1
|
Zhong S, Qi YY, Yuan Y, Lian L, Deng Z, Pan F, Zhou J, Wang Z, Li H. Ganoderma lucidum spore powder after oil extraction alleviates microbiota dysbiosis to improve the intestinal barrier function in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:540-553. [PMID: 39243161 DOI: 10.1002/jsfa.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND There are few studies about the differences in the composition of moisture, ash, crude protein, crude fat, crude polysaccharide and ergothioneine in Ganoderma lucidum spore powder (GLSP) from different origins. As for GLSP after oil extraction (OE-GLSP), there are still lots of bioactive substance in it. It can be seen that OE-GLSP has certain biological activity. The effect of OE-GLSP on the improvement of intestinal barrier function has been less studied. RESULTS The results showed that there were significant differences for GLSP from five different origins (Anhui, Jilin, Jiangxi, Shandong and Zhejiang) in moisture (0.065-0.113%), ash (0.603-0.955%), crude fat (42.444-44.773%), crude polysaccharide (2.977-4.127%), crude protein (14.761-17.639%) and ergothioneine (0.552-1.816 mg g-1) (P < 0.05). The monosaccharides of GLSP polysaccharide mainly consist of glucose, galactose, mannose, rhamnose, etc. Moreover, the effects of OE-GLSP supplementation on the regulation of organ index, colonic tissue and intestinal microbiota in C57BL/6J mice were investigated. The supplement of OE-GLSP could restore the organ index and weight loss of antibiotic-treated mice. Moreover, OE-GLSP led to the improvement of intestinal dysbiosis by enriching Bacteroidetes, Firmicutes, Lactobacillus and Roseburia, and increasing the Firmicutes/Bacteroidetes ratio. In addition, OE-GLSP intervention repaired intestinal barrier dysfunction by increasing the expression of tight junction proteins (Occludin, Claudin-1 and E-cadherin). CONCLUSION Different GLSP from five origins exhibited significant differences in microstructure and contents of crude polysaccharide, crude protein, crude fat, water, ash and ergothioneine. Moreover, it was found that OE-GLSP could improve the intestinal barrier function and induce potentially beneficial changes in intestinal flora. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shun Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yao Yao Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yuan Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Li Lian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co. Ltd, Jiujiang, China
| | - Junfu Zhou
- Jiangxi Xiankelai Biotechnology Co. Ltd, Jiujiang, China
| | - Zhiyu Wang
- Jiangxi Xiankelai Biotechnology Co. Ltd, Jiujiang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Li Z, Zhou D, Wu T, Lee H, Zheng F, Dai Y, Yue H. A novel glycopeptide from mountain-cultivated ginseng residue protects type 2 diabetic symptoms-induced heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118723. [PMID: 39181285 DOI: 10.1016/j.jep.2024.118723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mountain-cultivated Panax ginseng C.A.Mey. (MCG) with high market price and various properties was valuable special local product in Northeast of Asia. MCG has been historically used to mitigate heart failure (HF) for thousand years, HF is a clinical manifestation of deficiency of "heart-qi" in traditional Chinese medicine. However, there was little report focus on the activities of extracted residue of MCG. AIM OF THE STUDY A novel glycopeptide (APMCG-1) was isolated from step ethanol precipitations of alkaline protease-assisted extract from MCG residue. MATERIALS AND METHODS The molecular weight and subunit structure of APMCG-1 were determined by FT-IR, HPLC and GPC technologies, as well as the H9c2 cells, Tg (kdrl:EGFP) zebrafish were performed to evaluated the protective effect of APMCG-1. RESULTS APMCG-1 was identified as a glycopeptide containing seven monosaccharides and seven amino acids via O-lined bonds. Further, in vitro, APMCG-1 significantly decreased reactive oxygen species production and lactate dehydrogenase contents in palmitic acid (PA)-induced H9c2 cells. APMCG-1 also attenuated endoplasmic reticulum stress and mitochondria-mediated apoptosis in H9c2 cells via the PI3K/AKT signaling pathway. More importantly, APMCG-1 reduced the blood glucose, lipid contents, the levels of heart injury, oxidative stress and inflammation of 5 days post fertilization Tg (kdrl:EGFP) zebrafish with type 2 diabetic symptoms in vivo. CONCLUSIONS APMCG-1 protects PA-induced H9c2 cells while reducing cardiac dysfunction in zebrafish with type 2 diabetic symptoms. The present study provides a new insight into the development of natural glycopeptides as heart-related drug therapies.
Collapse
Affiliation(s)
- Zhuoran Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Dongyue Zhou
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tongchuan Wu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Hyogeun Lee
- Jeju National University, Jeju 63243, Republic of Korea.
| | - Fei Zheng
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yulin Dai
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
3
|
IJdema F, Lievens S, Smets R, Poma G, Van Der Borght M, Lievens B, De Smet J. Modulating the fatty acid composition of black soldier fly larvae via substrate fermentation. Animal 2025; 19:101383. [PMID: 39721552 DOI: 10.1016/j.animal.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Black soldier fly larvae (BSFL, Hermetia illucens) contain high amounts of proteins and essential amino acids and are therefore an appropriate feed source. However, they lack essential fatty acids (FAs), specifically ω-3 and ω-6, making them a less desirable feed choice for aquaculture. The aim of this study was to increase the ω-3 and ω-6 FA concentrations in BSFL by manipulating the FA composition in their rearing substrate. Specifically, the potential of substrate fermentation using the ω-3 and ω-6 FA-producing fungus Mortierella alpina was assessed. Fermentation of two agricultural side streams (wheat bran (WB) and WB with distiller's dried grains with solubles (DDGS)) increased substrate total crude fat concentration by 2.1 - 4.6%, as well as the concentration of several essential FAs, including the ω-6 FAs arachidonic acid (from less than 0.2 mg/g fat to a maximum of 44.2 mg/g fat) and gamma-linolenic acid (from less than 1.2 mg/g fat to a maximum of 45.8 mg/g fat and the ω-3 FA eicosapentaenoic acid (EPA) (from less than 0.7 mg/g fat to a maximum of 49.9 mg/g fat). Rearing BSFL on feeds from such fermented substrates resulted in similar changes in larval FA composition, specifically a higher concentration of EPA (from less than 0.2 mg/g fat to a maximum of 26.6 mg/g fat in the larvae fed on fermented diets), however, larval growth was reduced. Feeds made from fermented substrates were prone to stickiness and dehydration, possibly limiting larval movement and feeding, thereby affecting larval growth. Furthermore, proximate analysis of the substrates revealed sugar depletion after fermentation, which could be detrimental for larval growth and illustrate important attention points going forward. This study shows that fermentation of agricultural side streams WB and a mixture of WB with DDGS with Mortierella alpina alters their FA profile, increasing their ω-3 and ω-6 FA concentrations and that of BSFL fed with those substrates. Therefore, these results suggest that BSFL with tailor-made FA profiles for a specific application could be successfully produced.
Collapse
Affiliation(s)
- F IJdema
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium; CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - S Lievens
- CSCE Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - R Smets
- CSCE Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - G Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - M Van Der Borght
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium; CSCE Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - B Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - J De Smet
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium.
| |
Collapse
|
4
|
Ye K, Ye J, Yan Y, Ding CF. Rapid quantification of disaccharide isomers by derivatization in combination with ion mobility spectrometry in beer and milk. Analyst 2024; 149:5298-5305. [PMID: 39283313 DOI: 10.1039/d4an00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The subtle structural variations among carbohydrate isomers pose significant challenges for their identification and quantification. Here, we propose a strategy for rapid identification and quantification of isomeric disaccharides via derivatization with 4-(3-methyl-5-oxo-pyrazolin-1-yl) benzoic acid (CPMP) and analysing by ion mobility spectrometry (IMS). After derivatization, the ionization efficiency of disaccharides was significantly improved. The disaccharide isomers were distinguished by determining the different ion mobilities of CPMP-labelled disaccharides. Among them, [M + 2CPMP + H]+ was separated with a resolution of 1.484, almost achieving baseline separation. Subsequently, [M + CPMP + Na]+ was used for the relative quantification of lactose and maltose, showing a good linear relationship with R2 > 0.990. Finally, the method was successfully applied to the identification of lactose and maltose in beer and milk. The method is fast, accurate and effective for the identification of disaccharide isomers in complex samples.
Collapse
Affiliation(s)
- Keqi Ye
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Jiacheng Ye
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
5
|
Lembo A, Molinaro A, De Castro C, Berti F, Biagini M. Impact of glycosylation on viral vaccines. Carbohydr Polym 2024; 342:122402. [PMID: 39048237 DOI: 10.1016/j.carbpol.2024.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Glycosylation is the most prominent modification important for vaccines and its specific pattern depends on several factors that need to be considered when developing a new biopharmaceutical. Tailor-made glycosylation can be exploited to develop more effective and safer vaccines; for this reason, a deep understanding of both glycoengineering strategies and glycans structures and functions is required. In this review we discuss the recent advances concerning glycoprotein expression systems and the explanation of glycans immunomodulation mechanisms. Furthermore, we highlight how glycans tune the immunological properties among different vaccines platforms (whole virus, recombinant protein, nucleic acid), also comparing commercially available formulations and describing the state-of-the-art analytical technologies for glycosylation analysis. The whole review stresses the aspect of glycoprotein glycans as a potential tool to overcome nowadays medical needs in vaccine field.
Collapse
Affiliation(s)
- Antonio Lembo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy; GSK, Siena, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
6
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
7
|
Sun Y, Zhang Y, Sun M, Gao W, He Y, Wang Y, Yang B, Kuang H. Advances in Eucommia ulmoides polysaccharides: extraction, purification, structure, bioactivities and applications. Front Pharmacol 2024; 15:1421662. [PMID: 39221141 PMCID: PMC11361956 DOI: 10.3389/fphar.2024.1421662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Eucommia ulmoides (EU) is a precious tree species native to China originating during the ice age. This species has important economic value and comprehensive development potential, particularly in medicinal applications. The medicinal parts of EU are its bark (Eucommiae cortex) and leaves (Eucommiae folium) which have been successively used as a traditional Chinese medicine to treat diseases since the first century BC. During the last 2 decades, as natural polysaccharides have become of increasing interest in pharmacology, biomedicine, cosmetic and food applications, more and more scholars have begun to study polysaccharides derived from EU as well. EU polysaccharides have been found to have a variety of biological functions both in vivo and in vitro, including immunomodulatory, antioxidant, anti-inflammatory, anticomplementary, antifatigue, and hepatoprotective activities. This review aims to summarize these recent advances in extraction, purification, structural characteristics, pharmacological activities and applications in different fields of EU bark and leaf polysaccharides. It was found that both Eucommiae folium polysaccharides and Eucommiae cortex polysaccharides were suitable for medicinal use. Eucommiae folium may potentially be used to substitute for Eucommiae cortex in terms of immunomodulation and antioxidant activities. This study serves as a valuable reference for improving the comprehensive utilization of EU polysaccharides and further promoting the application of EU polysaccharides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
8
|
Ji C, Ma Y, Xie Y, Guo J, Ba H, Zhou Z, Zhao K, Yang M, He X, Zheng W. Isolation and purification of carbohydrate components in functional food: a review. RSC Adv 2024; 14:23204-23214. [PMID: 39045398 PMCID: PMC11265275 DOI: 10.1039/d4ra02748e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Medicinal plants, increasingly utilized in functional foods, possess potent therapeutic properties and health-promoting functions, with carbohydrates playing a crucial role and exhibiting a range of effects, such as antioxidant, antitumor, immune-enhancing, antibacterial, anticoagulant, and hypoglycemic activities. However, comprehensively, accurately, rapidly, and economically assessing the quality of carbohydrate components is challenging due to their diverse and complex nature. Additionally, the purification and identification of carbohydrates also guarantee related efficacy research. This paper offers a thorough review of research progress carried out by both domestic and international scholars in the last decade on extracting, purifying, separating, identifying, and determining the content of carbohydrate components from functional foods, which are mainly composed of medicinal plants, and also explores the potential for achieving comprehensive quantitative analysis and evaluating structure-activity relationships of carbohydrate components. These findings aim to serve as a valuable reference for the future development and application of natural carbohydrate components in functional food and medicine.
Collapse
Affiliation(s)
- Chao Ji
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Ying Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Yuxin Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Junli Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Haoran Ba
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Zheng Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Kongxiang Zhao
- The Animal, Plant & Foodstuff Inspection Center of Tianjin Customs Tianjin 300387 China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University Kunming Yunnan 650201 China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University Kunming Yunnan 650201 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University Kunming Yunnan 650224 China
| | - Wenjie Zheng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University Kunming Yunnan 650224 China
| |
Collapse
|
9
|
Lee H, Song J, Lee B, Cha J, Lee H. Food carbohydrates in the gut: structural diversity, microbial utilization, and analytical strategies. Food Sci Biotechnol 2024; 33:2123-2140. [PMID: 39130670 PMCID: PMC11315866 DOI: 10.1007/s10068-024-01648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024] Open
Abstract
Carbohydrates, which are a vital dietary component, undergo digestion and gut fermentation through microbial enzymes to produce beneficial short-chain fatty acids. Certain carbohydrates selectively modulate the gut microbiota, impacting host health. Carbohydrate-active enzymes within the gut microbiota significantly contribute to carbohydrate utilization and microbial diversity. Despite their importance, the structural complexity of carbohydrates poses analytical challenges. However, recent advancements, notably, mass spectrometry, have allowed for their characterization and functional analysis. This review examines the intricate relationship between dietary carbohydrates and the gut microbiota, highlighting the crucial role of advanced analytical techniques in understanding their diversity and implications. These advancements provide valuable insights into carbohydrate bioactivity. Integrating high-throughput analysis with next-generation sequencing provides deeper insights into gut microbial interactions, potentially revealing which carbohydrate structures are beneficial for gut health.
Collapse
Affiliation(s)
- HyunJi Lee
- Department of Applied Chemistry, Food Science and Technology, Dong-eui University, Busan, 47340 Republic of Korea
| | - JaeHui Song
- Department of Applied Chemistry, Food Science and Technology, Dong-eui University, Busan, 47340 Republic of Korea
| | - Bokyung Lee
- Department of Food Science and Nutrition, Dong-A University, Busan, 49315 Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea
| | - Jaeho Cha
- Department of Microbiology, Pusan National University, Busan, 46241 Republic of Korea
- Microbiological Resources Research Institute, Pusan National University, Busan, 46241 Republic of Korea
| | - Hyeyoung Lee
- Department of Applied Chemistry, Food Science and Technology, Dong-eui University, Busan, 47340 Republic of Korea
| |
Collapse
|
10
|
Luo L, Lin L, Huang S, Zhou Y, Yang S, Zhu Y, Zhang L, Xiong D, Wu Y, Wu M. Sensitive, precise fingerprint profiling for monosaccharide analysis of Bacillus Calmette-Guérin polysaccharide and nucleic acid isolates. Carbohydr Res 2024; 540:109124. [PMID: 38701680 DOI: 10.1016/j.carres.2024.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Abstract
A sensitive and precise HPLC-DAD method with pre-column PMP derivatization was established and validated, for analyzing the polysaccharides in Bacillus Calmette-Guérin polysaccharide and nucleic acid (BCG-PSN) isolates, after acid hydrolysis. And the HPLC fingerprint profiling was used to analyze its monosaccharide composition. The monosaccharide concentration-peak area calibration curve was of good linearity (R2 > 0.99), over the range of 0.016-0.08 mg/mL for mannose or 0.24-1.20 mg/mL for glucose, with high recovery of 93-105 % for quality control samples. The intra-day RSD values of mannose and glucose concentration were less than 2.5 % and 2.1 %, respectively, and their inter-day RSD values were less than 4.3 % and 2.2 %, respectively, and remained stable for up to 14 days. This method also remained durable against changes in chromatographic parameters, but it's susceptible to the flow rate of mobile phase. Additionally, the method was applied to analyze the content of mannose and glucose in 22 batches BCG-PSN powder and 17 batches BCG-PSN injection. The results showed that the HPLC-DAD fingerprint spectra of all the BCG-PSN powder and BCG-PSN injection samples had a high degree of similarity, with the similar indexes up to 0.999 and 0.998, respectively. The HPLC-DAD method with pre-column PMP derivatization is highly rapid, effective, visual, and accurate for determination of monosaccharide contents. The validated method was successfully applied to the analysis of polysaccharide in both BCG-PSN powder and injection.
Collapse
Affiliation(s)
- Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Sheng Huang
- Hunan Siqi BioPharmaceutical Co., Ltd., Changsha, 410329, China; Jiuzhitang Co., Ltd., Changsha, 410205, China
| | - Yunxi Zhou
- Hunan Siqi BioPharmaceutical Co., Ltd., Changsha, 410329, China
| | - Shengmei Yang
- Hunan Siqi BioPharmaceutical Co., Ltd., Changsha, 410329, China
| | - Yan Zhu
- Jiuzhitang Co., Ltd., Changsha, 410205, China
| | - Lanyan Zhang
- Hunan Siqi BioPharmaceutical Co., Ltd., Changsha, 410329, China
| | - Donghua Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongsheng Wu
- Hunan Siqi BioPharmaceutical Co., Ltd., Changsha, 410329, China; Jiuzhitang Co., Ltd., Changsha, 410205, China.
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
11
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Yin Z, Liu M, Wang B, Zhao D, Li H, Sun J. Extraction, Identification, and In Vitro Anti-Inflammatory Activity of Feruloylated Oligosaccharides from Baijiu Distillers' Grains. Foods 2024; 13:1283. [PMID: 38672955 PMCID: PMC11049520 DOI: 10.3390/foods13081283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The structure and function of phenoyl oligosaccharides in baijiu distillers' grains (BDGs) have not been identified and investigated yet. This study aimed to elucidate the major phenolic oligosaccharides present in BDGs, optimize their extraction process via a central composite design, and assess their anti-inflammatory properties utilizing the LPS-induced RAW264.7 inflammation model. The main results are as follows: feruloylated oligosaccharides (FOs) were identified as the main phenoyl oligosaccharides in BDGs with a structure of ferulic acid esterified on arabinooligosaccharide xylose. Then, the preparation process of FOs was optimized using the following conditions: pH 5, temperature 55 °C, time 12 h, xylanase addition amount 7 g/L, BDG concentration 120 g/L. Furthermore, the acquired FOs demonstrated notable scavenging activity against DPPH and ABTS free radicals, with Trolox equivalent values of 366.8 ± 10.38 and 0.35 ± 0.01 mM Trolox/mg sample, respectively. However, their efficacy was comparatively lower than that of ferulic acid. Finally, the obtained FOs could effectively inhibit the LPS-induced secretion of TNF-α, IL-6, and IL-1β and promote the secretion of IL-10 in RAW264.7 cells. Based on the above results, FOs from BDGs were determined to have certain antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Zhongtian Yin
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Mengyao Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Bowen Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Dongrui Zhao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| |
Collapse
|
13
|
Li J, Sun M, Xu C, Zhou C, Jing SJ, Jiang YY, Liu B. An integrated strategy for rapid discovery and identification of the potential effective fragments of polysaccharides from Saposhnikoviae Radix. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117099. [PMID: 37640255 DOI: 10.1016/j.jep.2023.117099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saposhnikoviae Radix (SR) is a traditional Chinese medicine, known as "Fangfeng". As one of the main active components, Saposhnikoviae Radix polysaccharides (SP) demonstrated a range of biological activities, especially immunity regulation activity. AIMS OF THE STUDY This study aimed at exploring whether polysaccharides have activity after degradation, then discovering the potential effective fragments of SP. MATERIALS AND METHODS Here we establish the chromatographic fingerprints method for 32 batches of 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatives of oligosaccharides by HPLC, meanwhile evaluating its immunomodulatory activity in vivo. Then, the potential effective fragments of SP were screened out based on the spectrum-effect relationship analysis between fingerprints and the pharmacological results. Besides, liquid chromatography ion trap-time of flight mass spectrometry (LC-IT-TOF MS) coupled with multiple data-mining techniques was used to identify the potential effective oligosaccharides. RESULTS These findings showed that the hydrolysate of SP have significant immunomodulatory, and the immunity regulation activity varies under different hydrolysis conditions. The 4 potential effective peaks of the hydrolysate of SP were mined by spectrum-effect relationship. Finally, the chemical structure of 4 potential effective oligosaccharide fragments of SP was elucidated based on LC-IT-TOF MS. F10 was inferred tentatively to be Hex1→6Hex1→6Hex1→6Hex1→6Hex1→6Gal; F18 was confirmed to be Rhamnose; F14 was inferred tentatively to be Hex1→4Hex1→ 4Hex1→4Gal and F25 was tentatively inferred to be Ara1→6Gal. CONCLUSIONS This study may provide a sound experimental foundation in the exploration of the active fragments from macromolecular components with relatively complex structures such as polysaccharides.
Collapse
Affiliation(s)
- Jie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Meng Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chang Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shu-Jin Jing
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan-Yan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 102488, China.
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 102488, China.
| |
Collapse
|
14
|
Jiang K, Wang D, Su L, Liu X, Yue Q, Zhang S, Zhao L. Tamarind Seed Polysaccharide Hydrolysate Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis via Regulating the Gut Microbiota. Pharmaceuticals (Basel) 2023; 16:1133. [PMID: 37631047 PMCID: PMC10459238 DOI: 10.3390/ph16081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Ulcerative colitis (UC) is a disease caused by noninfectious chronic inflammation characterized by varying degrees of inflammation affecting the colon or its entire mucosal surface. Current therapeutic strategies rely on the suppression of the immune response, which is effective, but can have detrimental effects. Recently, different plant polysaccharides and their degradation products have received increasing attention due to their prominent biological activities. The aim of this research was to evaluate the mitigation of inflammation exhibited by tamarind seed polysaccharide hydrolysate (TSPH) ingestion in colitis mice. (2) Methods: TSPH was obtained from the hydrolysis of tamarind seed polysaccharide (TSP) by trifluoroacetic acid (TFA). The structure and physical properties of TSPH were characterized by ultraviolet spectroscopy (UV), thin-layer chromatography (TLC), fourier transform infrared spectroscopy (FT-IR), and High-Performance Liquid Chromatography and Electrospray Ionization Mass Spectrometry (HPLC-ESI/MS) analysis. Then, the alleviative effects of the action of TSPH on 2.5% dextran sodium sulfate (DSS)-induced colitis mice were investigated. (3) Results: TSPH restored pathological lesions in the colon and inhibited the over-secretion of pro-inflammatory cytokines in UC mice. The relative expression level of mRNA for colonic tight junction proteins was increased. These findings suggested that TSPH could reduce inflammation in the colon. Additionally, the structure of the gut microbiota was also altered, with beneficial bacteria, including Prevotella and Blautia, significantly enriched by TSPH. Moreover, the richness of Blautia was positively correlated with acetic acid. (4) Conclusions: In conclusion, TSPH suppressed colonic inflammation, alleviated imbalances in the intestinal flora and regulated bacterial metabolites. Thus, this also implies that TSPH has the potential to be a functional food against colitis.
Collapse
Affiliation(s)
- Kangjia Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (K.J.); (D.W.); (L.S.); (X.L.); (Q.Y.)
| | - Duo Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (K.J.); (D.W.); (L.S.); (X.L.); (Q.Y.)
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (K.J.); (D.W.); (L.S.); (X.L.); (Q.Y.)
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (K.J.); (D.W.); (L.S.); (X.L.); (Q.Y.)
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (K.J.); (D.W.); (L.S.); (X.L.); (Q.Y.)
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (K.J.); (D.W.); (L.S.); (X.L.); (Q.Y.)
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (K.J.); (D.W.); (L.S.); (X.L.); (Q.Y.)
- Shandong Chenzhang Biotechnology Co., Ltd., Jinan 250353, China
| |
Collapse
|
15
|
Zhao H, Wang L, Yu Y, Yang J, Zhang X, Zhao Z, Ma F, Hu M, Wang X. Comparison of Lycium barbarum fruits polysaccharide from different regions of China by acidic hydrolysate fingerprinting-based HILIC-ELSD-ESI-TOF-MS combined with chemometrics analysis. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:186-197. [PMID: 36450654 DOI: 10.1002/pca.3192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Lycium barbarum is an edible fruit widely used in herbal medicines and as a functional food. Polysaccharide is one of the most important active ingredients. Only L. barbarum grown in the Ningxia region of China are officially recognised as suitable for use in traditional Chinese medicine, but the systematic comparison of L. barbarum polysaccharide between Ningxia and the other growing regions of China has been rarely reported. OBJECTIVE To compare the difference of L. barbarum polysaccharide from different grown regions of China. METHODS A chemical fingerprint of L. barbarum polysaccharide hydrolysates was established based on controlled acidolysis combined with hydrophilic interaction liquid chromatography-evaporative light scattering detection-electrospray ionisation-time-of-flight-mass spectrometry (HILIC-ELSD-ESI-TOF-MS). Then, it was employed for the comparison of L. barbarum samples from different geographical origins of China combined with chemometrics analysis. RESULTS Six monosaccharides [rhamnose (Rha), xylose (Xyl), arabinose (Ara), mannose (Man), glucose (Glu), galactose (Gal)] were qualitatively and quantitatively determined and four glycoconjugates were preliminarily identified from the hydrolysates. Content determination for the polysaccharide and monosaccharide indicated obvious geographical features. The HILIC-ELSD fingerprint combined with partial least squares-discriminant analysis (PLS-DA) was able to differentiate L. barbarum samples from Ningxia, Xinjiang, Gansu and Qinghai regions with 89.19% classification accuracy. Orthogonal projection to latent structure discriminant analysis (OPLS-DA) was able to differentiate between samples from Ningxia and those from the other three growing regions, polysaccharide and Ara were the potential chemical markers. CONCLUSIONS These findings form the basis of a reliable method to trace the region of origin of L. barbarum sample and thereby, improve the quality control of L. barbarum therapeutic polysaccharides.
Collapse
Affiliation(s)
- Hengqiang Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- School of Pharmaceutical Sciences, Qilu University Of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Ling Wang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing, P. R. China
| | - Yi Yu
- Infinitus (China) Company Ltd., Guangzhou, P.R. China
| | - Jian Yang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing, P. R. China
| | - Xiaobo Zhang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing, P. R. China
| | - Zhiguo Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- School of Pharmaceutical Sciences, Qilu University Of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Fangli Ma
- Infinitus (China) Company Ltd., Guangzhou, P.R. China
| | - Minghua Hu
- Infinitus (China) Company Ltd., Guangzhou, P.R. China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- School of Pharmaceutical Sciences, Qilu University Of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
16
|
Shi MZ, Shi Y, Jin HF, Cao J. An efficient mixed enzymes-assisted mechanical bio-extraction of polysaccharides from Dendrobium officinale and determination of monosaccharides by HPLC-Q-TOF/MS. Int J Biol Macromol 2023; 227:986-1000. [PMID: 36464194 DOI: 10.1016/j.ijbiomac.2022.11.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The mixed enzymes-assisted mechanical bio-extraction method was first used to extract polysaccharides from Dendrobium officinale. Different parameters including the ratio of enzyme, the amount of enzyme, the grinding time, the extraction time and the solid/liquid ratio were investigated by single factor experiments and multifactorial experiments. Through the response surface methodology the optimal extraction conditions were obtained with the ratio of cellulase to pectinase was 2: 1 and total amount of enzyme was 0.23 mg, the grinding time of 11.48 min, the extraction time of 5.99 min. The obtained polysaccharide extracts were hydrolyzed and derivatized and then injected into high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) for monosaccharide composition analysis. After optimization of the chromatographic conditions (including mobile phase and column), twelve monosaccharides were successfully determined within 20 min. The proposed method provided satisfactory linearity with the correlation coefficients higher than 0.99, suitable recoveries (81.46-114.92 %), acceptable reproducibility ranging from 0.06 % to 4.77 %, low limits of detection (0.70-45.45 ng/mL). Compared with other methods, this method makes the extraction efficiency much higher and has the advantages of simple operation, environmental friendliness and mild extraction conditions. Therefore, this method can be used for the extraction of polysaccharides from plants and the determination of monosaccharides and has the potential to be used in more areas.
Collapse
Affiliation(s)
- Min-Zhen Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
17
|
Li SW, Xue BX, Yang TT, Li R, Zhang M, Wang M, Zhang LH, Zhang P, Zhang Y, Wang T, Wang SX, Wu HH. Sesquiterpenoids and monoterpenoids from the water decoction of Valeriana officinalis L. PHYTOCHEMISTRY 2023; 205:113474. [PMID: 36273590 DOI: 10.1016/j.phytochem.2022.113474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Nine previously undescribed compounds including three sesquiterpenoids, three iridoids, two monoterpenoids and a furan fatty acid, along with seventeen known ones, were isolated from the water decoction of roots and rhizomes of Valeriana officinalis L. Structure elucidation of the twenty-six compounds were accomplished by analysis of the extensive spectroscopic data, and the absolute configurations of the nine previously undescribed ones were established by NOESY experiment and the electronic circular dichroism (ECD) simulations. Among them, β-patchoulene-8-O-β-D-glucopyranoside, 11-methoxyl-viburtinal, and protocatechuic acid showed anti-neuroinflammatory potentials by significantly inhibiting the secretion of nitric oxide (NO) on BV-2 cells upon LPS stimulation (p < 0.001) without affecting the cell viability.
Collapse
Affiliation(s)
- Shi-Wei Li
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Bian-Xia Xue
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Tian-Tian Yang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Ran Li
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Mingjie Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Miao Wang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Li-Hua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Peng Zhang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Shao-Xia Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Hong-Hua Wu
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
18
|
Miao XL, Ma HM, Ke QH, Wang SY, Zhou HF, Zheng M. The determination of monosaccharide in different years Qingzhuan Dark Tea polysaccharide by liquid chromatography-mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:577-589. [PMID: 35128737 DOI: 10.1002/pca.3111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
AIM To establish a fast, sensitive and accurate high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for determining the monosaccharide content of Qingzhuan Dark Tea polysaccharides in different years (2 years, 5 years and 11 years). METHODS The optimised chromatographic conditions were achieved on a C18 column (5.0 μm, 250 mm × 4.6 mm inner diameter). The mobile phase flow rate was 0.9 mL/min and the column temperature was set to 27°C. The aqueous phase A (5 mM aqueous ammonium acetate) and organic phase B (acetonitrile) were used to elute the target analyses isocratically (0-60 min: 18% B). The mass spectrometer detector was equipped with an electron spray ionisation (ESI)source, and multiple reaction monitoring (MRM) mode was used for the determination of 1-phenyl-3-methyl-5-pyrazolone (PMP) derived monosaccharides. RESULTS We carried out a comprehensive methodological validation of PMP derived monosaccharides, including linearity, precision, stability and repeatability. Nine monosaccharides (rhamnose, mannose, ribose, glucose, galacturonic acid, xylose, galactose, fucose and arabinose) of Qingzhuan Dark Tea polysaccharides were identified, in which ribose and fucose were reported for the first time. The results showed the contents of these nine monosaccharides differed significantly among different years. CONCLUSIONS The validated method is reliable, accurate, repeatable and can be applied to quality assessment of these monosaccharides.
Collapse
Affiliation(s)
- Xiao-Lei Miao
- Hubei University of Science and Technology, Xianning, Hubei, China
| | - Hui-Min Ma
- Hubei University of Science and Technology, Xianning, Hubei, China
| | - Qin-Hao Ke
- Hubei University of Science and Technology, Xianning, Hubei, China
| | - Shi-Yue Wang
- Hubei University of Science and Technology, Xianning, Hubei, China
| | - Hong-Fu Zhou
- Hubei University of Science and Technology, Xianning, Hubei, China
| | - Min Zheng
- Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
19
|
Xu S, Bi J, Jin W, Fan B, Qian C. Determination of Polysaccharides Composition in Polygonatum sibiricum and Polygonatum odoratum by HPLC-FLD with Pre-column Derivatization. Heliyon 2022; 8:e09363. [PMID: 35586333 PMCID: PMC9109187 DOI: 10.1016/j.heliyon.2022.e09363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/19/2021] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
A high-performance liquid chromatography-fluorescence detection (HPLC-FLD) method was established for the determination of seven monosaccharides in Polygonatum sibiricum and Polygonatum odoratum. The polysaccharides were de-esterified, extracted, hydrolyzed and derivatized with p-aminobenzoic acid (PABA) to obtain fluorescently labeled monosaccharide compounds, which were finally detected by HPLC-FLD. Inertsil ODS-3, C18 chromatographic column (250 mm × 4.6 mm, 5 μm) was used for chromatography. The excitation wavelength (Ex) was 313 nm, and the emission wavelength (Em) was 358 nm. Ethyl acetate extraction reduced the peaks of chromatogram and improved the detection sensitivity than other agents. The established method had high sensitivity, strong specificity, good linear relationship and recovery efficiency. The results showed that the roots and fibrous roots of Polygonatum sibiricum and Polygonatum odoratum contained these seven monosaccharides, and the highest monosaccharide content was mannose. The method of PABA-HPLC-FLD for determination of monosaccharide content in Polygonatum sibiricum and Polygonatum odoratum was sensitive and accurate. The method established in this work provides a feasible analytical tool for the study of polysaccharides, and the findings on polysaccharides from Polygonatum sibiricum and Polygonatum odoratum can provide guidance for the natural medicine industry.
Collapse
Affiliation(s)
- Sheng Xu
- Hubei University of Science and Technology, China
| | - Jianli Bi
- Hubei University of Science and Technology, China
| | - Wenfang Jin
- Hubei University of Science and Technology, China
| | - Baolei Fan
- Hubei University of Science and Technology, China
- Corresponding author.
| | - Chunqi Qian
- Michigan State University, United States
- Corresponding author.
| |
Collapse
|
20
|
Diboronic acid assisted labeling and separation for highly efficient analysis of saccharides. J Chromatogr A 2022; 1667:462908. [DOI: 10.1016/j.chroma.2022.462908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022]
|
21
|
Liu J, Li J, Yi D, Liu Y, Liu R, Xue Y, Huang Q, Liu S, Jiang Y. Non-derivatization strategy for the comprehensive characterization of neutral monosaccharide isomers and neutral disaccharide isomers using hydrophilic interaction liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1185:122972. [PMID: 34700132 DOI: 10.1016/j.jchromb.2021.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Monosaccharide isomers and disaccharide isomers widely exist in nature, playing a key role in a number of important biological processes. However, due to high structural similarity and high polarity, the characterization of monosaccharide isomers, disaccharide isomers, as well as the analysis of monosaccharide composition of polysaccharides by a method that does not require derivatization is an ongoing challenge. Herein, we proposed a simple method for rapid discrimination of non-derivatized neutral monosaccharide, and disaccharide isomers using hydrophilic interaction liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry (HILIC-Q/TOF-MS). In this work, we optimized the experimental parameters, and detailed approaches to discriminate the precursor ions, deprotonated ions, and fragment ions are proposed, as well. To discriminate the various ions, the retention times, the relative abundance (RA) of precursor ions and fragment ions at different collision energies, the relative abundance ratio (RAR) of fragment ions to deprotonated ions or precursor ions were considered for characterization of neutral monosaccharide and disaccharide isomers. Finally, this strategy was successfully applied to analyzing the monosaccharide composition of neutral disaccharides, polysaccharides, and an aqueous extract of Moringa oleifera seeds. The experimental results revealed that the HILIC-Q/TOF-MS is an effective and convenient strategy for rapid differentiation of monosaccharide isomers and disaccharide isomers, which may serve as a general platform for the analysis of neutral polysaccharides, food, medicinal plants, and herbs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Yi
- Drug Clinical Trial Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Yanyang Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Xue
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Hospital Pharmacy, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
22
|
Zhou G, Chen Y, Tang Y. Total Content of Piperidine Analysis in Artane by RP-HPLC Using Pre-Column Derivatization with 4-Toluene Sulfonyl Chloride. J Chromatogr Sci 2021; 60:613-619. [PMID: 34343261 DOI: 10.1093/chromsci/bmab099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 11/13/2022]
Abstract
A simple, sensitive and accurate reversed-phase high-performance liquid chromatography (RP-HPLC) method was established for the determination of piperidine and piperidine hydrochloride in artane, using pre-column derivatization with 4-toluenesulfonyl chloride. The RP-HPLC method was carried out on a Inertsil C18 column (250 × 4.6 mm I.D.) maintained at 30°C. The mobile phase consisted of water with 0.1% phosphoric acid (phase A) and acetonitrile (phase B) (32:68, V:V) at a flow rate of 1.0 mL/min. Linearity of piperidine was found in the range of 0.44-53.33 μg/mL with R2 = 0.9996. The limit of detection was estimated to be 0.15 μg/mL, and the limit of quantitation was 0.44 μg/mL. The average recovery was 101.82% with relative standard deviations of 0.6% at three spiked levels. The developed method using HPLC-ultraviolet system was a rapid tool for routine analysis of piperidine in the bulk form with good accuracy.
Collapse
Affiliation(s)
- Guiyin Zhou
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412008, China
| | - Yao Chen
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412008, China
| | - Ying Tang
- Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412008, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
23
|
Liu D, Tang W, Yin JY, Nie SP, Xie MY. Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106641] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Pesek JJ, Matyska MT, Tardiff E, Hiltz T. Chromatographic characterization of a silica hydride-based amide stationary phase. J Sep Sci 2021; 44:2728-2734. [PMID: 33974365 DOI: 10.1002/jssc.202100192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 11/11/2022]
Abstract
An amide phase based on a porous silica hydride support material is tested for retention characteristics in both the reversed-phase and aqueous normal-phase modes. A series of retention maps (capacity factor vs. mobile phase composition) were obtained using reference standards of varying analyte sizes, functionalities, and polarities. An assessment of the specific column selectivity is made and classes of compounds are identified that show high potential for effective retention, resolution, and efficiency when using amide functionalized silica hydride columns for reversed-phase and aqueous-normal phase separation. Several practical applications are presented that illustrate the capabilities of this particular column format.
Collapse
Affiliation(s)
- Joseph J Pesek
- Department of Chemistry, San Jose State University, San Jose, CA, USA
| | - Maria T Matyska
- Department of Chemistry, San Jose State University, San Jose, CA, USA
| | - Emma Tardiff
- Department of Chemistry, San Jose State University, San Jose, CA, USA
| | - Tanya Hiltz
- MicroSolv Technology Corporation, Leland, NC, USA
| |
Collapse
|
25
|
Yuexing C, Junjie L, Siqing P, Yanlin J, Ailing G, Yun D. Effects of Different Drying Methods on the Contents of Nine Components and Immunomodulatory Activities of Four Components in Osmamthus fragrans Flowers. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21996160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The effects of drying methods on the contents of four nonvolatile and five volatile components and the immunoregulatory activities of four components in Osmamthus fragrans flowers were investigated. In general, microwaving preserved more nonvolatile components than the other methods, while the sun or shade method preserved more volatile components. Nonvolatile components such as salidroside and acteoside and volatile ingredients such as linalool and linalool oxide exhibited better immunoregulatory activity than the other ingredients. Taken together, O. fragrans flowers dried by microwaving resulted in the best immunoregulatory activity. This study provides evidence for the optimal drying method for O. fragrans flowers as food and medicine.
Collapse
Affiliation(s)
- Chang Yuexing
- Department of Pharmacy, Medical School, Anhui University of Science & Technology, Huainan, Anhui, China
| | - Lin Junjie
- Department of Pharmacy, Medical School, Anhui University of Science & Technology, Huainan, Anhui, China
| | - Pan Siqing
- Department of Pharmacy, Medical School, Anhui University of Science & Technology, Huainan, Anhui, China
| | - Jing Yanlin
- Department of Pharmacy, Medical School, Anhui University of Science & Technology, Huainan, Anhui, China
| | - Guo Ailing
- Department of Pharmacy, Medical School, Anhui University of Science & Technology, Huainan, Anhui, China
| | - Deng Yun
- Department of Pharmacy, Medical School, Anhui University of Science & Technology, Huainan, Anhui, China
| |
Collapse
|
26
|
Fan B, Wei G, Gan X, Li T, Qu Z, Xu S, Liu C, Qian C. Study on the varied content of Polygonatum cyrtonema polysaccharides in the processing of steaming and shining for nine times based on HPLC-MS/MS and chemometrics. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Fang J, Wang Z, Wang P, Wang M. Extraction, structure and bioactivities of the polysaccharides from Ginkgo biloba: A review. Int J Biol Macromol 2020; 162:1897-1905. [DOI: 10.1016/j.ijbiomac.2020.08.141] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
|
28
|
Li Y, Liang J, Shen Y, Kuang HX, Xia YG. A new application of acetylation for analysis of acidic heteropolysaccharides by liquid chromatography-electrospray mass spectrometry. Carbohydr Polym 2020; 245:116439. [DOI: 10.1016/j.carbpol.2020.116439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
|
29
|
Li T, Xu S, Bi J, Huang S, Fan B, Qian C. Metabolomics study of polysaccharide extracts from Polygonatum sibiricum in mice based on 1 H NMR technology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4627-4635. [PMID: 32424844 DOI: 10.1002/jsfa.10523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/20/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Polygonatum sibiricum Liliaceae perennial herb, as a commonly used medicine and food homologous plant, has been widely used in clinical practice of Chinese medicine since ancient times, with a history of 2000 years. As the main active ingredient, P. sibiricum polysaccharides have important pharmacological effects in blood sugar reduction and antitumor, antioxidant and liver protection. RESULTS Mouse models of P. sibiricum polysaccharides were used in combination with 1 H NMR to investigate the metabolic regulation mechanism in mouse tissue and blood. The metabolite maps of the control group and the drug group in the liver had significant changes. The main differential metabolites were glucose 6-phosphate, inositol, lactose, glutamylglycine, galactose, rhamnose, cis-aconitic acid and histidine, indicating that there was definite correlation between the metabolic detection based on 1 H NMR and the metabolic characteristics of P. sibiricum. The common differential metabolites obtained by overall metabolism analysis were 3-hydroxybutyric acid, d-ribose, adenosine phosphate, inositol, fructose 6-phosphate, histidine, aspartic acid and cis-aconitic acid. CONCLUSIONS This work forms the basis for identification of metabolic states combined with metabolic pathways, which could be used as diagnostic and prognostic indicators, providing therapeutic targets for new diseases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tingting Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Sheng Xu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Jianli Bi
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Shengtang Huang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Baolei Fan
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
- Xian'an District Food and Drug Administration, Xianning, China
| | - Chunqi Qian
- Michigan State University, East Lansing, MI, USA
| |
Collapse
|
30
|
Bailly C, Hecquet PE, Kouach M, Thuru X, Goossens JF. Chemical reactivity and uses of 1-phenyl-3-methyl-5-pyrazolone (PMP), also known as edaravone. Bioorg Med Chem 2020; 28:115463. [DOI: 10.1016/j.bmc.2020.115463] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/16/2022]
|
31
|
Hu F, Liao X, Guo Y, Yamaki S, Li X, Hamada N, Hashi Y, Chen Z. Fast determination of isomeric triterpenic acids in Osmanthus fragrans (Thunb.) Lour. fruits by UHPLC coupled with triple quadrupole mass spectrometry. Food Chem 2020; 322:126781. [PMID: 32305878 DOI: 10.1016/j.foodchem.2020.126781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/01/2019] [Accepted: 04/08/2020] [Indexed: 01/30/2023]
Abstract
Triterpenic acids possess rich biological activity. Due to slight differences in structure and polarity, the simultaneous determination of isomeric triterpenic acids is challenging. In the present work, a simple and effective approach to chromatographic separation of such compounds based on conventional C18 stationary phase with gradient elution was developed, which allowed the simultaneous separation of eleven analytes including euscaphic, arjunic, tormentic, arjunolic, asiatic, pomolic, maslinic, corosolic, oleanolic, ursolic and 2-Epi tormentic acid (internal standard). This approach with mass spectrometric detection and ultrasonic extraction was fast, sensitive and accurate for analyzing isomeric triterpenic acids in O. fragrans fruits with a toal duration of the analytical cycle (including pretreatment) within one hour. The LODs lie in ranges of 0.8-12 ng/mL (30 ng/mL for asiatic and corosolic acid). The developed method was validated and successfully applied in ten batches of O. fragrans fruits, which could reflect the detail content difference of triterpenic acid components.
Collapse
Affiliation(s)
- Fangli Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China
| | - Xiaoyan Liao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China
| | - Yanli Guo
- Shimadzu China Corporation, China MS Center, Beijing Branch, Beijing 100020, China
| | - Satoshi Yamaki
- Shimadzu China Corporation, China MS Center, Beijing Branch, Beijing 100020, China
| | - Xiaodong Li
- Shimadzu China Corporation, China MS Center, Beijing Branch, Beijing 100020, China
| | - Naoki Hamada
- Shimadzu China Corporation, China MS Center, Beijing Branch, Beijing 100020, China
| | - Yuki Hashi
- Shimadzu China Corporation, China MS Center, Beijing Branch, Beijing 100020, China.
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China.
| |
Collapse
|