacting K2PtCl4 with the ligands in DMSO/ethanol mixtures. The ligands and their complexes were characterized by NMR spectroscopy, mass spectrometry and elemental analysis. The DNA-binding behaviours of the platinum(ii) complexes were investigated by two techniques, indicating good binding affinities and a two-stage binding process for seven complexes: intercalation followed by switching to a covalent binding mode over time. The other two complexes covalently bond to ct-DNA without intercalation. Theoretical calculations were used to shed light on the electronic and steric factors that lead to the difference in DNA-binding behavior. The reactions of some platinum complexes with guanine were investigated experimentally and theoretically. The binding of the complexes with bovine serum albumin (BSA) indicated a static interaction with higher binding affinities for the ethoxy-containing complexes. The half maximal inhibitory concentration (IC50) values against MCF-7 and HepG2 cell lines suggest that platinum complexes with tridentate ligands of N-phenyl-o-phenylenediamine or pyridyl with 3-ethoxysalicylimine are good chemotherapeutic candidates. Pt-Py-OEt and Pt-PhN-OEt have IC50 values against MCF-7 of 13.27 and 10.97 μM, respectively, compared to 18.36 μM for cisplatin, while they have IC50 values against HepG2 of 6.99 and 10.15 μM, respectively, compared to 19.73 μM for cisplatin. The cell cycle interference behaviour with HepG2 of selected complexes is similar to that of cisplatin, suggesting apoptotic cell death. The current work highlights the impact of the tridentate ligand on the biological properties of platinum complexes. The article illustrates the design flexibility of tridentate ligands and the resultant platinum complexes, highlighting the impact of this design flexibility on the anticancer potential.![]()
Collapse
Affiliation(s)
- Kamelah S. Al-Rashdi
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityP.O. Box 80203Jeddah 21589Saudi Arabia+966 555563702
- Department of Chemistry, Al-Qunfudah University College, Umm Al-Qura UniversityAl-Qunfudah 1109Saudi Arabia
| | - Bandar A. Babgi
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityP.O. Box 80203Jeddah 21589Saudi Arabia+966 555563702
| | - Ehab M. M. Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz UniversityP.O. Box 80203Jeddah 21589Saudi Arabia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta UniversityTanta 31527Egypt
| | - Abdesslem Jedidi
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityP.O. Box 80203Jeddah 21589Saudi Arabia+966 555563702
| | - Abdul-Hamid M. Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Bambar Davaasuren
- Core Labs, King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Mark G. Humphrey
- Research School of Chemistry, Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
17
|
Jamal A, Asseri AH, Ali EMM, El-Gowily AH, Khan MI, Hosawi S, Alsolami R, Ahmed TA. Preparation of 6-Mercaptopurine Loaded Liposomal Formulation for Enhanced Cytotoxic Response in Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4029. [PMID: 36432314 PMCID: PMC9695241 DOI: 10.3390/nano12224029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
6-Mercaptopurine (6-MP) is a well-known immunosuppressive medication with proven anti-proliferative activities. 6-MP possesses incomplete and highly variable oral absorption due to its poor water solubility, which might reduce its anti-cancer properties. To overcome these negative effects, we developed neutral and positively charged drug-loaded liposomal formulations utilizing the thin-film hydration technique. The prepared liposomal formulations were characterized for their size, polydispersity index (PDI), zeta potential, and entrapment efficiency. The average size of the prepared liposomes was between 574.67 ± 37.29 and 660.47 ± 44.32 nm. Positively charged liposomes (F1 and F3) exhibited a lower PDI than the corresponding neutrally charged ones (F2 and F4). Entrapment efficiency was higher in the neutral liposomes when compared to the charged formulation. F1 showed the lowest IC50 against HepG2, HCT116, and MCF-7 cancer cells. HepG2 cells treated with F1 showed the highest level of inhibition of cell proliferation with no evidence of apoptosis. Cell cycle analysis showed an increase in the G1/G0 and S phases, along with a decrease in the G2/M phases in the cell lines treated with drug loaded positively charged liposomes when compared to free positive liposomes, indicating arrest of cells in the S phase due to the stoppage of priming and DNA synthesis outside the mitotic phase. As a result, liposomes could be considered as an effective drug delivery system for treatment of a variety of cancers; they provide a chance that a nanoformulation of 6-MP will boost the cytotoxicity of the drug in a small pharmacological dose which provides a dosage advantage.
Collapse
Affiliation(s)
- Alam Jamal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amer H. Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ehab M. M. Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Division of Biochemistry Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Afnan H. El-Gowily
- Division of Biochemistry Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reem Alsolami
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Elkomy MH, Ali AA, Eid HM. Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review. J Control Release 2022; 351:923-940. [DOI: 10.1016/j.jconrel.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/26/2022]
|
19
|
Al-Rashdi KS, Babgi BA, Ali EMM, Davaasuren B, Jedidi A, Emwas AHM, Alrayyani MA, Jaremko M, Humphrey MG, Hussien MA. Tuning the anticancer properties of Pt(ii) complexes via structurally flexible N-(2-picolyl)salicylimine ligands. RSC Adv 2022; 12:27582-27595. [PMID: 36276022 PMCID: PMC9514381 DOI: 10.1039/d2ra04992a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/17/2022] [Indexed: 09/12/2023] Open
Abstract
Three tridentate Schiff base ligands were synthesized from the reactions between 2-picolylamine and salicylaldehyde derivatives (3-ethoxy (OEt), 4-diethylamino (NEt2) and 4-hydroxy (OH)). Complexes with the general formula Pt(N^N^O)Cl were obtained from reactions between the ligands and K2PtCl4. The ligands and their complexes were characterized by NMR spectroscopy, mass spectrometry and elemental analysis. Further confirmation of the structure of Pt-OEt was achieved by single-crystal X-ray diffraction. The DMSO/chlorido exchange process at Pt-OEt was investigated by monitoring the change in conductivity, revealing very slow dissociation in DMSO. Moreover, solvent/chlorido exchange for Pt-OEt and Pt-NEt2 were investigated by NMR spectroscopy in DMSO and DMSO/D2O; Pt-NEt2 forms an adduct with DMSO while Pt-OEt forms adducts with DMSO and water. The DNA-binding behaviour of the platinum(ii) complexes was investigated by two techniques. Pt-NEt2 has the best apparent binding constant. The intercalation mode of interaction with ct-DNA was suggested by molecular docking studies and the increase in the relative viscosity of ct-DNA with increasing concentrations of the platinum(ii) complexes. However, the gradual decrease in the relative viscosity over time at constant concentration of platinum(ii) complexes indicated a shift from intercalation to a covalent binding mode. Anticancer activities of the ligands and their platinum(ii) complexes were examined against two cell lines. The platinum(ii) complexes exhibit superior cytotoxicity to that of their ligands. Among the platinum(ii) complexes, Pt-OEt possesses the best IC50 against both cell lines, its cytotoxicity being comparable to that observed for cisplatin. Cell cycle arrest in the HepG2 cell line upon treatment with Pt-OEt and Pt-NEt2 was investigated and compared to that of cisplatin; the change in the cell accumulation patterns supports the presumption of an apoptotic cell death pathway. The optimized structures of the B-DNA trimer adducts with the platinum complexes showed hydrogen-bonding interactions between the ligands and nucleobases, affecting the inter-strand hydrogen bonding within the DNA, and highlighting the strong ability of the complexes to induce conformational changes in the DNA, leading to the activation of apoptotic cell death. In summary, the current study demonstrates promising new anticancer platinum(ii) complexes with highly flexible tridentate ligands; the functional groups on the ligands are important in tuning their DNA binding/anticancer properties.
Collapse
Affiliation(s)
- Kamelah S Al-Rashdi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966 555563702
| | - Bandar A Babgi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966 555563702
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Bambar Davaasuren
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdesslem Jedidi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966 555563702
| | - Abdul-Hamid M Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Maymounah A Alrayyani
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966 555563702
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Mostafa A Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966 555563702
- Department of Chemistry, Faculty of Science, Port Said University Port Said 42521 Egypt
| |
Collapse
|
20
|
Shariatifar H, Ranjbarian F, Hajiahmadi F, Farasat A. A comprehensive review on methotrexate containing nanoparticles; an appropriate tool for cancer treatment. Mol Biol Rep 2022; 49:11049-11060. [PMID: 36097117 DOI: 10.1007/s11033-022-07782-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
For more than seven decades, methotrexate has been used all over the world for treatment of different diseases such as: cancer, autoimmune diseases, and rheumatoid arthritis. Several studies have addressed its formula, efficacy, and delivery methods in recent years. These studies have been focused on the effectiveness of different nanoparticles on drug delivery, delivery of the drug to the target cells, and attenuation of harm to the host cell. Whereas, the main usages of methotrexate are in cancer treatment field, this review provided a brief perspective into using different nanoparticles and their role in the treatment of different cancers.
Collapse
Affiliation(s)
- Hanifeh Shariatifar
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fateme Ranjbarian
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fahimeh Hajiahmadi
- Department of Medical Imaging Technology (Molecular Imaging), School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
21
|
Potential Anticancer Activities and Catalytic Oxidation Efficiency of Platinum(IV) Complex. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144406. [PMID: 35889278 PMCID: PMC9323151 DOI: 10.3390/molecules27144406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
The treatment of an aqueous acetonitrile solution of chloroplatinic acid hydrate H2PtCl6.xH2O and pyridine-2-carbaldehyde-oxime (paOH) in the presence of potassium thiocyanate at room temperature (25°) led to the formation of a new Pt(IV) complex with the formula [Pt(SCN)2(paO)2], (1). Complex 1 was fully characterized by FT-IR, UV-vis and NMR spectroscopic techniques as well as elemental analysis. The crystallographic structure of complex 1 was obtained by single-crystal X-ray diffraction. The structure of complex 1 consists of a distorted octahedral geometrical environment around the platinum center in which the coordination sites are occupied by two terminal thiocyanate ligands in trans arrangement and two bidentate paO ligands through four nitrogen atoms. In addition, the in vitro evaluation of the cytotoxicity of platinum complex 1 against four different cancer cell lines was performed. The IC50 values for colon (HCT116), liver (HepG2), breast (MCF-7) and erythroid (JK-1) treated with complex 1 are 19 ± 6, 21 ± 5, 22 ± 6, and 13 ± 3 μM, respectively. In HCT116 cells treated with the IC50 dose of our title compound, apoptosis and necrosis were increased by 34% and 27.8%, respectively. Cells halted in the proliferative phase (S phase) to 21.7 % and 29.8% in HCT116 and HepG2 cells treated with complex 1 have anti-proliferative actions. Furthermore, the catalytic activity of synthesized complex 1 was examined in the oxidation reaction of benzyl alcohols in the presence of an oxidant. Finally, the luminescence behavior of complex 1 was investigated.
Collapse
|
22
|
Halder J, Pradhan D, Biswasroy P, Rai VK, Kar B, Ghosh G, Rath G. Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer. J Drug Target 2022; 30:1055-1075. [PMID: 35786242 DOI: 10.1080/1061186x.2022.2095389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Breast cancer (BC) is the deadliest malignant disorder globally, with a significant mortality rate. The development of tolerance throughout cancer treatment and non-specific targeting limits the drug's response. Currently, nano therapy provides an interdisciplinary area for imaging, diagnosis, and targeted drug delivery for BC. Several overexpressed biomarkers, proteins, and receptors are identified in BC, which can be potentially targeted by using nanomaterial for drug/gene/immune/photo-responsive therapy and bio-imaging. In recent applications, magnetic iron oxide nanoparticles (IONs) have shown tremendous attention to the researcher because they combine selective drug delivery and imaging functionalities. IONs can be efficaciously functionalised for potential application in BC therapy and diagnosis. In this review, we explored the current application of IONs in chemotherapeutics delivery, gene delivery, immunotherapy, photo-responsive therapy, and bio-imaging for BC based on their molecular mechanism. In addition, we also highlighted the effect of IONs' size, shape, dimension, and functionalization on BC targeting and imaging. To better comprehend the functionalization potential of IONs, this paper provides an outline of BC cellular development. IONs for BC theranostic are also reviewed based on their clinical significance and future aspects.
Collapse
Affiliation(s)
- Jitu Halder
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Deepak Pradhan
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Prativa Biswasroy
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Biswakanth Kar
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Ghosh
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Rath
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
23
|
Polymeric Nanoparticles: Exploring the Current Drug Development and Therapeutic Insight of Breast Cancer Treatment and Recommendations. Polymers (Basel) 2021; 13:polym13244400. [PMID: 34960948 PMCID: PMC8703470 DOI: 10.3390/polym13244400] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 02/06/2023] Open
Abstract
This manuscript aims to provide the latest update on polymeric nanoparticle drug delivery system for breast cancer treatment after 2015 and how research-oriented it is based on the available research data. Therefore, the authors have chosen breast cancer which is the most frequent and common reason for mortality in women worldwide. The first-line treatment for breast cancer treatment is chemotherapy, apart from surgery, radiation and hormonal therapy. Chemotherapy is associated with lesser therapeutics and undesirable side effects and hence. In addition, drug resistance affects the therapeutic dose to the target site. Although various nano-based formulations have been developed for effective treatment, the polymeric nanoparticles effectively avoid the lacunae of conventional chemotherapy. There has been an effort made to understand the chemotherapy drugs and their conventional formulation-related problems for better targeting and effective drug delivery for breast cancer treatment. Thus, the polymeric nanoparticles as a strategy overcome the associated problems with resulting dose reduction, enhanced bioavailability, reduced side effects, etc. This present review has compiled the research reports published from 2015 to 2021 from different databases, such as PubMed, Google Scholar, ScienceDirect, which are related to breast cancer treatment in which the drug delivery of numerous chemotherapeutic agents alone or in combination, including phytoconstituents formulated into various polymer-based nanoparticles.
Collapse
|
24
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
25
|
Identification of AGT and CD44 in methotrexate-resistant colorectal cancer and reversal of methotrexate-resistance. Pathol Res Pract 2021; 229:153717. [PMID: 34952427 DOI: 10.1016/j.prp.2021.153717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/03/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022]
Abstract
This study aims to screen out hub genes in 2 methotrexate-resistant colorectal cancer (CRC) cells (HT29 and Caco2), compared with parental CRC cells and reverse methotrexate-resistance in methotrexate-resistant CRC. GEO database and R software were utilized to analyze the gene expression profiles GSE11440 and GSE16066. Venn diagram was used to identify intersection differentially expressed genes (DEGs) between GSE11440 and GSE16066. Protein-protein interaction (PPI) was utilized to screen out central node genes. Hub genes were determined by volcano graphs, heatmaps and box plots. The functional enrichment analysis was exhibited with DAVID. The GEPIA was used to obtain survival curves to analyze association between patient prognosis and hub genes. Western blotting was used to detect the expressions of hub genes. CCK-8 assay was used to show MTX-resistant CRC cell viability following CD44 inhibitor (THIQ) and AGT inhibitor (O6-BG) treatments. In our results, there were 180 intersection DEGs between GSE11440 and GSE16066. CD44 and AGT were screened out as hub genes by PPI, heatmaps, volcano and box plots. In the 2 MTX-resistant CRC cells, the expressions of CD44 and AGT were up-regulated compared with parental CRC cells. The results of western blotting showed that CD44 and AGT were up-regulated in MTX-resistant HT29 and Caco2 cells compared with parental CRC cells. CCK-8 assay results showed that the combination of MTX with O6-BG or THIQ could significantly reduce the activity of MTX-resistant CRC cells. This research screened out CD44 and AGT in MTX-resistant CRC cells by bioinformatics and suggested that the combination of MTX with O6-BG or THIQ could enhance the sensitivity of MTX-resistant CRC cells to MTX. This research provides a new strategy for overcoming MTX-resistance in CRC.
Collapse
|
26
|
Synthesis and Characterization of a Fe 3O 4@PNIPAM-Chitosan Nanocomposite and Its Potential Application in Vincristine Delivery. Polymers (Basel) 2021; 13:polym13111704. [PMID: 34070978 PMCID: PMC8197087 DOI: 10.3390/polym13111704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
In this research, we conducted a systematic evaluation of the synthesis parameters of a multi-responsive core-shell nanocomposite (Fe3O4 nanoparticles coated by poly(N-isopropylacrylamide) (PNIPAM) in the presence of chitosan (CS) (Fe3O4@PNIPAM-CS). Scanning electron microscopy (SEM) was used to follow the size and morphology of the nanocomposite. The functionalization and the coating of Fe3O4 nanoparticles (Nps) were evaluated by the ζ-potential evolution and Fourier Transform infrared spectroscopy (FTIR). The nanocomposite exhibited a collapsed structure when the temperature was driven above the lower critical solution temperature (LCST), determined by dynamic light scattering (DLS). The LCST was successfully shifted from 33 to 39 °C, which opens the possibility of using it in physiological systems. A magnetometry test was performed to confirm the superparamagnetic behavior at room temperature. The obtained systems allow the possibility to control specific properties, such as particle size and morphology. Finally, we performed vincristine sulfate loading and release tests. Mathematical analysis reveals a two-stage structural-relaxation release model beyond the LCST. In contrast, a temperature of 25 °C promotes the diffusional release model. As a result, a more in-depth comprehension of the release kinetics was achieved. The synthesis and study of a magnetic core-shell nanoplatform offer a smart material as an alternative targeted release therapy due to its thermomagnetic properties.
Collapse
|
27
|
Li W, Cao Z, Yu L, Huang Q, Zhu D, Lu C, Lu A, Liu Y. Hierarchical drug release designed Au @PDA-PEG-MTX NPs for targeted delivery to breast cancer with combined photothermal-chemotherapy. J Nanobiotechnology 2021; 19:143. [PMID: 34001161 PMCID: PMC8130275 DOI: 10.1186/s12951-021-00883-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer with a low survival rate and one of the major causes of cancer-related death. Methotrexate (MTX) is an anti-tumor drug used in the treatment of BC. Poor dispersion in water and toxic side effects limit its clinical application. Gold nanoparticles (AuNPs), owing to their specific structures and unique biological and physiochemical properties, have emerged as potential vehicles for tumor targeting, bioimaging and cancer therapy. An innovative nano drug-loading system (Au @PDA-PEG-MTX NPs) was prepared for targeted treatment of BC. Au @PDA-PEG-MTX NPs under near infra-red region (NIR) irradiation showed effective photothermal therapy against MDA-MB-231 human BC cells growth in vitro by inducing apoptosis through triggering reactive oxygen species (ROS) overproduction and generating excessive heat. In vivo studies revealed deep penetration ability of Au @PDA-PEG-MTX NPs under NIR irradiation to find application in cancer-targeted fluorescence imaging, and exhibited effective photothermal therapy against BC xenograft growth by inducing apoptosis. Histopathological analysis, cellular uptake, cytotoxicity assay, and apoptosis experiments indicated that Au @PDA-PEG-MTX NPs possessed a good therapeutic effect with high biocompatibility and fewer side effects. This Au NPs drug-loading system achieved specific targeting of MTX to BC cells by surface functionalisation, fluorescence imaging under laser irradiation, combined photothermal-chemotherapy, and pH- and NIR- triggered hierarchical drug release.
Collapse
Affiliation(s)
- Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
28
|
Ahmad MZ, Rizwanullah M, Ahmad J, Alasmary MY, Akhter MH, Abdel-Wahab BA, Warsi MH, Haque A. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1869737] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | | | | | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| | - Musarrat Husain Warsi
- Department of Pharmaceutics, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, Prince Sattam bin Abdulaziz University College of Pharmacy, Alkharj Al-Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Marine-derived drugs: Recent advances in cancer therapy and immune signaling. Biomed Pharmacother 2020; 134:111091. [PMID: 33341044 DOI: 10.1016/j.biopha.2020.111091] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
The marine environment is an enormous source of marine-derived natural products (MNPs), and future investigation into anticancer drug discovery. Current progress in anticancer drugs offers a rise in isolation and clinical validation of numerous innovative developments and advances in anticancer therapy. However, only a limited number of FDA-approved marine-derived anticancer drugs are available due to several challenges and limitations highlighted here. The use of chitosan in developing marine-derived drugs is promising in the nanotech sector projected for a prolific anticancer drug delivery system (DDS). The cGAS-STING-mediated immune signaling pathway is crucial, which has not been significantly investigated in anticancer therapy and needs further attention. Additionally, a small range of anticancer mediators is currently involved in regulating various JAK/STAT signaling pathways, such as immunity, cell death, and tumor formation. This review addressed critical features associated with MNPs, origin, and development of anticancer drugs. Moreover, recent advances in the nanotech delivery of anticancer drugs and understanding into cancer immunity are detailed for improved human health.
Collapse
|
30
|
Cytotoxic and Apoptotic Effect of Nanoclinoptilolite on Canine Osteosarcoma Cell Lines. J Vet Res 2020; 64:589-596. [PMID: 33367149 PMCID: PMC7734687 DOI: 10.2478/jvetres-2020-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/23/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Clinoptilolite has antiviral, antibacterial, anti-inflammatory, antidiabetic, and anticancer properties due to its biological activities. In various cancer cell culture studies, it has been reported effective against tumour cells and gave positive results in treatment of various tumours in dogs. No study was found on the effects of the nanoparticulate form, nanoclinoptilolite, on cancer cells. The aim of this study was to determine its cytotoxic and apoptotic effects in canine osteosarcoma (OSA) cell culture. Material and Methods Doses at 50% inhibitory concentration were determined by measuring the dose- and duration-dependent cytotoxicity of nanoclinoptilolite on canine D-17 osteosarcoma cells by methylthiazol tetrazolium (MTT) test for 24 h, 48 h, and 72 h. Murine caspase-3 and -7 activity and expression levels of the BAX and BCL2 genes were measured using RT-PCR to investigate the apoptotic effect. Results Nanoclinoptilolite decreased cell viability and induced caspase-3- and -7-mediated apoptosis in treated canine OSA cells. Furthermore, its application to canine OSA cells downregulated the expression of BCL2 and upregulated the expression of proapoptotic BAX. Conclusion Clinoptilolite, which was previously demonstrated to have anticancer properties, decreased cell viability effectively and rapidly and increased the apoptotic cell ratio in a novel use in nanoparticle form, exhibiting this effect by increasing the BAX/BCL2 ratio.
Collapse
|
31
|
Yücel O, Şengelen A, Emik S, Önay-Uçar E, Arda N, Gürdağ G. Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells. NANOTECHNOLOGY 2020; 31:355101. [PMID: 32413875 DOI: 10.1088/1361-6528/ab9395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Methotrexate (MTX), an analog of folic acid (FA), is a drug widely used in cancer treatment. To prevent its potential toxicity and enhance therapeutic efficacy, targeted drug delivery systems, especially nanotechnology-folate platforms, are a central strategy. Gold nanoparticles (AuNPs) are promising candidates to be used as drug delivery systems because of their small particle sizes and their inertness for the body. In this study, glutathione (GSH)-coated FA-modified spherical AuNPs (5.6 nm) were successfully synthesized, and the anticancer activity of novel MTX-loaded (MTX/Au-GSH-FA) NPs (11 nm) was examined. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results showed that MTX/AuNPs possess spherical morphology, nanoscaled particle size, narrow size distribution, and good stability. In vitro studies showed that cytotoxicity of MTX/Au-GSH-FA to folate receptor-positive (FR+) human brain (U-87 MG) and cervical (HeLa) cancer cells enhanced significantly (∼3 and ∼10 fold, respectively) compared to free MTX while there was no significant effect in FR-negative human cell lines A549 (lung carcinoma), PC3 (prostate carcinoma), HEK-293 (healthy embryonic kidney). Moreover, the receptor specificity of the conjugate was shown by fluorescent microscopic imaging. In conclusion, these results indicate that the synthesized novel MTX/Au-GSH-FA NP complex seems to be a good candidate for effective and targeted delivery in FR+ cancer therapy.
Collapse
Affiliation(s)
- Oğuz Yücel
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcılar 34320, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|