1
|
Liang K, Ke Z, Huang J, Zhang X. Expression and clinical value of NLRP1 and NLRC4 inflammasomes in prostate cancer. Oncol Lett 2023; 26:385. [PMID: 37559581 PMCID: PMC10407840 DOI: 10.3892/ol.2023.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023] Open
Abstract
The present study explored the clinical value of the protein expression levels of nucleotide binding oligomerization-like receptor family pyrin domain containing 1 (NLRP1) and nucleotide-binding oligomerization domain leucine-rich repeat and caspase recruitment domain-containing 4 (NLRC4) inflammasomes in the diagnosis and treatment of prostate cancer. A total of 54 patients with prostatic hyperplasia and 58 patients with prostate cancer were recruited at The First People's Hospital of Pinghu between January and May 2022. Immunohistochemical staining was used to determine the protein expression levels of the NLRP1 and NLRC4 inflammasomes in addition to the proinflammatory cytokines IL-18 and IL-1β in the two groups of patients. The protein expression levels of NLRP1 and NLRC4 inflammasome were significantly increased in patients with prostate cancer compared with patients with prostate hyperplasia. The differences in expression of NLRP1 and NLRC4 inflammatory vesicles in prostate cancer of different stages were also compared based on data from The Cancer Genome Atlas. The protein expression level of NLRP1 demonstrated a significant positive correlation with IL-1β and IL-18 expression, and the protein expression level of the NLRC4 inflammasome was significantly positively correlated with IL-18 expression. The protein expression levels of both NLRP1 and NLRC4 demonstrated a significant positive correlation with the Gleason score of prostate cancer. The expression of NLRP1 in tumor (T)3/T4 was significantly higher compared with T1 and expression of the NLRC4 inflammasome in T2 and T3/T4 was significantly higher compared with T1. Expression of the NLRP1 and NLRC4 inflammasomes was significantly higher in patients with prostate cancer, compared with patients with prostatic hyperplasia. Therefore, expression of NLRP1 and NLRC4 may promote tumorigenesis by promoting the maturation and release of proinflammatory cytokines IL-1β and IL-18. Expression of the NLRP1 and NLRC4 inflammasomes demonstrated a significant positive correlation with the risk of prostate cancer. Expression of the NLRP1 and NLRC4 inflammasomes in middle- and advanced-stage tumors was higher compared with early-stage tumors. These results suggested that inflammasome expression may serve a significant role in the progression of tumors and could provide a fixed value for the risk assessment and prognosis prediction of prostate cancer.
Collapse
Affiliation(s)
- Ke Liang
- Department of Urology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| | - Zunjin Ke
- Department of Urology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| | - Jianhong Huang
- Department of Urology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| | - Xijiong Zhang
- Department of Pathology, The First People's Hospital of Pinghu, Pinghu, Zhejiang 314200, P.R. China
| |
Collapse
|
2
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Panyathep A, Punturee K, Chewonarin T. Inhibitory Effects of Chlorogenic Acid Containing Green Coffee Bean Extract on Lipopolysaccharide-Induced Inflammatory Responses and Progression of Colon Cancer Cell Line. Foods 2023; 12:2648. [PMID: 37509740 PMCID: PMC10378980 DOI: 10.3390/foods12142648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
An inflammatory response, related to colorectal cancer (CRC) progression, is a major subsequent result of bacterial infection following CRC surgery and should be of serious concern. Lipopolysaccharide (LPS), from the bacterial membrane, is a vital mediator of this event through binding with a Toll-like receptor 4 (TLR4) and activating through NF-κB in CRC. To identify a novel inhibitor of LPS-induced colon cancer cells (SW480), green coffee bean extract (GBE) was investigated. Ethyl acetate insoluble fraction (EIF) was mainly collected from GBE and classified as chlorogenic acid (CGA)-rich fractions. EIF and CGA inhibited TLR4 expression in LPS-induced SW480 cells. However, EIF was more dominant than CGA, via inhibition of expression and secretion of several associated mediators in inflammatory responses and CRC metastasis through NF-κB inactivation, which resulted in the abrogation of CRC migration and invasion. Thus, CGA-rich fraction from GBE can be further developed as an alternative treatment, coupled with CRC surgical treatment, to increase therapeutic efficiency and survival rate.
Collapse
Affiliation(s)
- Atita Panyathep
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Khanittha Punturee
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculties of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Wu L, Yang J, She P, Kong F, Mao Z, Wang S. Single-cell RNA sequencing and traditional RNA sequencing reveals the role of cancer-associated fibroblasts in oral squamous cell carcinoma cohort. Front Oncol 2023; 13:1195520. [PMID: 37234985 PMCID: PMC10206127 DOI: 10.3389/fonc.2023.1195520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic inflammation of the alveolar bones and connective tissues supporting teeth causes periodontal disease, one of the most prevalent infectious diseases in humans. It was previously reported that oral cancer was the sixth most common cancer in the world, followed by squamous cell carcinoma. Periodontal disease has been linked to an increased risk for oral cancer in some studies, and these studies have found a positive relationship between oral cancer and periodontal disease. In this work, we aimed to explore the potential correlation between oral squamous cell carcinoma (OSCC) and Periodontal disease. The single-cell RNA sequence analysis was applied to explore the genes that were closely associated with cancer-associated fibroblasts (CAFs). the head and neck squamous cell carcinoma. The Single sample Gene Set Enrichment Analysis (ssGSEA) algorithm was applied to explore the scores of CAFs. Subsequently, the differentially expressed analysis was applied to explore the CAFs-related genes that play a key role in the OSCC cohort. The LASSO regression analysis and the COX regression analysis were applied to construct the CAFs-based periodontal disease-related risk model. In addition, the correlation analysis was used to explore the correlation between the risk model and clinical features, immune-related cells, and immune-related genes. By using the single-cell RNA sequence analysis, we successfully obtained the biomarkers for the CAFs. Finally, we successfully obtained a six-CAFs-related genes risk model. The ROC curve and survival analysis revealed that the risk model showed good predictive value in OSCC patients. Our analysis successfully provided a new direction for the treatment and prognosis of OSCC patients.
Collapse
Affiliation(s)
- Lin Wu
- Department of Stomatology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Peng She
- Department of Stomatology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Fanzhi Kong
- Department of Stomatology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Li L, Li J. Dimerization of Transmembrane Proteins in Cancer Immunotherapy. MEMBRANES 2023; 13:393. [PMID: 37103820 PMCID: PMC10143916 DOI: 10.3390/membranes13040393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Transmembrane proteins (TMEMs) are integrated membrane proteins that span the entire lipid bilayer and are permanently anchored to it. TMEMs participate in various cellular processes. Some TMEMs usually exist and perform their physiological functions as dimers rather than monomers. TMEM dimerization is associated with various physiological functions, such as the regulation of enzyme activity, signal transduction, and cancer immunotherapy. In this review, we focus on the dimerization of transmembrane proteins in cancer immunotherapy. This review is divided into three parts. First, the structures and functions of several TMEMs related to tumor immunity are introduced. Second, the characteristics and functions of several typical TMEM dimerization processes are analyzed. Finally, the application of the regulation of TMEM dimerization in cancer immunotherapy is introduced.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingying Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
6
|
Long Y, Wang W, Zhang Y, Du F, Zhang S, Li Z, Deng J, Li J. Photoprotective Effects of Dendrobium nobile Lindl. Polysaccharides against UVB-Induced Oxidative Stress and Apoptosis in HaCaT Cells. Int J Mol Sci 2023; 24:ijms24076120. [PMID: 37047098 PMCID: PMC10094248 DOI: 10.3390/ijms24076120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Acute ultraviolet (UV)-B radiation is the major external factor causing photodamage. In this study, we aimed to determine the effects of Dendrobium nobile Lindl. polysaccharides (DNPs) on photodamage in HaCaT keratinocytes after UVB irradiation and the underlying mechanisms. We found that DNPs significantly attenuated the decline in the viability and proliferation of HaCaT cells after UVB irradiation. Moreover, DNPs scavenged reactive oxygen species (ROS), improved the activities of endogenous antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, and reduced the levels of malondialdehyde, while partially attenuating cell cycle arrest, suggesting their antioxidant and anti-apoptotic properties. The mitogen-activated protein kinase (MAPK) pathway was found to be important for the attenuation of UVB-induced photodamage in the HaCaT cells. Furthermore, DNPs exerted cytoprotective effects by downregulating UVB-induced ROS-mediated phosphorylation of MAPKs, including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase, and by inhibiting p53 expression as well as the apoptotic cascade response. Therefore, DNPs ameliorated UVB-induced oxidative damage and apoptosis in HaCaT cells via the regulation of MAPKs. Our findings thus highlight the Dendrobium nobile Lindl polysaccharides as promising therapeutic candidates for UVB-induced photodamage.
Collapse
Affiliation(s)
- Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yanyan Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Fanpan Du
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Shiqian Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
7
|
Castaño M, Tomás-Pérez S, González-Cantó E, Aghababyan C, Mascarós-Martínez A, Santonja N, Herreros-Pomares A, Oto J, Medina P, Götte M, Mc Cormack BA, Marí-Alexandre J, Gilabert-Estellés J. Neutrophil Extracellular Traps and Cancer: Trapping Our Attention with Their Involvement in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24065995. [PMID: 36983067 PMCID: PMC10056926 DOI: 10.3390/ijms24065995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, play a well-known role in defense against pathogens through phagocytosis and degranulation. However, a new mechanism involving the release of neutrophil extracellular traps (NETs) composed of DNA, histones, calprotectin, myeloperoxidase, and elastase, among others, has been described. The so-called NETosis process can occur through three different mechanisms: suicidal, vital, and mitochondrial NETosis. Apart from their role in immune defense, neutrophils and NETs have been involved in physiopathological conditions, highlighting immunothrombosis and cancer. Notably, neutrophils can either promote or inhibit tumor growth in the tumor microenvironment depending on cytokine signaling and epigenetic modifications. Several neutrophils' pro-tumor strategies involving NETs have been documented, including pre-metastatic niche formation, increased survival, inhibition of the immune response, and resistance to oncologic therapies. In this review, we focus on ovarian cancer (OC), which remains the second most incidental but the most lethal gynecologic malignancy, partly due to the presence of metastasis, often omental, at diagnosis and the resistance to treatment. We deepen the state-of-the-art on the participation of NETs in OC metastasis establishment and progression and their involvement in resistance to chemo-, immuno-, and radiotherapies. Finally, we review the current literature on NETs in OC as diagnostic and/or prognostic markers, and their contribution to disease progression at early and advanced stages. The panoramic view provided in this article might pave the way for enhanced diagnostic and therapeutic strategies to improve the prognosis of cancer patients and, specifically, OC patients.
Collapse
Affiliation(s)
- María Castaño
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Sarai Tomás-Pérez
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Eva González-Cantó
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Cristina Aghababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Andrea Mascarós-Martínez
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Nuria Santonja
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | | | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Bárbara Andrea Mc Cormack
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
- Department of Pediatrics, Obstetrics, and Gynaecology, University of Valencia, 46014 Valencia, Spain
| |
Collapse
|
8
|
Jain N, Srinivasarao DA, Famta P, Shah S, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sci 2023; 316:121399. [PMID: 36646378 DOI: 10.1016/j.lfs.2023.121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Macrophages play a major role in maintaining an organism's physiology, such as development, homeostasis, tissue repair, and immunity. These immune cells are known to be involved in tumor progression and modulation. Monocytes can be polarized to two types of macrophages (M1 macrophages and pro-tumor M2 macrophages). Through this article, we aim to emphasize the potential of targeting macrophages in order to improve current strategies for tumor management. Various strategies that target macrophages as a therapeutic target have been discussed along with ongoing clinical trials. We have discussed the role of macrophages in various stages of tumor progression epithelial-to-mesenchymal transition (EMT), invasion, maintaining the stability of circulating tumor cells (CTCs) in blood, and establishing a premetastatic niche along with the role of various cytokines and chemokines involved in these processes. Intriguingly macrophages can also serve as drug carriers due to their tumor tropism along the chemokine gradient. They surpass currently explored nanotherapeutics in tumor accumulation and circulation half-life. We have emphasized on macrophage-based biomimetic formulations and macrophage-hitchhiking as a strategy to effectively target tumors. We firmly believe that targeting macrophages or utilizing them as an indigenous carrier system could transform cancer management.
Collapse
Affiliation(s)
- Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
9
|
The novel anti-cancer feature of Brazzein through activating of hTLR5 by integration of biological evaluation: molecular docking and molecular dynamics simulation. Sci Rep 2022; 12:21979. [PMID: 36539522 PMCID: PMC9768156 DOI: 10.1038/s41598-022-26487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Many of plant proteins exhibit the properties similar to the antitumor proteins although the anticancer activity of Brazzein on modulating the autophagy signaling pathway has not been determined so far. The present study aimed to develop a simplified system to enable the rational design of the activating extracellular domain of human Toll-like receptor 5 (hTLR5). To identify the anticancer effect of Brazzein, HADDOCK program and molecular dynamics (MD) simulation were applied to examine the binding of the wild type (WT) and p.A19K mutant of Brazzein to the TLR5. The expression of MAP1S and TNF-α genes was estimated based on real-time PCR. The results clearly confirmed that the WT of Brazzein activated hTLR5 in the MCF-7 cell line since the genes were more and significantly less expressed in the cells treated with the WT and p.A19K mutant than the control, respectively. The snapshots of MD simulation exhibit the consistent close interactions of hTLR5 with the two helices of Brazzein on its lateral side. The results of per residue-free energy decomposition analysis substantiate those of intermolecular contact analysis perfectly one. We propose that the WT of Brazzein can act as an antitumor drug candidate.
Collapse
|
10
|
Exosomes carrying immune checkpoints, a promising therapeutic approach in cancer treatment. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:183. [PMID: 36071295 DOI: 10.1007/s12032-022-01781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 10/14/2022]
Abstract
Exosomes are a subgroup of extracellular vesicles generated by distinct cells. Tumor-derived extracellular vesicles convey immunological checkpoint molecules. TEXs as critical mediators in tumor development, metastasis, and immune escape have recently become the focus of scientific research. Exosomes are involved in the regulation of the immune system. Exosomes interact with target cells in the tumor microenvironment, changing their function based on the cargo they contain. Exosomal immune checkpoints might be exploited to track tumor immune evasion, treatment response, and patient prognosis while enhancing tumor cell proliferation and spread. This review focuses on tumor-derived exosomes, their immunosuppressive effects in mice models, and their role in cancer immunotherapy. Exosomes are being studied as possible cancer vaccines, with numerous uses in tumor immunotherapy. Exosomes can carry chemotherapeutics, siRNA, and monoclonal antibodies. Exosomes produced by macrophages might be used to treat cancer. These and other clinical consequences provide new doors for cancer treatment.
Collapse
|
11
|
Gubatan J, Boye TL, Temby M, Sojwal RS, Holman DR, Sinha SR, Rogalla SR, Nielsen OH. Gut Microbiome in Inflammatory Bowel Disease: Role in Pathogenesis, Dietary Modulation, and Colitis-Associated Colon Cancer. Microorganisms 2022; 10:1371. [PMID: 35889090 PMCID: PMC9316834 DOI: 10.3390/microorganisms10071371] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/11/2022] Open
Abstract
The gut microbiome has increasingly been recognized as a critical and central factor in inflammatory bowel disease (IBD). Here, we review specific microorganisms that have been suggested to play a role in the pathogenesis of IBD and the current state of fecal microbial transplants as a therapeutic strategy in IBD. We discuss specific nutritional and dietary interventions in IBD and their effects on gut microbiota composition. Finally, we examine the role and mechanisms of the gut microbiome in mediating colitis-associated colon cancer.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Theresa Louise Boye
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Copenhagen, Denmark; (T.L.B.); or (O.H.N.)
| | - Michelle Temby
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Raoul S. Sojwal
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Derek R. Holman
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Sidhartha R. Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Stephan R. Rogalla
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.T.); (R.S.S.); (D.R.H.); (S.R.S.); (S.R.R.)
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Copenhagen, Denmark; (T.L.B.); or (O.H.N.)
| |
Collapse
|
12
|
The Critical Role of Toll-like Receptor-mediated Signaling in Cancer Immunotherapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
13
|
Toll-like Receptor 4, Osteoblasts and Leukemogenesis; the Lesson from Acute Myeloid Leukemia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030735. [PMID: 35163998 PMCID: PMC8838156 DOI: 10.3390/molecules27030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognizing receptor that can bind exogenous and endogenous ligands. It is expressed by acute myeloid leukemia (AML) cells, several bone marrow stromal cells, and nonleukemic cells involved in inflammation. TLR4 can bind a wide range of endogenous ligands that are present in the bone marrow microenvironment. Furthermore, the TLR4-expressing nonleukemic bone marrow cells include various mesenchymal cells, endothelial cells, differentiated myeloid cells, and inflammatory/immunocompetent cells. Osteoblasts are important stem cell supporting cells localized to the stem cell niches, and they support the proliferation and survival of primary AML cells. These supporting effects are mediated by the bidirectional crosstalk between AML cells and supportive osteoblasts through the local cytokine network. Finally, TLR4 is also important for the defense against complicating infections in neutropenic patients, and it seems to be involved in the regulation of inflammatory and immunological reactions in patients treated with allogeneic stem cell transplantation. Thus, TLR4 has direct effects on primary AML cells, and it has indirect effects on the leukemic cells through modulation of their supporting neighboring bone marrow stromal cells (i.e., modulation of stem cell niches, regulation of angiogenesis). Furthermore, in allotransplant recipients TLR4 can modulate inflammatory and potentially antileukemic immune reactivity. The use of TLR4 targeting as an antileukemic treatment will therefore depend both on the biology of the AML cells, the biological context of the AML cells, aging effects reflected both in the AML and the stromal cells and the additional antileukemic treatment combined with HSP90 inhibition.
Collapse
|
14
|
Chen YQ, Sheng YJ, Ding HM, Ma YQ. Efficient calculation of protein-ligand binding free energy with GFN methods: the power of cluster model. Phys Chem Chem Phys 2022; 24:14339-14347. [DOI: 10.1039/d2cp00161f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protein-ligand interactions are crucial in many biochemical processes and biomedical applications, yet it still remains challenging to accurately calculating the binding free energy of their interactions. In this work,...
Collapse
|
15
|
Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155. Cell Commun Signal 2021; 19:90. [PMID: 34479599 PMCID: PMC8414775 DOI: 10.1186/s12964-021-00771-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC) has closely been associated with an increased risk of colorectal cancer. However, the exact mechanisms underlying colitis-associated cancer (CAC) development remain unclear. As a classic pattern-recognition receptor, Toll like receptor (TLR)4 is a canonical receptor for lipopolysaccharide of Gram-negative bacteria (including two CAC-associated pathogens Fusobacterium nucleatum and Salmonella), and functions as a key bridge molecule linking oncogenic infection to colonic inflammatory and malignant processes. Accumulating studies verified the overexpression of TLR4 in colitis and CAC, and the over-expressed TLR4 might promote colitis-associated tumorigenesis via facilitating cell proliferation, protecting malignant cells against apoptosis, accelerating invasion and metastasis, as well as contributing to the creation of tumor-favouring cellular microenvironment. In recent years, considerable attention has been focused on the regulation of TLR4 signaling in the context of colitis-associated tumorigenesis. MicroRNA (miR)-155 and TLR4 exhibited a similar dynamic expression change during CAC development and shared similar CAC-promoting properties. The available data demonstrated an interplay between TLR4 and miR-155 in the context of different disorders or cell lines. miR-155 could augment TLR4 signaling through targeting negative regulators SOCS1 and SHIP1; and TLR4 activation would induce miR-155 expression via transcriptional and post-transcriptional mechanisms. This possible TLR4-miR-155 positive feedback loop might result in the synergistic accelerating effect of TLR4 and miR-155 on CAC development.![]() Video abstract
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China. .,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Aly RH, Ahmed AE, Hozayen WG, Rabea AM, Ali TM, El Askary A, Ahmed OM. Patterns of Toll-Like Receptor Expressions and Inflammatory Cytokine Levels and Their Implications in the Progress of Insulin Resistance and Diabetic Nephropathy in Type 2 Diabetic Patients. Front Physiol 2021; 11:609223. [PMID: 33442388 PMCID: PMC7798354 DOI: 10.3389/fphys.2020.609223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Diabetic nephropathy (DNP) is a type 2 diabetes mellitus (T2DM) chronic complication, which is the largest single cause of end-stage kidney disease. There is an increasing evidence of the role of inflammation and Toll-like receptors (TLRs) as part of innate immune system in its development and progression. In addition, Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) downward signaling causes the production of proinflammatory cytokines, which can induce insulin (INS) resistance in T2DM. Objective: The goal of this study was to estimate the expression of TLRs (TLR2 and TLR4) in relation to inflammation and INS resistance in nephrotic type 2 diabetic patients with or without renal failure and to discuss the role of these TLRs in DNP progression. Patients and Methods: In this study, blood samples were obtained from type 2 diabetic patients with or without renal failure, and patients with non-diabetic renal failure were compared to healthy controls. All participants were tested for analysis of fasting plasma glucose and serum insulin, kidney function tests, C-reactive protein (CRP), and proinflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and interleukin 6 (IL-6) as well as expression of TLR2 and TLR4 in peripheral blood (PB). Statistical analysis of data was done by using SPSS. Results: Diabetic patients with renal failure exhibited significant increase in TLR2, TLR4 mRNA expression in PB in comparison with normal subjects, diabetic patients without renal failure and non-diabetic patients with renal failure. Both diabetic patients with or without kidney failure and non-diabetic patients with renal failure had increased TLR2 and TLR4 mRNA expression in association with increased levels of proinflammatory cytokines (TNF-α, IFN-γ, and IL-6) compared to normal subjects. The diabetic patients with kidney failure exhibited the highest elevation of TLRs, Th1 cytokines and CRP in association the highest record of insulin resistance. Conclusion: Toll-like receptor 2 and Toll-like receptor 4 increased expression and Th2 cytokines may have an important role in the progression of DNP and deteriorations in insulin resistance in type 2 diabetic patients. Therefore, TLR2 and TLR4 may be a promising therapeutic target to prevent or retard DNP in type 2 diabetic patients.
Collapse
Affiliation(s)
- Rofyda H Aly
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Amr E Ahmed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Walaa G Hozayen
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Alaa Mohamed Rabea
- Internal Medicine Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M Ali
- Department of Physiology, College of Medicine, Taif University, Taif, Saudi Arabia.,Department of Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Department of Medical Biochemistry, Faculty of Medicine (New Damietta), Al Azhar University, Cairo, Egypt
| | - Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
17
|
Exosomes in Immune Regulation. Noncoding RNA 2021; 7:ncrna7010004. [PMID: 33435564 PMCID: PMC7838779 DOI: 10.3390/ncrna7010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomes, small extracellular vesicles mediate intercellular communication by transferring their cargo including DNA, RNA, proteins and lipids from cell to cell. Notably, in the immune system, they have protective functions. However in cancer, exosomes acquire new, immunosuppressive properties that cause the dysregulation of immune cells and immune escape of tumor cells supporting cancer progression and metastasis. Therefore, current investigations focus on the regulation of exosome levels for immunotherapeutic interventions. In this review, we discuss the role of exosomes in immunomodulation of lymphoid and myeloid cells, and their use as immune stimulatory agents to elicit specific cytotoxic responses against the tumor.
Collapse
|
18
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Bashash D, Ghaffari SH. The role of toll-like receptor 4 (TLR4) in cancer progression: A possible therapeutic target? J Cell Physiol 2020; 236:4121-4137. [PMID: 33230811 DOI: 10.1002/jcp.30166] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The toll-like receptor (TLR) family consists of vital receptors responsible for pattern recognition in innate immunity, making them the core proteins involved in pathogen detection and eliciting immune responses. The most studied member of this family, TLR4, has been the center of attention regarding its contributory role in many inflammatory diseases including sepsis shock and asthma. Notably, mounting pieces of evidence have proved that this receptor is aberrantly expressed on the tumor cells and the tumor microenvironment in a wide range of cancer types and it is highly associated with the initiation of tumorigenesis as well as tumor progression and drug resistance. Cancer therapy using TLR4 inhibitors has recently drawn scientists' attention, and the promising results of such studies may pave the way for more investigation in the foreseeable future. This review will introduce the key proteins of the TLR4 pathway and how they interact with major growth factors in the tumor microenvironment. Moreover, we will discuss the many aspects of tumor progression affected by the activation of this receptor and provide an overview of the recent therapeutic approaches using various TLR4 antagonists.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Narayanankutty A, Sasidharan A, Job JT. Targeting Toll like Receptors in Cancer: Role of TLR Natural and Synthetic Modulators. Curr Pharm Des 2020; 26:5040-5053. [DOI: 10.2174/1381612826666200720235058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
Background:
Toll like receptors (TLRs) are a group of transmembrane receptors belonging to the
broad class pattern recognition receptors (PRR), involved in recognition of Pathogen Associated Molecular Patterns
(PAMPs) thereby inducing an immune response. Apart from these exogenous PAMPs, numerous endogenous
PAMPs are also ligands for various TLRs thereby activating the TLR dependent immune response, subsequently
leading to the onset of an inflammatory response. Prolonged activation of TLR by these endogenous
PAMPs leads to chronic inflammatory insults to the body and which in turn alters the proliferative patterns of the
cells, which ultimately leads to the development of cancer.
Objectives:
The present review aims to provide a detailed outline of the differential roles of various TLRs in
cancer and the possible use of them as a therapeutic target.
Methods:
Data were collected from PubMed/Sciencedirect/Web of Science database and sorted; the latest literature
on TLRs was incorporated in the review.
Results:
Among the different TLRs, few are reported to be anti-neoplastic, which controls the cell growth and
multiplication in response to the endogenous signals. On the contrary, numerous studies have reported the procarcinogenic
potentials of TLRs. Hence, TLRs have emerged as a potential target for the prevention and treatment
of various types of cancers. Several molecules, such as monoclonal antibodies, small molecule inhibitors and
natural products have shown promising anticancer potential by effectively modulating the TLR signalling.
Conclusion:
Toll-like receptors play vital roles in the process of carcinogenesis, hence TLR targeting is a promising
approach for cancer prevention.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut, Kerala-673 008, India
| | | | - Joice T. Job
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut, Kerala-673 008, India
| |
Collapse
|
20
|
Sato Y, Motoyama S, Wakita A, Kawakita Y, Liu J, Nagaki Y, Nanjo H, Ito S, Terata K, Imai K, Minamiya Y. High TLR4 expression predicts a poor prognosis after esophagectomy for advanced thoracic esophageal squamous cell carcinoma. Esophagus 2020; 17:408-416. [PMID: 32170544 DOI: 10.1007/s10388-020-00732-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Poor oral health is an independent risk factor for upper aerodigestive tract cancers, including esophageal squamous cell carcinoma (ESCC). The pattern recognition receptor Toll-like receptor 4 (TLR4) recognizes lipopolysaccharide in the cell walls of Gram-negative periodontal pathogens associated with the development and progression of ESCC. It is, therefore, plausible that TLR4 plays a crucial role in the pathogenesis of ESCC. METHODS We used an ESCC tissue microarray to confirm expression of TLR4 in patients with ESCC and to determine whether TLR4 expression status correlates with the clinicopathological features of these patients or their prognosis after esophagectomy. We also tested whether the combined expression statuses of TLR4 and TLR3 better correlate with prognosis in these patients than either parameter alone. RESULTS Clinical ESCC samples from all 177 patients tested showed expression of TLR4. Moreover, high TLR4 expression (3 + and 2 +) correlated with poorer 5-year overall survival after esophagectomy than lower TLR4 expression (1 +) (p = 0.0491). Patients showing high TLR4 expression tended to have a poorer prognosis whether treated with surgery alone or with surgery and adjuvant chemotherapy. Univariate and multivariate analyses showed TLR4 expression status to be an independent prognostic factor affecting 5-year overall survival. Patients exhibiting high TLR4 expression with low TLR3 expression had a much poorer prognosis than other patients (p = < 0.0001). CONCLUSION High TLR4 expression predicts a poor prognosis in advanced thoracic ESCC patients after esophagectomy.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan.
| | - Satoru Motoyama
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Akiyuki Wakita
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yuta Kawakita
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Jiajia Liu
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yushi Nagaki
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Hiroshi Nanjo
- Department of Pathology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Satoru Ito
- Department of Pathology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Kaori Terata
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Kazuhiro Imai
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| |
Collapse
|
21
|
Narayanankutty A. Toll-like Receptors as a Novel Therapeutic Target for Natural Products Against Chronic Diseases. Curr Drug Targets 2020; 20:1068-1080. [PMID: 30806312 DOI: 10.2174/1389450120666190222181506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
Abstract
Toll-like receptors (TLR) are one among the initial responders of the immune system which participate in the activation inflammatory processes. Several different types of TLR such as TLR2, TLR4, TLR7 and TLR9 have been identified in various cell types, each having distinct ligands like lipids, lipoproteins, nucleic acids and proteins. Though its prime concern is xenobiotic defences, TLR signalling has also recognized as an activator of inflammation and associated development of chronic degenerative disorders (CDDs) including obesity, type 2 diabetes mellitus (T2DM), fatty liver disease, cardiovascular and neurodegenerative disorders as well as various types of cancers. Numerous drugs are in use to prevent these disorders, which specifically inhibit different pathways associated with the development of CDDs. Compared to these drug targets, inhibition of TLR, which specifically responsible for the inflammatory insults has proven to be a better drug target. Several natural products have emerged as inhibitors of CDDs, which specifically targets TLR signalling, among these, many are in the clinical trials. This review is intended to summarize the recent progress on TLR association with CDDs and to list possible use of natural products, their combinations and their synthetic derivative in the prevention of TLR-driven CDD development.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut, Kerala, 680 555, India
| |
Collapse
|
22
|
Lee JS, Lee NR, Kashif A, Yang SJ, Nam AR, Song IC, Gong SJ, Hong MH, Kim G, Seok PR, Lee MS, Sung KH, Kim IS. S100A8 and S100A9 Promote Apoptosis of Chronic Eosinophilic Leukemia Cells. Front Immunol 2020; 11:1258. [PMID: 32903598 PMCID: PMC7438788 DOI: 10.3389/fimmu.2020.01258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
S100A8 and S100A9 function as essential factors in inflammation and also exert antitumor or tumorigenic activity depending on the type of cancer. Chronic eosinophilic leukemia (CEL) is a rare hematological malignancy having elevated levels of eosinophils and characterized by the presence of the FIP1L1-PDGFRA fusion gene. In this study, we examined the pro-apoptotic mechanisms of S100A8 and S100A9 in FIP1L1-PDGFRα+ eosinophilic cells and hypereosinophilic patient cells. S100A8 and S100A9 induce apoptosis of the FIP1L1-PDGFRα+ EoL-1 cells via TLR4. The surface TLR4 expression increased after exposure to S100A8 and S100A9 although total TLR4 expression decreased. S100A8 and S100A9 suppressed the FIP1L1-PDGFRα-mediated signaling pathway by downregulating FIP1L1-PDGFRα mRNA and protein expression and triggered cell apoptosis by regulating caspase 9/3 pathway and Bcl family proteins. S100A8 and S100A9 also induced apoptosis of imatinib-resistant EoL-1 cells (EoL-1-IR). S100A8 and S100A9 blocked tumor progression of xenografted EoL-1 and EoL-1-IR cells in NOD-SCID mice and evoked apoptosis of eosinophils derived from hypereosinophilic syndrome as well as chronic eosinophilic leukemia. These findings may contribute to a progressive understanding of S100A8 and S100A9 in the pathogenic and therapeutic mechanism of hematological malignancy.
Collapse
Affiliation(s)
- Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, South Korea
| | - Na Rae Lee
- Department of Biomedical Laboratory Science, Eulji University School of Medicine, Daejeon, South Korea
| | - Ayesha Kashif
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, South Korea
| | - A Reum Nam
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, South Korea.,Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Soo-Jung Gong
- Department of Internal Medicine, Eulji Medical Center, Eulji University School of Medicine, Daejeon, South Korea
| | - Min Hwa Hong
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Geunyeong Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Pu Reum Seok
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Kee-Hyung Sung
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - In Sik Kim
- Department of Biomedical Laboratory Science, Eulji University School of Medicine, Daejeon, South Korea.,Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| |
Collapse
|
23
|
Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Infect Immun 2020; 88:IAI.00920-19. [PMID: 32253250 DOI: 10.1128/iai.00920-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that consists of inner leaflet phospholipids and outer leaflet lipopolysaccharides (LPS). The asymmetric character and unique biochemistry of LPS molecules contribute to the OM's ability to function as a molecular permeability barrier that protects the bacterium against hazards in the environment. Assembly and regulation of the OM have been extensively studied for understanding mechanisms of antibiotic resistance and bacterial defense against host immunity; however, there is little knowledge on how Gram-negative bacteria release their OMs into their environment to manipulate their hosts. Discoveries in bacterial lipid trafficking, OM lipid homeostasis, and host recognition of microbial patterns have shed new light on how microbes secrete OM vesicles (OMVs) to influence inflammation, cell death, and disease pathogenesis. Pathogens release OMVs that contain phospholipids, like cardiolipins, and components of LPS molecules, like lipid A endotoxins. These multiacylated lipid amphiphiles are molecular patterns that are differentially detected by host receptors like the Toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD-2), mouse caspase-11, and human caspases 4 and 5. We discuss how lipid ligands on OMVs engage these pattern recognition receptors on the membranes and in the cytosol of mammalian cells. We then detail how bacteria regulate OM lipid asymmetry, negative membrane curvature, and the phospholipid-to-LPS ratio to control OMV formation. The goal is to highlight intersections between OM lipid regulation and host immunity and to provide working models for how bacterial lipids influence vesicle formation.
Collapse
|
24
|
Zhang S, Xu L, Liang R, Yang C, Wang P. Baicalin suppresses renal fibrosis through microRNA-124/TLR4/NF-κB axis in streptozotocin-induced diabetic nephropathy mice and high glucose-treated human proximal tubule epithelial cells. J Physiol Biochem 2020; 76:407-416. [PMID: 32500512 DOI: 10.1007/s13105-020-00747-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023]
Abstract
Renal fibrosis is a major pathological event in the development of diabetic nephropathy (DN). Baicalin is a flavonoid glycoside that possesses multiple pharmacological properties including anti-fibrotic activity. In the present study, the effects of baicalin on renal fibrosis along with related molecular basis were investigated in streptozotocin (STZ)-induced DN mouse model and high glucose (HG)-treated HK-2 human proximal tubule epithelial cell model. Renal injury was evaluated through blood urea nitrogen (BUN) and serum creatinine (Scr) levels and urine albumin creatine ratio (ACR). Renal fibrosis was assessed by type IV collagen (COLIV) and fibronectin (FN) protein expression and histopathologic analysis via Masson trichrome staining. Protein levels of COLIV, FN, NF-κB inhibitor alpha (IκBα), phosphorylated IκBα (p-IκBα), p65, phosphorylated p65 (p-p65), and toll-like receptor 4 (TLR4) were measured by western blot assay. MicroRNA-124 (miR-124) and TLR4 mRNA levels were detected by RT-qPCR assay. The interaction of miR-124 and TLR4 was examined by bioinformatics analysis, luciferase reporter assay, and RIP assay. Baicalin or miR-124 attenuated renal injury and fibrosis in STZ-induced DN mice. Baicalin inhibited the increase of COLIV and FN expression induced by HG through upregulating miR-124 in HK-2 cells. TLR4 was a target of miR-124. MiR-124 inhibited TLR4/NF-κB pathway activation and the inactivation of the NF-κB pathway hindered COLIV and FN expression in HG-stimulated HK-2 cells. Baicalin prevented renal fibrosis by increasing miR-124 and inactivating downstream TLR4/NF-κB pathway in DN, hinting the pivotal values of baicalin and miR-124 in the management of DN and renal fibrosis.
Collapse
Affiliation(s)
- Shefeng Zhang
- Henan Academy of Chinese Medicine, Zhengzhou, 450000, China
| | - Li Xu
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Ruifeng Liang
- Henan Academy of Chinese Medicine, Zhengzhou, 450000, China
| | - Chenhua Yang
- Henan Academy of Chinese Medicine, Zhengzhou, 450000, China
| | - Peiren Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Jinshui District, Zhengzhou, 450000, China.
| |
Collapse
|
25
|
Identification of miR-210 and combination biomarkers as useful agents in early screening non-small cell lung cancer. Gene 2020; 729:144225. [DOI: 10.1016/j.gene.2019.144225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/07/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
|
26
|
Alavi M, Nokhodchi A. Antimicrobial and Wound Treatment Aspects of Micro‐ and Nanoformulations of Carboxymethyl, Dialdehyde, and TEMPO‐Oxidized Derivatives of Cellulose: Recent Advances. Macromol Biosci 2020; 20:e1900362. [DOI: 10.1002/mabi.201900362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology LaboratoryDepartment of Nanobiotechnology Faculty of ScienceRazi University Kermanshah 25529 Iran
| | - Ali Nokhodchi
- Pharmaceuics Research laboratoryArundel BuildingSchool of Life SciencesUniversity of Sussex Brighton BN1 9QJ UK
- Drug Applied Research Center and Faculty of PharmacyTabriz University of Medical Sciences Tabriz 61554 Iran
| |
Collapse
|
27
|
Zheng M, Ambesi A, J. McKeown-Longo P. Role of TLR4 Receptor Complex in the Regulation of the Innate Immune Response by Fibronectin. Cells 2020; 9:cells9010216. [PMID: 31952223 PMCID: PMC7017243 DOI: 10.3390/cells9010216] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation and subsequent tissue fibrosis are associated with a biochemical and mechanical remodeling of the fibronectin matrix. Due to its conformational lability, fibronectin is considerably stretched by the contractile forces of the fibrotic microenvironment, resulting in the unfolding of its Type III domains. In earlier studies, we have shown that a peptide mimetic of a partially unfolded fibronectin Type III domain, FnIII-1c, functions as a Damage Associated Molecular Pattern (DAMP) molecule to induce activation of a toll-like receptor 4 (TLR4)/NF-B pathway and the subsequent release of fibro-inflammatory cytokines from human dermal fibroblasts. In the current study, we evaluated the requirement of the canonical TLR4/MD2/CD14 receptor complex in the regulation of FnIII-1c induced cytokine release. Using dermal fibroblasts and human embryonic kidney (HEK) cells, we found that all the components of the TLR4/MD2/CD14 complex were required for the release of the fibro-inflammatory cytokine, interleukin 8 (IL-8) in response to both FnIII-1c and the canonical TLR4 ligand, lipopolysaccharide (LPS). However, FnIII-1c mediated IL-8 release was strictly dependent on membrane-associated CD14, while LPS could use soluble CD14. These findings demonstrate that LPS and FnIII-1c share a similar but not identical mechanism of TLR4 activation in human dermal fibroblasts.
Collapse
|
28
|
Zhao J, Meng Z, Xie C, Yang C, Liu Z, Wu S, Wang B, Fan P, Jin X, Wu H. B7-H3 is regulated by BRD4 and promotes TLR4 expression in pancreatic ductal adenocarcinoma. Int J Biochem Cell Biol 2019; 108:84-91. [PMID: 30664982 DOI: 10.1016/j.biocel.2019.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies worldwide. PDAC is resistant to chemotherapy and radiotherapy which leads to the poor prognosis of PDAC patients and a 5-year survival rate of less than 5%. Exploring the mechanism of the pancreatic cancer tumorigenesis is the key to finding a novel therapeutic strategy for cancer treatment. B7-H3 belongs to the B7 family of immunoregulatory proteins, and the overexpression of B7-H3 is found in various types of cancer. The regulation of B7-H3 expression in pancreatic cancer is still unclear. Here, we showed that B7-H3 acted as a negative prognostic biomarker in PDAC and promoted cell proliferation, invasion and metastasis in pancreatic cancer. Next, we applied the drug screening method to identify bromodomain and extra-terminal motif (BET) inhibitors that decreased the protein and mRNA levels of B7-H3 in pancreatic cancer cells. Moreover, we verified that BRD4 was responsible for regulating the expression of B7-H3 at the transcriptional level. Finally, our data indicated that the BRD4/B7-H3 axis modulated the expression of TLR4 in pancreatic cancer cells. Taken together, our results elucidated the regulation of B7-H3 expression in pancreatic cancer and uncovered the importance of BRD4/B7-H3/TLR4 pathway. The targeting of B7-H3 by the BET inhibitors may be a novel therapeutic strategy to overcome the immunotherapy and chemotherapy resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zibo Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Xie
- Department of Hepatobiliary pancreatic surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chong Yang
- Organ Transplantation Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Zhiqiang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shihong Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Fan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Jin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|