1
|
Aftab R, Akbar F, Afroz A, Asif A, Khan MR, Rehman N, Zeeshan N. Mentha piperita silver nanoparticle-loaded hydrocolloid film for enhanced diabetic wound healing in rats. J Wound Care 2024; 33:xlviii-lx. [PMID: 38457268 DOI: 10.12968/jowc.2024.33.sup3a.xlviii] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
OBJECTIVE To investigate the role of Mentha piperita silver nanoparticle-loaded carbopol gel for enhanced wound healing in a diabetic rat model. This research further aims to explore bioactive compounds derived from Mentha piperita obtained from high altitude. METHOD Methanolic extracts of Mentha piperita (MP), Mentha spicata (MS) and Mentha longifolia (ML) were used to synthesise silver nanoparticles (AgNP). AgNP synthesis was confirmed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antioxidant activity was assessed by 2, 2-diphenyl-1-picrylhydrazyl (DDPH) assay. Antiglycation potential was determined by measuring the fluorescent advanced glycation end products. The bioactive compound identified in the Mentha piperita methanolic (MPM) fraction through electrospray ionisation tandem mass spectrometric analysis (ESI-MS) was responsible for the highest antiglycation. The effects of MPM and MPM.AgNP-loaded Carbopol (Sanare Lab, India) on wound healing were compared in male, alloxan-induced, diabetic albino rats (200-250g), divided into control and treated groups. Effects on wound healing were assessed via histopathology. RESULTS UV-Vis and FTIR confirmed NP synthesis with peaks for flavonoids and polyphenols. SEM and XRD explored the cubical, 30-63nm crystalline NP. The maximum antioxidant and antiglycation potential was observed in order of; MP.AgNP>MS.AgNP>ML.AgNP. The highest antioxidant activity was observed by methanolic and aqueous MP.AgNPs (88.55% and 83.63%, respectively) at 2mg.ml-1, and (75.16% and 69.73%, respectively) at 1mg.ml-1, compared to ascorbic acid (acting as a positive control, 90.01%). MPM.AgNPs demonstrated the best antiglycation potential of 75.2% and 83.3% at 1mg.ml-1 and 2mg.ml-1, respectively, comparable to positive control (rutin: 88.1%) at 14 days post-incubation. A similar trend was observed for antimicrobial activity against Bacillus subtilis, Micrococcus luteus and Escherichia coli with an inhibition zone of 21mm, 21.6mm and 24.6mm. Rosmarinic acid was the active compound present in Mentha piperita, as identified by ESI-MS. MPM.AgNP-loaded Carbopol resulted in 100% wound closure compared with control at 20 days post-wounding. In the treatment group, re-epithelialisation was achieved by day 18, compared with 25 days for the positive control group. CONCLUSION MPM.AgNP-loaded Carbopol demonstrated safer and more effective biological properties, hence accelerating the diabetic excision wound healing process in alloxan-induced diabetic rats.
Collapse
Affiliation(s)
- Reema Aftab
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Fatima Akbar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Awais Asif
- Nawaz Sharif Medical College, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| |
Collapse
|
2
|
Deng Y, Wang X, Zhang C, Xie P, Huang L. Inhibitory Effect of a Chinese Quince Seed Peptide on Protein Glycation: A Mechanism Study. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
3
|
He L, Liu Y, Xu J, Li J, Cheng G, Cai J, Dang J, Yu M, Wang W, Duan W, Liu K. Inhibitory Effects of Myriocin on Non-Enzymatic Glycation of Bovine Serum Albumin. Molecules 2022; 27:molecules27206995. [PMID: 36296589 PMCID: PMC9607541 DOI: 10.3390/molecules27206995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Advanced glycation end products (AGEs) are the compounds produced by non-enzymatic glycation of proteins, which are involved in diabetic-related complications. To investigate the potential anti-glycation activity of Myriocin (Myr), a fungal metabolite of Cordyceps, the effect of Myr on the formation of AGEs resulted from the glycation of bovine serum albumin (BSA) and the interaction between Myr and BSA were studied by multiple spectroscopic techniques and computational simulations. We found that Myr inhibited the formation of AGEs at the end stage of glycation reaction and exhibited strong anti-fibrillation activity. Spectroscopic analysis revealed that Myr quenched the fluorescence of BSA in a static process, with the possible formation of a complex (approximate molar ratio of 1:1). The binding between BSA and Myr mainly depended on van der Waals interaction, hydrophobic interactions and hydrogen bond. The synchronous fluorescence and UV-visible (UV-vis) spectra results indicated that the conformation of BSA altered in the presence of Myr. The fluorescent probe displacement experiments and molecular docking suggested that Myr primarily bound to binding site 1 (subdomain IIA) of BSA. These findings demonstrate that Myr is a potential anti-glycation agent and provide a theoretical basis for the further functional research of Myr in the prevention and treatment of AGEs-related diseases.
Collapse
Affiliation(s)
- Libo He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- Department of Central Laboratory, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Junling Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingjing Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Guohua Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jiaxiu Cai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinye Dang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Meng Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Weiyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wei Duan
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Correspondence:
| |
Collapse
|
4
|
A novel nordihydroguaiaretic acid analog, compound 3a, alleviates acute lung injury by exerting antiapoptotic and antiinflammatory effects. Eur J Pharmacol 2022; 919:174777. [DOI: 10.1016/j.ejphar.2022.174777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
|
5
|
Mala John GS, Takeuchi S, Venkatraman G, Rayala SK. Nordihydroguaiaretic Acid in Therapeutics: Beneficial to Toxicity Profiles and the Search for its Analogs. Curr Cancer Drug Targets 2021; 20:86-103. [PMID: 31642411 DOI: 10.2174/1568009619666191022141547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/26/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Nordihydroguaiaretic acid (NDGA) is a plant lignan obtained from creosote bush, Larrea tridentata and is known to possess antioxidant, anticancer activities and is used in traditional medicine in North America and Mexico. However, its prolonged consumption leads to liver damage and kidney dysfunction. Despite its toxicity and side effects, there is little awareness to forbid its consumption and its use in the treatment of medical ailments has continued over the years. Several reports discuss its therapeutic efficiency and its medical applications have tremendously been on the rise to date. There has been a recent surge of interest in the chemical synthesis of NDGA derivatives for therapeutic applications. NDGA derivatives have been developed as better alternatives to NDGA. Although several NDGA derivatives have been chemically synthesized as evidenced by recent literature, there is a paucity of information on their therapeutic efficacies. This review is to highlight the medicinal applications of NDGA, its toxicity evaluations and discuss the chemical derivatives of NDGA synthesized and studied so far and suggest to continue research interests in the development of NDGA analogs for therapeutic applications. We suggest that NDGA derivatives should be investigated more in terms of chemical synthesis with preferred conformational structures and exploit their biological potentials with future insights to explore in this direction to design and develop structurally modified NDGA derivatives for potential pharmacological properties.
Collapse
Affiliation(s)
| | - Satoru Takeuchi
- Factory of Takeuchi Nenshi, TAKENEN, 85NE Takamatsu, Kahoku Ishikawa 929-1215, Japan
| | - Ganesh Venkatraman
- Sri Ramachandra Center for Biomedical Nanotechnology, Sri Ramachandra Institute of Higher Education & Research, Chennai-600116, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology (IIT), Madras, Chennai-600036, India
| |
Collapse
|
6
|
|
7
|
Asif A, Zeeshan N, Mehmood S. Antioxidant and antiglycation activities of traditional plants and identification of bioactive compounds from extracts of Hordeum vulgare by LC-MS and GC-MS. J Food Biochem 2020; 44:e13381. [PMID: 32696536 DOI: 10.1111/jfbc.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Glycation has been involved in Schiff base reaction lead to hyperglycemia at cellular level. The current study aimed to identify the bioactive compounds from selected folkloric plants for their antiglycation and antioxidant potential. Methanol extracts demonstrated the highest activities, therefore, it was further fractionated using n-hexane, dichloromethane, ethyl acetate, and methanol solvents to isolate the nonpolar compounds from the Hordeum vulgare. Moreover, n-hexane and dichloromethane fractions of H. vulgare demonstrated the best antioxidant (61.58% and 62.89%) and antiglycation activities (72.52% and 61.52%) at 2 mg/ml, respectively. Analytical techniques of LC-MS and GC-MS were employed for identification of bioactive compounds; Biochanin A in dichloromethane (DCM) and Vitamin E in n-hexane fractions. There was a strong correlation between antioxidant and antiglycation activities (r = 0.97 and r = 0.96) of DCM & n-hexane fractions of H. vulgare. Findings of this study established the role of Biochanin A and Vit E from H. vulgare as potent antiglycation agents. PRACTICAL APPLICATIONS: The results of this study confirmed the potential role of Black Barley has involved in the inhibition of protein glycation, which can be the potential treatment to reduce the complications of Diabetic Patients. The Black Barley has a rich source of identified compounds Biochanin A and Vitamin E. We can use this plant as a staple food in curing the severity of diabetes. The other practical approach is to use this plant as an ingredient of different food products. The extraction of identified bioactive compounds from the plant will be a good and cheap source of the treatment.
Collapse
Affiliation(s)
- Awais Asif
- Department of Biochemistry, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Pakistan.,Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sajid Mehmood
- Department of Biochemistry, Islam Medical and Dental College, Sialkot, Pakistan
| |
Collapse
|
8
|
|
9
|
Rahmanifar E, Miroliaei M. Differential effect of biophenols on attenuation of AGE-induced hemoglobin aggregation. Int J Biol Macromol 2020; 151:797-805. [PMID: 32061846 DOI: 10.1016/j.ijbiomac.2020.02.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Despite most studied activities of natural biophenols rely on antioxidant properties, little clues explored their key structural components with regard to opposing action on glycation-induced aggregation. Herein, human hemoglobin (hHb)/fructose system used to decipher if structural peculiarities of two biophenols "chlorogenic acid (CGA) and curcumin (CUR)" are effective toward AGEs-bridged aggregate formation. Suppression in amyloid cross-β formation was monitored by CD spectroscopy, fluorescence microscopy, ANS and AGE fluorescence. Reduction in molten globule structure of modified-Hb by CGA was corroborated with helix structure, thiol group and lysine residues content estimation for native, glycated and biophenols treated samples. ThT and Congo red assays showed the cross-β breaking properties of CGA. Molecular docking outcomes revealed the positioning of CGA/CUR is driven by "aromatic interactions" with Trp β1180 and Tyr α2540. These interactions are modulated by the structural constraints such as number of hydroxyl groups and their methylation status directing the biophenols to the amyloidogenic core. The results are applicable to formulation of small-molecule nutraceuticals for treatment of conformational diseases.
Collapse
Affiliation(s)
- Esmat Rahmanifar
- Department of Biology, Noordanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Mehran Miroliaei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran.
| |
Collapse
|
10
|
Khoshgozaran Roudbaneh SZ, Kahbasi S, Sohrabi MJ, Hasan A, Salihi A, Mirzaie A, Niyazmand A, Qadir Nanakali NM, Shekha MS, Aziz FM, Vaghar-Lahijani G, Keshtali AB, Ehsani E, Rasti B, Falahati M. Albumin binding, antioxidant and antibacterial effects of cerium oxide nanoparticles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|