1
|
Li JX, Xu DQ, Cui DX, Fu RJ, Niu ZC, Liu WJ, Tang YP. Exploring the structure-activity relationship of Safflower polysaccharides: From the structural characteristics to biological function and therapeutic applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119131. [PMID: 39577676 DOI: 10.1016/j.jep.2024.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Safflower, the florets of Carthamus tinctorius L., is a widely used traditional Chinese medicine for promoting circulation and improving dysmenorrhea. Polysaccharides is one of the principal water-soluble components in Safflower, which recently endowed with a variety of biological activities, thus making them have important research significance in the field of ethnopharmacology. AIM OF THE STUDY This review summarized the latest research progress on the preparation technology, structural characteristics, and pharmacological effects of Safflower polysaccharides. Moreover, by comparing the structural characteristic of Safflower polysaccharides, the potential structure-activity relationship of Safflower polysaccharides was also discussed. MATERIALS AND METHODS This article used keywords including Safflower polysaccharide, Carthamus tinctorius L polysaccharide, Safflower polysaccharide extraction and separation, Safflower polysaccharide structure, and Safflower polysaccharide anti-tumor effects to search for all relevant literature in PubMed, Web of Science, Google Scholar, ScienceDirect, CNKI and other databases from the establishment of the database to July 2024. RESULTS Summarizing current research findings, seventeen homogeneous Safflower polysaccharides have been obtained. Their structural characteristics, including molecular weights, monosaccharide composition, sugar residue types, glycosidic bond configuration, and the linkage sequence, were initially researched. In terms of pharmacological activity, Safflower polysaccharides exhibit a wide range of biological activities, including immune regulation, anti-tumor effects, and antioxidant properties. Furthermore, the structural characteristics of Safflower polysaccharides significantly influence its biological activities, encompassing factors such as molecular weight, monosaccharide composition, and degree of branching. CONCLUSION Safflower polysaccharides have seen significant advancements in recent years regarding preparation methods, structural characterization, and pharmacological studies. These achievements would provide a theoretical basis for the application of Safflower polysaccharide in the field of ethnopharmacology. While Safflower polysaccharides exhibit diverse biological activities and significant potential for development and utilization, further in-depth research is needed to enhance our understanding of their mechanisms of action and optimize their clinical applications.
Collapse
Affiliation(s)
- Jia-Xin Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-Xiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ze-Chen Niu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
2
|
Yu L, Ma X, Dai M, Chang Y, Wang N, Zhang J, Zhang M, Yao N, Umar AW, Liu X. Unraveling TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Safflower: A Blueprint for Stress Resilience and Metabolic Regulation. Molecules 2025; 30:254. [PMID: 39860123 PMCID: PMC11767934 DOI: 10.3390/molecules30020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Safflower (Carthamus tinctorius L.), a versatile medicinal and economic crop, harbors untapped genetic resources essential for stress resilience and metabolic regulation. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors, exclusive to plants, are pivotal in orchestrating growth, development, and stress responses, yet their roles in safflower remain unexplored. Here, we report the comprehensive identification and characterization of 26 safflower TCP genes (CtTCPs), categorized into Class I (PROLIFERATING CELL FACTOR, PCF) and Class II (CINCINNATA and TEOSINTE BRANCHED1/CYCLOIDEA, CIN and CYC/TB1) subfamilies. Comparative phylogenetics, conserved motif, and gene structure analyses revealed a high degree of evolutionary conservation and functional divergence within the gene family. Promoter analyses uncovered light-, hormone-, and stress-responsive cis-elements, underscoring their regulatory potential. Functional insights from qRT-PCR analyses demonstrated dynamic CtTCP expression under abiotic stresses, including abscisic acid (ABA), Methyl Jasmonate (MeJA), Cold, and ultraviolet radiation b (UV-B) treatments. Notably, ABA stress triggered a significant increase in flavonoid accumulation, correlated with the upregulation of key flavonoid biosynthesis genes and select CtTCPs. These findings illuminate the complex regulatory networks underlying safflower's abiotic stress responses and secondary metabolism, offering a molecular framework to enhance crop resilience and metabolic engineering for sustainable agriculture.
Collapse
Affiliation(s)
- Lili Yu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Xintong Ma
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| | - Mingran Dai
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Yue Chang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Nan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Jian Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| | - Min Zhang
- Monitoring and Testing Center for Ginseng and Antler Products, Ministry of Agriculture and Rural Affairs, Jilin Agriculture University, Changchun 130118, China;
| | - Na Yao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
| | - Xiuming Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| |
Collapse
|
3
|
Liu Q, Wu Y, Li S, Yoon S, Zhang J, Wang X, Hu L, Su C, Zhang C, Wu Y. Ursolic acid alleviates steroid-induced avascular necrosis of the femoral head in mouse by inhibiting apoptosis and rescuing osteogenic differentiation. Toxicol Appl Pharmacol 2023; 475:116649. [PMID: 37536651 DOI: 10.1016/j.taap.2023.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Steroid-induced avascular necrosis of femoral head (SANFH) is a common disorder worldwide with high disability. Overdose of glucocorticoid (GC) is the most common non-traumatic cause of SANFH. Up until now, there are limited therapeutic strategies for curing SANFH, and the mechanisms underlying SANFH progression remain unclear. Nevertheless, Osteogenic dysfunction is considered to be one of the crucial pathobiological mechanisms in the development of SANFH, which involves mouse bone marrow mesenchymal stem cells (BMSCs) apoptosis and osteogenic differentiation disorder. Ursolic acid (UA), an important component of the Chinese medicine formula Yougui Yin, has a wide range of pharmacological properties such as anti-tumor, anti-inflammatory and bone remodeling. Due to the positive effect of Yougui Yin on bone remodeling, the purpose of this study was to investigate the effects of UA on dexamethasone (DEX)-induced SANFH in vitro and vivo. In vitro, we demonstrated that UA can promote mouse BMSCs proliferation and resist DEX-induced apoptosis by CCK8, Western blotting, TUNEL and so on. In addition, vitro experiments such as ALP and Alizarin red staining assay showed that UA had a beneficial effect on the osteogenic differentiation of mouse BMSCs. In vivo, the results of H&E staining, immunohistochemistry staining, Elisa and micro-CT analysis showed that UA had a bone repair-promoting effect in SANFH model. Moreover, the results of Western blot and TUNEL experiments showed that UA could delay the disease progression of SANFH in mice by inhibiting apoptosis. Overall, our study suggests that UA is a potential compound for the treatment of SANFH.
Collapse
Affiliation(s)
- Qian Liu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuyang Wu
- School of the 1st Clinical Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sisi Li
- Department of Otolaryngology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Somy Yoon
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jiaxin Zhang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyi Wang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luoshuang Hu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenying Su
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunwu Zhang
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yungang Wu
- Department of the Orthopedics of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
The effect of Moringa oleifera polysaccharides on the regulation of glucocorticoid-induced femoral head necrosis: In vitro and in vivo. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Wu X, Cai X, Ai J, Zhang C, Liu N, Gao W. Extraction, Structures, Bioactivities and Structure-Function Analysis of the Polysaccharides From Safflower ( Carthamus tinctorius L.). Front Pharmacol 2021; 12:767947. [PMID: 34744747 PMCID: PMC8563581 DOI: 10.3389/fphar.2021.767947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023] Open
Abstract
Safflower (Carthamus tinctorius L.) is a herbal plant with a long history of clinical application worldwide, such as coronary heart disease, hypertension, dysmenorrhea and amenorrhea. It is also extensively used as an important oilseed plant for hundreds of years in some countries, like China, India, Mexico and the United States. Therefore, safflower is believed as a crop with dual values of medicine and economy as well. Safflower polysaccharides (SPS), from the plant, are believed as one of the most important biologically active components with multiple pharmacological properties, including anti-tumor, immune regulation, anti-oxidation, and anti-cerebral ischemia reperfusion injury effects. The polysaccharides, from bee pollen of safflower, named PBPC, also attract the attention of researchers because of their particular origin and bioactivities. Although the extraction, purification, structure and biological activities of SPS and PBPC have been studied for decades, there is not any available review both concerning SPS and PBPC. In this condition, this paper aims to systematically review the research progress in extraction, purification, structural characteristics, and bioactivities of SPS and PBPC, and provide basis for the in-depth study about their structure-bioactivity relationship. It will serve as a methodological outline for further research in fields of new drug discovery and clinical application of SPS or PBPC, and simultaneously remind us of unresolved problems noted in the polysaccharide research.
Collapse
Affiliation(s)
- Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xinbo Cai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiaxuan Ai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chi Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Nan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Xu R, Zeng Q, Xia C, Chen J, Wang P, Zhao S, Yuan W, Lou Z, Lin H, Xia H, Lv S, Xu T, Tong P, Gu M, Jin H. Fractions of Shen-Sui-Tong-Zhi Formula Enhance Osteogenesis Via Activation of β-Catenin Signaling in Growth Plate Chondrocytes. Front Pharmacol 2021; 12:711004. [PMID: 34630086 PMCID: PMC8498212 DOI: 10.3389/fphar.2021.711004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Shen-sui-tong-zhi formula (SSTZF) has been used to treat osteoporosis for decades and shows excellent clinical efficacy. This article aims to explore the optimal anti-osteoporotic ingredient and its precise mechanisms in mice models. Methods: In this study, we first screened the optimal anti-osteoporosis fraction of SSTZF extract in vivo, and then further explored the mechanism of its effects both in vivo and in vitro. Ten-week-old female C57BL/6J mice were administrated with each fraction of SSTZF. At 10 weeks after ovariectomy (OVX), femurs were collected for tissue analyses, including histology, micro-CT, biomechanical tests, and immunohistochemistry for ALP, FABP4, and β-catenin. Additionally, we also evaluated the mRNA expression level of ALP and FABP4 and the protein expression level of β-catenin after being treated with SSTZF extract in C3H10T1/2 cells. Moreover, we investigated the anti-osteoporosis effect of SSTZF extract on mice with β-catenin conditional knockout in growth plate chondrocytes (β-cateninGli1ER mice) through μCT, histology, and immunohistochemistry analyzes. Results: At 10 weeks after treatment, osteoporosis-like phenotype were significantly ameliorated in SSTZF n-butanol extract (SSTZF-NB) group mice, as indicated by increased trabecular bone area and ALP content, and decreased lipid droplet area and FABP4 content. No such improvements were observed after being treated with other extracts, demonstrating that SSTZF-NB is the optimal anti-osteoporosis fraction. Additionally, the elevated β-catenin was revealed in both OVX mice and C3H10T1/2 cells with SSTZF-NB administered. Furthermore, a significant osteoporosis-like phenotype was observed in β-cateninGli1ER mice as expected. However, SSTZF-NB failed to rescue the deterioration in β-cateninGli1ER mice, no significant re-upregulated ALP and downregulated FABP4 were observed after being treated with SSTZF-NB, demonstrating that SSTZF-NB prevents bone loss mainly via β-catenin signaling. Conclusion: SSTZF-NB enhances osteogenesis mainly via activation of β-catenin signaling in growth plate chondrocytes. SSTZF-NB is the optimal anti-osteoporosis fraction of SSTZF and it can be considered a salutary alternative therapeutic option for osteoporosis.
Collapse
Affiliation(s)
- Rui Xu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopedic Surgery, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Qinghe Zeng
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenjie Xia
- Department of Orthopedic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Jiali Chen
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Pinger Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shan Zhao
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaohuan Lou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Houfu Lin
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hanting Xia
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuaijie Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Taotao Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Mancang Gu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Bioactive Substances in Safflower Flowers and Their Applicability in Medicine and Health-Promoting Foods. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:6657639. [PMID: 34136564 PMCID: PMC8175185 DOI: 10.1155/2021/6657639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Safflower flowers (Carthamus tinctorius) contain many natural substances with a wide range of economic uses. The most famous dye isolated from flower petals is hydroxysafflor A (HSYA), which has antibacterial, anti-inflammatory, and antioxidant properties. This review is aimed at updating the state of knowledge about their applicability in oncology, pulmonology, cardiology, gynecology, dermatology, gastrology, immunology, and suitability in the treatment of obesity and diabetes and its consequences with information published mainly in 2018-2020. They were also effective in treating obesity and diabetes and its consequences. The issues related to the possibilities of using HSYA in the production of health-promoting food were also analyzed.
Collapse
|
8
|
Chen CY, Du W, Rao SS, Tan YJ, Hu XK, Luo MJ, Ou QF, Wu PF, Qing LM, Cao ZM, Yin H, Yue T, Zhan CH, Huang J, Zhang Y, Liu YW, Wang ZX, Liu ZZ, Cao J, Liu JH, Hong CG, He ZH, Yang JX, Tang SY, Tang JY, Xie H. Extracellular vesicles from human urine-derived stem cells inhibit glucocorticoid-induced osteonecrosis of the femoral head by transporting and releasing pro-angiogenic DMBT1 and anti-apoptotic TIMP1. Acta Biomater 2020; 111:208-220. [PMID: 32447063 DOI: 10.1016/j.actbio.2020.05.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) frequently occurs after glucocorticoid (GC) treatment. Extracellular vesicles (EVs) are important nano-sized paracrine mediators of intercellular crosstalk. This study aimed to determine whether EVs from human urine-derived stem cells (USC-EVs) could protect against GC-induced ONFH and focused on the impacts of USC-EVs on angiogenesis and apoptosis to explore the mechanism by which USC-EVs attenuated GC-induced ONFH. The results in vivo showed that the intravenous administration of USC-EVs at the early stage of GC exposure could rescue angiogenesis impairment, reduce apoptosis of trabecular bone and marrow cells, prevent trabecular bone destruction and improve bone microarchitecture in the femoral heads of rats. In vitro, USC-EVs reversed the GC-induced suppression of endothelial angiogenesis and activation of apoptosis. Deleted in malignant brain tumors 1 (DMBT1) and tissue inhibitor of metalloproteinases 1 (TIMP1) proteins were enriched in USC-EVs and essential for the USC-EVs-induced pro-angiogenic and anti-apoptotic effects in GC-treated cells, respectively. Knockdown of TIMP1 attenuated the protective effects of USC-EVs against GC-induced ONFH. Our study suggests that USC-EVs are a promising nano-sized agent for the prevention of GC-induced ONFH by delivering pro-angiogenic DMBT1 and anti-apoptotic TIMP1. STATEMENT OF SIGNIFICANCE: This study demonstrates that the intravenous injection of extracellular vesicles from human urine-derived stem cells (USC-EVs) at the early stage of glucocorticoid (GC) exposure efficiently protects the rats from the GC-induced osteonecrosis of the femoral head (ONFH). Moreover, this study identifies that the promotion of angiogenesis and inhibition of apoptosis by transferring pro-angiogenic DMBT1 and anti-apoptotic TIMP1 proteins contribute importantly to the USC-EVs-induced protective effects against GC-induced ONFH. This study suggests the promising prospect of USC-EVs as a new nano-sized agent for protecting against GC-induced ONFH, and the potential of DMBT1 and TIMP1 as the molecular targets for further augmenting the protective function of USC-EVs.
Collapse
Affiliation(s)
- Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Du
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan-Shan Rao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya Nursing School, Central South University, Changsha, Hunan 410013, China
| | - Yi-Juan Tan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiong-Ke Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming-Jie Luo
- Xiangya Nursing School, Central South University, Changsha, Hunan 410013, China
| | - Qi-Feng Ou
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Pan-Feng Wu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li-Ming Qing
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhe-Ming Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tao Yue
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chao-Hong Zhan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie Huang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Zhang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yi-Wei Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ze-Hui He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan 410013, China
| | - Ju-Yu Tang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Hand & Microsurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China; Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China.
| |
Collapse
|
9
|
Huang W, Jin S, Yang W, Tian S, Meng C, Deng H, Wang H. Protective effect of Agrimonia pilosa polysaccharides on dexamethasone-treated MC3T3-E1 cells via Wnt/β-Catenin pathway. J Cell Mol Med 2020; 24:2169-2177. [PMID: 31957180 PMCID: PMC7011133 DOI: 10.1111/jcmm.14868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
A water‐soluble polysaccharide (APP‐AW) was isolated from Agrimonia pilosa and prepared to three sulphated derivatives (S1, S2 and S3). The results showed that pre‐treatment with APP‐AW, S1, S2 and S3 each at the concentration of 50 μg/mL for 48 hours was able to prevent cytotoxicity induced by 1 μmol/L dexamethasone (Dex) in MC3T3‐E1 cells via inhibition of apoptosis, which is in line with the findings in flow cytometry analysis. Meanwhile, the decreased ALP activity, collagen content, mineralization, BMP2, Runx2, OSX and OCN protein expression in DEX‐treated MC3T3‐E1 cells were reversed by the addition of APP‐AW, S1, S2 and S3. Moreover, APP‐AW, S1, S2 and S3 rescued DEX‐induced increase of Bax, cytochrome c and caspase‐3 and decrease of Bcl‐2, Wnt3, β‐catenin and c‐Myc protein expression in MC3T3‐E1 cells. Our findings suggest that pre‐treatment with APP‐AW, S1, S2 and S3 could significantly protect MC3T3‐E1 cells against Dex‐induced cell injury via inhibiting apoptosis and activating Wnt/β‐Catenin signalling pathway, thus application of these polysaccharides may be a promising alternative strategy for steroid‐induced avascular necrosis of the femoral head (SANFH) therapy.
Collapse
Affiliation(s)
- Wei Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengyang Jin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunqing Meng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Cui D, Zhao D, Huang S. Structural characterization of a safflower polysaccharide and its promotion effect on steroid-induced osteonecrosis in vivo. Carbohydr Polym 2020; 233:115856. [PMID: 32059907 DOI: 10.1016/j.carbpol.2020.115856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/23/2019] [Accepted: 01/09/2020] [Indexed: 01/24/2023]
Abstract
A water-soluble polysaccharide (SPAW) was purified from Safflower and it was identified to be (1→3)-linked β-d-Glucan. The therapeutic effect and underlying mechanism of SPAW on steroid-induced avascular necrosis of the femoral head (SANFH) in a rabbit model was performed here. The abnormal histopathologic changes and apoptosis of femoral head in model group were significantly reverted after SPAW (25, 100 and 200 mg/kg) administration for 60 days, as evidenced by the a decline of empty lacunae rate, the average bone marrow fat cell size and the proportion of apoptotic cells. Furthermore, administration of SPAW significantly decreased the Bax and caspase-3 protein expression, but increased the protein expression of Bcl-2 when compared these in model rabbits. Meanwhile, increased hydroxyproline (HOP) and decreased serum hexosamine (HOM) concentration in rabbit serum were turned to the opposite way. The present study suggested that SPAW may provide an alternative treatment for the treatment of SANFH.
Collapse
Affiliation(s)
- Daping Cui
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No 6 Jiefang Street, Zhongshan District, Dalian 116001, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No 6 Jiefang Street, Zhongshan District, Dalian 116001, China.
| | - Shibo Huang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No 6 Jiefang Street, Zhongshan District, Dalian 116001, China
| |
Collapse
|