1
|
Bu Y, Liu Y, Zhu L, Gan X, Jiang S, Zhang X, Dilixiati M, Bai M, Zeng J, Shi S, Li T, Li B, Wang S, Wang H. Recent Advances in Polysaccharides Derived from the Genus Panax: Preparation Strategies, Structural Profiles, Functional Properties and Structure-Activity Relationships. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39546627 DOI: 10.1021/acs.jafc.4c07918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Plants from the Panax genus have significant medicinal and nutritional benefits. Many Panax species are traditionally used in Chinese medicine and have gained popularity as food and health products because of their tonic effects and high safety. Their key bioactive components include polysaccharides, which are hydrophilic biomolecules that have demonstrated significant potential in the food and pharmaceutical industries because of their multiple health-promoting qualities, such as immunomodulatory, antitumor, antiaging, blood glucose and blood lipid regulation, antiviral, hepatoprotective, and gastrointestinal protective properties. Additionally, polysaccharides are abundant in health products made from the genus Panax, such as energy drinks and herbal teas. However, compared with more extensively studied components, such as ginsenosides and saponins, polysaccharides from the genus Panax (GPPs) have been the subject of relatively limited research. This review provides a comprehensive overview of the extraction and purification technology, structural characteristics, biological activities, applications, and structure-activity relationships of GPPs. Ultimately, this information establishes a theoretical foundation for the further development and application of GPPs in nutrition and medicine.
Collapse
Affiliation(s)
- Yingxuan Bu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yupeng Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Lingyan Zhu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xiaona Gan
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Shenggui Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Xiaoyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Munisa Dilixiati
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P. R. China
| | - Muwei Bai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Jiani Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
2
|
Pedrosa LDF, Fabi JP. Dietary fiber as a wide pillar of colorectal cancer prevention and adjuvant therapy. Crit Rev Food Sci Nutr 2024; 64:6177-6197. [PMID: 36606552 DOI: 10.1080/10408398.2022.2164245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Colorectal cancer is the third most incident and second most lethal type of cancer worldwide. Lifestyle and dietary patterns are the key factors for higher disease development risk. The dietary fiber intake from fruits and vegetables, mainly formed by food hydrocolloids, can help to lower the incidence of this type of neoplasia. Different food polysaccharides have applications in anti-tumoral therapy, such as coadjuvant to mainstream drugs, carriage-like properties, or direct influence on tumoral cells. Some classes include inulin, β-glucans, pectins, fucoidans, alginates, mucilages, and gums. Therefore, it is fundamental to discuss colorectal cancer mechanisms and the roles played by different polysaccharides in intestinal health. Genetic, environmental, and immunological modulation of mutated pathways regarding colorectal cancer has been explored before. Microbial diversity, byproduct formation (primarily short-chain fatty acids), inflammatory profile control, and tumoral mutated pathways regulation are thoroughly explored mechanisms by which dietary fiber sources influence a healthy gut ambiance.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| |
Collapse
|
3
|
Feng Q, Yan H, Feng Y, Cui L, Hussain H, Park JH, Kwon SW, Xie L, Zhao Y, Zhang Z, Li J, Wang D. Characterization of the structure, anti-inflammatory activity and molecular docking of a neutral polysaccharide separated from American ginseng berries. Biomed Pharmacother 2024; 174:116521. [PMID: 38593700 DOI: 10.1016/j.biopha.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
AIM American ginseng berries, grown in the aerial parts and harvested in August, are a potentially valuable material. The aim of the study was to analyze the specific polysaccharides in American ginseng berries, and to demonstrate the anti-inflammation effect through in vitro and in vivo experiments and molecular docking. METHODS After deproteinization and dialysis, the extracted crude polysaccharide was separated and purified. The structure of the specific isolated polysaccharide was investigated by Fourier Transform infrared spectroscopy (FT-IR), GC-MS and nuclear magnetic resonance (NMR), and anti-inflammatory activity was evaluated using in vitro and in vivo models (Raw 264.7 cells and zebrafish). Molecular docking was used to analyze the binding capacity and interaction with cyclooxygenase-2 (COX-2). RESULTS A novel neutral polysaccharide fraction (AGBP-A) was isolated from American ginseng berries. The structural analysis demonstrated that AGBP-A had a weight-average molecular weight (Mw) of 122,988 Da with a dispersity index (Mw/Mn) value of 1.59 and was composed of arabinose and galactose with a core structure containing →6)-Gal-(1→ residues as the backbone and a branching substitution at the C3 position. The side-chains comprised of α-L-Ara-(1→, α-L-Ara-(1→, →5)-α-L-Ara-(1→, β-D-Gal-(1→. The results showed that it significantly decreased pro-inflammatory cytokines in the cell model. In a zebrafish model, AGBP-A reduced the massive recruitment of neutrophils to the caudal lateral line neuromast, suggesting the relief of inflammation. Molecular docking was used to analyze the combined capacity and interaction with COX-2. CONCLUSION Our study indicated the potential efficacy of AGBP-A as a safe and valid natural anti-inflammatory component.
Collapse
Affiliation(s)
- Qixiang Feng
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China; School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Huijiao Yan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yu Feng
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Li Cui
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) D-06120, Germany
| | - Jeong Hill Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Lei Xie
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yan Zhao
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Zhihao Zhang
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Jinfan Li
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Daijie Wang
- Medicine and Food R&D and Health Product Creation International Joint Laboratory, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China; School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
4
|
Jiao X, Zhang M, Zhang M, Hao L, Wu C. Ultrasound-assisted enzymatic extraction, structural characterization, and anticancer activity of polysaccharides from Rosa roxburghii Tratt fruit. Int J Biol Macromol 2024; 259:127926. [PMID: 37956813 DOI: 10.1016/j.ijbiomac.2023.127926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
In this work, Rosa roxburghii Tratt fruit polysaccharides (RPs) were extracted by ultrasound-assisted enzymatic method. The highest extraction yield of RPs was 4.78 ± 0.10 % under the optimal extraction conditions. Two purified fractions named RP1 and RP3 were obtained and systematically characterized by a combination strategy of FT-IR, monosaccharide composition, molecular weight distribution, methylation and 2D NMR spectroscopy analyses. Structural analysis showed that the main chain of RP1 was composed of rhamnogalacturonan type I (RG-I), while the side chains were rich in arabinogalactan and galactose. RP3 was composed of long homogalacturonan (HG) backbone interspersed with alternating sequences of RG-I domains, with galactose and arabinose side chains. RP1 and RP3 induced apoptosis of MCF-7 cells in a dose dependent manner in vitro especially for RP1, and had no effect on L929 cells. Furthermore, the possible anticancer mechanisms were revealed, and results suggested that RP1 induced apoptosis through ROS-dependent pathway and mitochondrial pathway. The results of this work not only provided an efficient extraction method and theoretical basis for the application of RPs, but also may contribute to develop novel functional foods or pharmaceutical products for the prevention and treatment of human breast cancer disease.
Collapse
Affiliation(s)
- Xue Jiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Mengye Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Pak U, Cheng H, Liu X, Wang Y, Ho C, Ri H, Xu J, Qi X, Yu H. Structural characterization and anti-oxidation activity of pectic polysaccharides from Swertia mileensis. Int J Biol Macromol 2023; 248:125896. [PMID: 37481190 DOI: 10.1016/j.ijbiomac.2023.125896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
In this study, we isolated the pectic polysaccharide WSMP-A2b (37 kDa) from the stems and leaves of Swertia mileensis, and we investigated its compositional/structural features and antioxidant activity. FT-IR, NMR, monosaccharide composition, enzymatic hydrolysis and methylation analyses indicated that WSMP-A2b is composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 2.1:1.0:2.2. The RG-I domain is primarily substituted with α-L-1,5-arabinan and type II arabinogalactan (AG-II) side chains, as well as minor contributions of β-D-1,4-galactan and/or type I arabinogalactan (AG-I) side chains. The HG domain was released in the form of un-esterified and partly methyl-esterified and/or acetyl-esterified oligogalacturonides with a 1 to 7 degree of polymerization after endo-polygalacturonase degradation. WSMP-A2b showed stronger antioxidant activity in vitro, in part this might due to the presence of galacturonic acid (GalA). In addition, WSMP-A2b exerted a protective effect on tert-butyl hydroperoxide (tBHP)-induced oxidative stress in INS-1 cells by reducing reactive oxygen species (ROS) production and increasing the glutathione/oxidized glutathione (GSH/GSSG) ratio. Our results provide crucial structural information on this pectic polysaccharide from Swertia mileensis, thus prompting further investigation into its structure-activity relationship.
Collapse
Affiliation(s)
- UnHak Pak
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Hao Cheng
- Department of Clinics, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China
| | - Xianbin Liu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yuwen Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - ChungHyok Ho
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - HyonIl Ri
- Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Jing Xu
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China
| | - Xiaodan Qi
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China; Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Haitao Yu
- Department of Biology Genetics, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China.
| |
Collapse
|
6
|
Yang J, Song J, Shilpha J, Jeong BR. Top and Side Lighting Induce Morphophysiological Improvements in Korean Ginseng Sprouts ( Panax ginseng C.A. Meyer) Grown from One-Year-Old Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:2849. [PMID: 37571002 PMCID: PMC10421474 DOI: 10.3390/plants12152849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Nowadays, not only the roots, but also leaves and flowers of ginseng are increasingly popular ingredients in supplements for healthcare products and traditional medicine. The cultivation of the shade-loving crop, ginseng, is very demanding in terms of the light environment. Along with the intensity and duration, light direction is another important factor in regulating plant morphophysiology. In the current study, three lighting directions-top (T), side (S), or top + side (TS)-with an intensity of 30 ± 5 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) were employed. Generally, compared with the single T lighting, the composite lighting direction, TS, was more effective in shaping the ginseng with improved characteristics, including shortened, thick shoots; enlarged, thick leaves; more leaf trichomes; earlier flower bud formation; and enhanced photosynthesis. The single S light resulted in the worst growth parameters and strongly inhibited the flower bud formation, leading to the latest flower bud observation. Additionally, the S lighting acted as a positive factor in increasing the leaf thickness and number of trichomes on the leaf adaxial surface. However, the participation of the T lighting weakened these traits. Overall, the TS lighting was the optimal direction for improving the growth and development traits in ginseng. This preliminary research may provide new ideas and orientations in ginseng cultivation lodging resistance and improving the supply of ginseng roots, leaves, and flowers to the market.
Collapse
Affiliation(s)
- Jingli Yang
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang 262700, China; (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang 262700, China; (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jayabalan Shilpha
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
7
|
Pedrosa LDF, Nascimento KR, Soares CG, Oliveira DPD, de Vos P, Fabi JP. Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure. PLANTS (BASEL, SWITZERLAND) 2023; 12:2750. [PMID: 37514364 PMCID: PMC10384513 DOI: 10.3390/plants12142750] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karen Rebouças Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil
| |
Collapse
|
8
|
Zhang S, Ding C, Liu X, Zhao Y, Ding Q, Sun S, Zhang J, Yang J, Liu W, Li W. Research Progress on Extraction, Isolation, Structural Analysis and Biological Activity of Polysaccharides from Panax Genus. Molecules 2023; 28:molecules28093733. [PMID: 37175143 PMCID: PMC10179830 DOI: 10.3390/molecules28093733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The panax genus is a widely used medicinal plant with good biological activity. As one of the main active components of the Panax genus, polysaccharides have various pharmacological effects. This review summarizes the latest research reports on ginseng, American ginseng, and Panax notoginseng polysaccharides and compares the differences in extraction, isolation and purification, structural characteristics, and biological activities. The current research mainly focuses on ginseng polysaccharides, and the process of extraction, isolation, and structure analysis of each polysaccharide is roughly the same. Modern pharmacological studies have shown that these polysaccharides have antioxidants, antitumor, immunomodulatory, antidiabetic, intestinal protection, skin repair, and other biological activities. This review provides new insights into the differences between the three kinds of ginseng polysaccharides which will help to further study the medicinal value of ginseng in traditional Chinese medicine.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jinping Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Improving Effects of Laccase-Mediated Pectin–Ferulic Acid Conjugate and Transglutaminase on Active Peptide Production in Bovine Lactoferrin Digests. Catalysts 2023. [DOI: 10.3390/catal13030521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Bovine lactoferrin (bLf) is a multifunctional glycoprotein and a good candidate for producing diverse bioactive peptides, which are easily lost during over-digestion. Accordingly, the effects of laccase-mediated pectin–ferulic acid conjugate (PF) and transglutaminase (TG) on improving the production of bLf active peptides by in vitro gastrointestinal digestion were investigated. Using ultra-high-performance liquid chromatography tandem mass spectroscopy (UPLC-MS-MS), the digests of bLf alone, PF-encapsulated bLf complex (LfPF), and TG-treated LfPF complex (LfPFTG) produced by conditioned in vitro gastric digestion (2000 U/mL pepsin, pH 3.0, 37 °C, 2 h) were identified with seven groups of active peptide-related fragments, including three common peptides (VFEAGRDPYKLRPVAAE, FENLPEKADRDQYEL, and VLRPTEGYL) and four differential peptides (GILRPYLSWTE, ARSVDGKEDLIWKL, YLGSRYLT, and FKSETKNLL). The gastric digest of LfPF contained more diverse and abundant detectable peptides of longer lengths than those of bLf and LfPFTG. After further in vitro intestinal digestion, two active peptide-related fragments (FEAGRDPYK and FENLPEKADRDQYE) remained in the final digest of LfPFTG; one (EAGRDPYKLRPVA) remained in that of bLf alone, but none remained in that of LfPF. Conclusively, PF encapsulation enhanced the production of bLf active peptide fragments under the in vitro gastric digestion applied. TG treatment facilitated active peptide FENLPEKADRDQYE being kept in the final gastrointestinal digest.
Collapse
|
10
|
Tao R, Lu K, Zong G, Xia Y, Han H, Zhao Y, Wei Z, Lu Y. Ginseng polysaccharides: Potential antitumor agents. J Ginseng Res 2023; 47:9-22. [PMID: 36644386 PMCID: PMC9834022 DOI: 10.1016/j.jgr.2022.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
As a famous herbal medicine in China and Asia, ginseng (Panax ginseng C. A. Meyer) is also known as the "King of All Herbs" and has long been used in medicine and healthcare. In addition to the obvious biological activities of ginsenosides, ginseng polysaccharides (GPs) exhibit excellent antitumor, antioxidant stress, and immunomodulatory effects. In particular, GPs can exert an antitumor effect and is a potential immunomodulator. However, due to the complexity and diversity in the structures and components of GPs, their specific physicochemical properties, and underlying mechanisms remain unclear. In this article, we have summarized the factors influencing the antitumor activity of GPs and their mechanism of action, including the stimulation of the immune system, regulation of the gut microbiota, and direct action on tumor cells.
Collapse
Affiliation(s)
- Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Keqin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yawen Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongkuan Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Structural Characteristic and In-Vitro Anticancer Activities of Dandelion Leaf Polysaccharides from Pressurized Hot Water Extraction. Nutrients 2022; 15:nu15010080. [PMID: 36615741 PMCID: PMC9824204 DOI: 10.3390/nu15010080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Dandelion (Taraxacum mongolicum Hand.-Mazz.) is a medicinal and edible plant. Dandelion has great development value for its health promoting benefits; additionally, Dandelion grows almost anywhere in the world. In this study, we report the structural characteristics and anti-cancer activity of novel dandelion leaf polysaccharides extracted by pressurized hot water extraction at 120 °C (DLP120) with Mw relative to dextran of 1.64 × 106 Da. Structural analysis indicated that DLP120 is a complex polysaccharide composed of pectin and arabinogalactan. It was mainly composed of arabinose (32.35 mol%) and galactose (44.91 mol%). The main glycosidic linkages of DLP120 were 4-β-D-Galp, 4-α-D-GalpA, T-β-D-Galp, 5-α-L-Araf, 3,5-α-L-Araf, and T-α-L-Araf. In vitro, DLP120 inhibited HepG2 cell proliferation in a dose-dependent manner by inducing cell apoptosis. Cell cycle detection results revealed that DLP120 mainly arrests the cell cycle in S phase. Cells treated with DLP120 displayed obvious apoptotic morphology, including cell volume shrinks and cytoskeleton breaks down. In short, DLP120 has potential as an anti-cancer agent.
Collapse
|
12
|
Fang X, Wang H, Zhou X, Zhang J, Xiao H. Transcriptome reveals insights into biosynthesis of ginseng polysaccharides. BMC PLANT BIOLOGY 2022; 22:594. [PMID: 36529733 PMCID: PMC9761977 DOI: 10.1186/s12870-022-03995-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginseng polysaccharides, have been used to treat various diseases as an important active ingredient. Nevertheless, the biosynthesis of ginseng polysaccharides is poorly understood. To elucidate the biosynthesis mechanism of ginseng polysaccharides, combined the transcriptome analysis and polysaccharides content determination were performed on the roots, stems, and leaves collected from four cultivars of ginseng. RESULTS The results indicated that the total contents of nine monosaccharides were highest in the roots. Moreover, the total content of nine monosaccharides in the roots of the four cultivars were different but similar in stems and leaves. Glucose (Glc) was the most component of all monosaccharides. In total, 19 potential enzymes synthesizing of ginseng polysaccharides were identified, and 17 enzymes were significantly associated with polysaccharides content. Among these genes, the expression of phosphoglucomutase (PGM), glucose-6-phosphate isomerase (GPI), UTP-glucose-1-phosphate uridylyltransferase (UGP2), fructokinase (scrK), mannose-1-phosphate guanylyltransferase (GMPP), phosphomannomutase (PMM), UDP-glucose 4-epimerase (GALE), beta-fructofuranosidase (sacA), and sucrose synthase (SUS) were correlated with that of MYB, AP2/ERF, bZIP, and NAC transcription factors (TFs). These TFs may regulate the expression of genes involved in ginseng polysaccharides synthesis. CONCLUSION Our findings could provide insight into a better understanding of the regulatory mechanism of polysaccharides biosynthesis, and would drive progress in genetic improvement and plantation development of ginseng.
Collapse
Affiliation(s)
- Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Xinteng Zhou
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Jing Zhang
- Forestry Survey and Design Institute of Jilin Province, 130022, Changchun, China
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China.
| |
Collapse
|
13
|
Fu W, Liao X, Zhang Q, Zhu Y, Mei S, Li Q, Zhou X, Li X, Luo H, Ye H, Wu K. Anti-melanogenesis effect from Wampee fruit pectin via α-MSH/TRY pathway in A375 cells. BMC Complement Med Ther 2022; 22:174. [PMID: 35752787 PMCID: PMC9233800 DOI: 10.1186/s12906-022-03646-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background Polysaccharides from wampee have been reported to process various biological activities, while the relationship between structure and bioactivities has been barely addressed. Pectin, an abundant water-soluble polysaccharide in wampee, showed significant antioxidant activity, which was associated with the anti-melanogenic activity. Therefore, this study investigated the physicochemical characteristics and the anti-melanogenesis effect of pectin extracted from wampee fruit in A375 cells. Methods The physicochemical characterization of pectin from wampee fruit was investigated by gel chromatography (GCP), FT-IR spectroscopy, and NMR spectroscopy methods. The anti-melanogenesis effects and mechanism were evaluated by mushroom tyrosine enzyme and human melanin cell model in vitro. Results The results showed that a molecular weight of 5.271 × 105 Da wampee fruit pectin (WFP) were mainly composed of mannose (Man), ribose (Rib), rhamnose (Rha), glucuronic acid (Glc A), glucose (Glc), galacturonic acid (Gal A), galactose (Gal), and arabinose (Ara), which linked with →4)-β-D-Galp-(1 → units. The current study revealed that WFP could significantly suppress mushroom TRY activity in vitro. Furtherly, WFP significantly reduced intracellular and extracellular melanin formation in A375 melanoma cells depending on the presence of alpha-melanocyte stimulating hormone (α-MSH). TRY activity was only inhibited in α-MSH treated A375 cells. Western blot analysis demonstrated that WFP reverse α-MSH induced melanogenesis in A375 melanoma cells, including in down-regulated TRY, TYRP-1, TYRP-2, MITF and CREB expressions. Conclusion These results indicated that WFP could inhibit α-MSH induced melanogenesis in A375 melanoma cells via α-MSH/TRY pathway. In conclusion, these data provided a new perspective to annotate WFP anti-melanogenesis activity mechanism.
Collapse
|
14
|
Basak S, Annapure US. The potential of subcritical water as a “green” method for the extraction and modification of pectin: A critical review. Food Res Int 2022; 161:111849. [DOI: 10.1016/j.foodres.2022.111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 01/25/2023]
|
15
|
Qi X, Yu Y, Wang X, Xu J, Wang X, Feng Z, Zhou Y, Xiao H, Sun L. Structural characterization and anti-oxidation activity evaluation of pectin from Lonicera japonica Thunb. Front Nutr 2022; 9:998462. [PMID: 36204375 PMCID: PMC9530389 DOI: 10.3389/fnut.2022.998462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Pectins are nutrient components of plants and are widely used in the food industry. In this study, one major pectin fraction (WLJP-A0.2b) with Mw of 40.6 kDa was purified from Lonicera japonica Thunb. The structural feature and antioxidant activity of it was investigated. Monosaccharide composition, Fourier transform infrared (FT-IR) spectra, enzymatic hydrolysis, and nuclear magnetic resonance (NMR) spectra analysis indicated that WLJP-A0.2b consisted of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II), and homogalacturonan (HG) domains, with mass ratio of 0.4:1.0:2.1. The RG-I domain contained highly branched α-L-1,5-arabinan, β-D-1,4-galactan and type II arabinogalactan (AG-II) side chains. The HG domain was released in the form of un-esterified and partly methyl-esterified and/or acetyl-esterified oligogalacturonides with degree of polymerization 1–8 after degradation by endo-polygalacturonase. Radical scavenging assays indicated that WLJP-A0.2b exhibited antioxidant activity through the synergistic effects of different pectin domains. Oligogalacturonides, especially de-esterified oligogalacturonides, showed better antioxidant activities than RG-II and RG-I domains. Moreover, de-esterified oligogalacturonides remarkably reduced H2O2-induced reactive oxygen species production in HEK-293T cells. These results provide useful information for screening of natural antioxidants from Lonicera japonica Thunb. and application of pectin in functional food field.
Collapse
Affiliation(s)
- Xiaodan Qi
- School of Life Sciences, Northeast Normal University, Changchun, China
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Yang Yu
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xinyi Wang
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jialei Xu
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xiang Wang
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zhangkai Feng
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Hongxing Xiao
- School of Life Sciences, Northeast Normal University, Changchun, China
- *Correspondence: Hongxing Xiao,
| | - Lin Sun
- School of Life Sciences, Northeast Normal University, Changchun, China
- Lin Sun,
| |
Collapse
|
16
|
The Use of Endo-Cellulase and Endo-Xylanase for the Extraction of Apple Pectins as Factors Modifying Their Anticancer Properties and Affecting Their Synergy with the Active Form of Irinotecan. Pharmaceuticals (Basel) 2022; 15:ph15060732. [PMID: 35745651 PMCID: PMC9229824 DOI: 10.3390/ph15060732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Pectin constitutes an essential component of dietary fiber. Modified pectins from various sources possess potent anticancer and immunomodulatory activities. In this study, two pectins isolated from apple pomace by Trichoderma enzyme treatment, PX (with endo-xylanase) and PCX (with both endo-cellulase and endo-xylanase), were studied in colon cancer cell lines (HCT 116, Caco-2, and HT-29). Both pectins reduced colon cancer cell viability, induced apoptosis, and increased intracellular amounts of reactive oxygen species. Additionally, synergy between pectin and an active form of irinotecan, SN-38, in all aspects mentioned above, was discovered. This drug is a common component of cytotoxic combinations recommended as treatment for colon cancer patients. PX and PCX demonstrated significant anti-inflammatory activity in lipopolysaccharide-stimulated cells. Interaction of apple pectins with galectin-3 and Toll-like Receptor 4 (TLR4) was suggested to be responsible for their anticancer and anti-inflammatory effect. Since PCX was more active than PX in almost all experiments, the role of the enzyme used to obtain the pectin for its biological activity was discussed. It was concluded that co-operation between both enzymes was needed to obtain the molecule of the most beneficial properties. The low molecular mass of PCX together with a high proportion of rhamnogalacturonan I (RG I) regions seemed to be crucial for its superior activity.
Collapse
|
17
|
Pak U, Yu Y, Ning X, Ho C, Ji L, Mayo KH, Zhou Y, Sun L. Comparative study of water-soluble polysaccharides isolated from leaves and roots of Isatis indigotica Fort. Int J Biol Macromol 2022; 206:642-652. [PMID: 35247423 DOI: 10.1016/j.ijbiomac.2022.02.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 11/15/2022]
Abstract
Water-soluble polysaccharides were isolated from the leaves and roots of Isatis indigotica Fort., and their structural features were studied and compared. One neutral polysaccharide fraction (WFIP-N) and three pectin fractions (WFIP-A-A, WFIP-A-B and WFIP-A-C) were obtained from the leaves, and one neutral polysaccharide fraction (WRIP-N) and two pectin fractions (WRIP-A-A and WRIP-A-B) were obtained from the roots. WFIP-A-B (Mw = 34.6 kDa) and WRIP-A-B (Mw = 29.9 kDa) were the major pectic polysaccharides. Monosaccharide composition, FT-IR, enzymatic hydrolysis, NMR and methylation analysis indicated that both WFIP-A-B and WRIP-A-B are composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 1.5:1.0:0.4 and 0.3:1.0:1.7, respectively. WFIP-A-B and WRIP-A-B were found to be rich in RG-I and HG domains, respectively, and mainly contained type II arabinogalactan (AG-II) and α-L-1,5-arabinan side chains, but those in WRIP-A-B were more numerous and longer. Our results provide structural features and differences between these polysaccharides which will help to elucidate their functional differences.
Collapse
Affiliation(s)
- UnHak Pak
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Yang Yu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xin Ning
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - ChungHyok Ho
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Li Ji
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
18
|
Bai C, Chen R, Tan L, Bai H, Tian L, Lu J, Gao M, Sun H, Chi Y. Effects of multi-frequency ultrasonic on the physicochemical properties and bioactivities of polysaccharides from different parts of ginseng. Int J Biol Macromol 2022; 206:896-910. [PMID: 35318082 DOI: 10.1016/j.ijbiomac.2022.03.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
The effect of multi-frequency ultrasonic extraction (MUE) on the yields, physicochemical properties, antioxidant and α-glucosidase inhibitory activities of polysaccharides (GPs) from different parts of ginseng were compared. Results demonstrated that yields of polysaccharides from different parts were found to vary significantly differences, in the order of roots (M-GRPs) > flowers (M-GFPs) > leaves (M-GLPs). Compared with heat reflux extraction, MUE not only increased the yield of GPs by up to 9.14%-210.87%, with higher uronic acid content (UAC: increased by 4.99%-53.48%), total phenolics content (TPC: increased by 7.60% to 42.61%), total flavonoids content (TFC: increased by 2.52%-5.45%), and lower molecular weight (Mw: reduced by 6.51%- 33.08%) and protein content (PC: reduced by 5.15%-8.95%), but also improved their functional properties and bioactivities. All six purified polysaccharides extracted by MUE were acidic pyran polysaccharide with different monosaccharide composition, possessed remarkable antioxidant and α-glucosidase inhibitory activities. Especially, M-GFP-1 exhibited the highest bioactivities, illustrated that the activities were highly correlated with UAC and TPC, Mw, and triple helical structure. These results indicate that MUE was an efficient technique for improving yields, physicochemical and functional properties and enhancing biological activities of polysaccharide.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Li Tan
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ming Gao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yu Chi
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
19
|
Li Y, Sheng Y, Liu J, Xu G, Yu W, Cui Q, Lu X, Du P, An L. Hair-growth promoting effect and anti-inflammatory mechanism of Ginkgo biloba polysaccharides. Carbohydr Polym 2022; 278:118811. [PMID: 34973721 DOI: 10.1016/j.carbpol.2021.118811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022]
Abstract
The aim of this study was to optimize the separation and purification technology of water-soluble Ginkgo biloba leaves polysaccharides (WGBP), analyze its composition characteristics, observe its hair-growth promoting effect in alopecia areata mice, clarify the polysaccharide fraction with bioactive activities, and explore its anti-inflammation mechanism. We isolated acidic polysaccharides (WGBP-A2) and purified a RG-I type polysaccharide (WGBP-A2b) with a molecular weight of 44 kDa. Results showed that WGBP-A2 could significantly increase the contents of VEGF and HGF in the skin tissue of alopecia areata mice, decrease the contents of Inflammatory factors in the serum. On a cellular level, the expressions of p-p65 and p-IκBα, TNF-α and IL-1β in HUVECs treated with WGBP-A2b were down-regulated. The bioinformatic analysis showed that the inflammation signaling pathway was significantly changed. Its specific mechanism may be related to its regulating the expression of p-p65 p-IκBα, TNF-α and IL-1β proteins in the inflammation signaling pathway.
Collapse
Affiliation(s)
- Yingna Li
- College of Pharmacy, Beihua University, Jilin 132000, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130000, China
| | - Yu Sheng
- College of Pharmacy, Beihua University, Jilin 132000, China
| | - Jiuyue Liu
- College of Pharmacy, Beihua University, Jilin 132000, China
| | - Guangyu Xu
- College of Pharmacy, Beihua University, Jilin 132000, China
| | - Wanwen Yu
- College of Forestry, Nanjing Forestry University, 210037, China
| | - Qingwen Cui
- College of Pharmacy, Beihua University, Jilin 132000, China
| | - Xuechun Lu
- College of Pharmacy, Beihua University, Jilin 132000, China
| | - Peige Du
- College of Pharmacy, Beihua University, Jilin 132000, China.
| | - Liping An
- College of Pharmacy, Beihua University, Jilin 132000, China.
| |
Collapse
|
20
|
Pedrosa LDF, Raz A, Fabi JP. The Complex Biological Effects of Pectin: Galectin-3 Targeting as Potential Human Health Improvement? Biomolecules 2022; 12:289. [PMID: 35204790 PMCID: PMC8961642 DOI: 10.3390/biom12020289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
| | - Avraham Raz
- Department of Oncology and Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508080, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508080, SP, Brazil
| |
Collapse
|
21
|
Hu Y, He Y, Niu Z, Shen T, Zhang J, Wang X, Hu W, Cho JY. A review of the immunomodulatory activities of polysaccharides isolated from Panax species. J Ginseng Res 2022; 46:23-32. [PMID: 35058724 PMCID: PMC8753523 DOI: 10.1016/j.jgr.2021.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/05/2022] Open
Abstract
Panax polysaccharides are biopolymers that are isolated and purified from the roots, stems, leaves, flowers, and fruits of Panax L. plants, which have attracted considerable attention because of their immunomodulatory activities. In this paper, the composition and structural characteristics of purified polysaccharides are reviewed. Moreover, the immunomodulatory activities of polysaccharides are described both in vivo and in vitro. In vitro, Panax polysaccharides exert immunomodulatory functions mainly by activating macrophages, dendritic cells, and the complement system. In vivo, Panax polysaccharides can increase the immune organ indices and stimulate lymphocytes. In addition, this paper also discusses the membrane receptors and various signalling pathways of immune cells. Panax polysaccharides have many beneficial therapeutic effects, including enhancing or activating the immune response, and may be helpful in treating cancer, sepsis, osteoporosis, and other conditions. Panax polysaccharides have the potential for use in the development of novel therapeutic agents or adjuvants with beneficial immunomodulatory properties.
Collapse
Affiliation(s)
- Yeye Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Yang He
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Zhiqiang Niu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Ting Shen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Ji Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Xinfeng Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- Corresponding author. Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
22
|
Shen S, Cheng H, Liu Y, Chen Y, Chen S, Liu D, Ye X, Chen J. New electrolyte beverages prepared by the citrus canning processing water through chemical improvement. Food Chem X 2021; 12:100155. [PMID: 34816121 PMCID: PMC8591342 DOI: 10.1016/j.fochx.2021.100155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 11/04/2021] [Indexed: 12/01/2022] Open
Abstract
Citrus segment membrane removal during canning was improved for clean process. The improved process using mixed acid (alkali) showed good membrane removal result. The processing water was fully used for preparing a new healthy electrolyte drink. The bioactive compounds in the canning processing water were completely recoverd. This green process with economic viability has great society benefits.
In the production of canned citrus, large amounts of processing water were discharged during the segment membrane removal process, causing severe pollution. In order to reduce pollution and recover the bioactive compounds in the processing water, the production of canned satsuma mandarin, sweet orange and grapefruit were studied, and improved acid (0.1% HCl, 0.4% citric acid) and alkali (0.1% KOH, 0.2% NaOH) were used to conduct the new chemical hydrolysis process to remove the segment membrane. The obtained acid and alkali processing water were firstly explored the potential to make novel beverages, which contain electrolytes (Na: 472–945 ppm; K: 208–279 ppm; Cl: 364–411 ppm; citrate: 1105–1653 ppm) and potential prebiotics such as pectin and flavonoids. The improved segment membrane removal process realized the conversion of wastewater into drinkable beverages at low costs. The bioactive compounds were fully recovered without wastewater discharging, which produced great environmental, economic and health value.
Collapse
Affiliation(s)
- Sihuan Shen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Ying Liu
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China
| | - Yanpei Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.,NingboTech University, Ningbo 315100, China
| |
Collapse
|
23
|
Zhang S, Zhang H, Shi L, Li Y, Tuerhong M, Abudukeremu M, Cui J, Li Y, Jin DQ, Xu J, Guo Y. Structure features, selenylation modification, and improved anti-tumor activity of a polysaccharide from Eriobotrya japonica. Carbohydr Polym 2021; 273:118496. [PMID: 34560937 DOI: 10.1016/j.carbpol.2021.118496] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 12/16/2022]
Abstract
A homogeneous polysaccharide, EJP90-1, was isolated from the leaves of E. japonica by hot water extraction in this study. EJP90-1 (7702 Da) was a heteropolysaccharide mainly consisting of →5)-linked-α-L-Araf-(1→, →4)-linked-β-D-Manp-(1→, →2,4)-linked-α-L-Rhap-(1→, →4)-linked-α-D-Xylp-(1→, →4)-linked-β-D-Galp-(1→, →2)-linked-β-D-Galp-(1→, →6)-linked-β-D-Glcp-(1→, α-D-Glcp-(4→, and t-linked-α-L-Araf. EJP90-1 was found to show moderate anti-tumor activity at the cellular level. In order to improve the anti-tumor activity and the potential applications of EJP90-1, a typical sodium selenite-nitric acid (Na2SeO3-HNO3) modification on EJP90-1 was carried out. X-ray photoelectron spectroscopy (XPS) and energy dispersive spectrometer (EDS) analysis confirmed that Se was successfully introduced into the polymer chain of EJP90-1. The subsequent in vitro cytotoxicity evaluation showed the selenylation modification derivative (EJP90-1-Se) possessed significant antiproliferative activity against cancer cells (HepG2 and A549 cells) through inducing cell apoptosis. The anti-tumor activity of EJP90-1-Se was further confirmed by zebrafish models, which inhibited the proliferation and migration of HepG2 cells and the angiogenesis.
Collapse
Affiliation(s)
- Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijuan Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Jianlin Cui
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
24
|
Ji C, Zhang Z, Chen J, Song D, Liu B, Li J, Liu R, Niu J, Wang D, Ling N, Qi Z, Li W. Immune-Enhancing Effects of a Novel Glucan from Purple Sweet Potato Ipomoea batatas (L.) Lam on RAW264.7 Macrophage Cells via TLR2- and TLR4-Mediated Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9313-9325. [PMID: 34370469 DOI: 10.1021/acs.jafc.1c03850] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PSPP-1 was obtained from purple sweet potato, and the effects of PSPP-1 on the immune modulation on macrophage cells were investigated for the first time. PSPP-1 promoted RAW264.7 proliferation and increased the total cell percentage in DNA synthesis and mitosis phases, and the cell morphology changed in volume and appearance. Additionally, the RAW264.7 immune functions of phagocytic activity and nitric oxide, reactive oxygen species, and cytokine production were improved by PSPP-1. The western blot experiment showed that PSPP-1 could activate toll-like receptor 2 and toll-like receptor 4-mediated pathways, and the expressions of proteins in MyD88-dependent, mitogen-activated protein kinase (MAPK)-signaling, NF-κB-signaling, AP-1 signaling, and TRIF-dependent pathways were improved markedly. Molecular docking and Biolayer Interferometry study further indicated that PSPP-1 could recognize and bind TLR2 and TLR4 by targeting the binding sites with a strong affinity. It suggested that PSPP-1 could enhance immunity via TLR2- and TLR4-mediated pathways, and it could be explored as an immunomodulatory agent.
Collapse
Affiliation(s)
- Chenfeng Ji
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Ziyi Zhang
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jinrui Chen
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Dongxue Song
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Bing Liu
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Jun Li
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Rongyu Liu
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Junbo Niu
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Di Wang
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Na Ling
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Zheng Qi
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Wenlan Li
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| |
Collapse
|
25
|
Qi H, Zhang Z, Liu J, Chen Z, Huang Q, Li J, Chen J, Wang M, Zhao D, Wang Z, Li X. Comparisons of Isolation Methods, Structural Features, and Bioactivities of the Polysaccharides from Three Common Panax Species: A Review of Recent Progress. Molecules 2021; 26:4997. [PMID: 34443587 PMCID: PMC8400370 DOI: 10.3390/molecules26164997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/27/2022] Open
Abstract
Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine.
Collapse
Affiliation(s)
- Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Mingxing Wang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| |
Collapse
|
26
|
Ye J, Zhang C, Lyu X, Hua X, Zhao W, Zhang W, Yang R. Structure and physicochemical properties of arabinan-rich acidic polysaccharide from the by-product of peanut oil processing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Chengxiao Y, Dongmei W, Kai Z, Hou L, Xiao H, Ding T, Liu D, Ye X, Linhardt RJ, Chen S. Challenges of pectic polysaccharides as a prebiotic from the perspective of fermentation characteristics and anti-colitis activity. Carbohydr Polym 2021; 270:118377. [PMID: 34364621 DOI: 10.1016/j.carbpol.2021.118377] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Several studies are described that contribute to the systematic exploration of new aspects of digestion, fermentation, and biological activities of pectic polysaccharides (PPS) leading to a better understanding of prebiotics. Inflammatory bowel disease (IBD) is thought to be associated with the dysbacteriosis induced by different environmental agents in genetically susceptible persons. PPS are considered as an indispensable gut-microbiota-accessible carbohydrate that play a dominant role in maintaining gut microbiota balance and show a better effect in ameliorating IBD than some traditional prebiotics. The aim of this review is to summarize the fermentation characteristics of PPS, highlight its role in improving IBD, and propose a view that PPS may be a new and effective prebiotic.
Collapse
Affiliation(s)
- Yu Chengxiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Wu Dongmei
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhu Kai
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Lijuan Hou
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Shiguo Chen
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Lin Y, An F, He H, Geng F, Song H, Huang Q. Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106555] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Pfeifer L, Baumann A, Petersen LM, Höger B, Beitz E, Classen B. Degraded Arabinogalactans and Their Binding Properties to Cancer-Associated Human Galectins. Int J Mol Sci 2021; 22:ijms22084058. [PMID: 33920014 PMCID: PMC8071012 DOI: 10.3390/ijms22084058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Galectins represent β-galactoside-binding proteins with numerous functions. Due to their role in tumor progression, human galectins-1, -3 and -7 (Gal-1, -3 and -7) are potential targets for cancer therapy. As plant derived glycans might act as galectin inhibitors, we prepared galactans by partial degradation of plant arabinogalactan-proteins. Besides commercially purchased galectins, we produced Gal-1 and -7 in a cell free system and tested binding capacities of the galectins to the galactans by biolayer-interferometry. Results for commercial and cell-free expressed galectins were comparable confirming functionality of the cell-free produced galectins. Our results revealed that galactans from Echinacea purpurea bind to Gal-1 and -7 with KD values of 1–2 µM and to Gal-3 slightly stronger with KD values between 0.36 and 0.70 µM depending on the sensor type. Galactans from the seagrass Zostera marina with higher branching of the galactan and higher content of uronic acids showed stronger binding to Gal-3 (0.08–0.28 µM) compared to galactan from Echinacea. The results contribute to knowledge on interactions between plant polysaccharides and galectins. Arabinogalactan-proteins have been identified as a new source for production of galactans with possible capability to act as galectin inhibitors.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.P.); (A.B.)
| | - Alexander Baumann
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.P.); (A.B.)
| | - Lea Madlen Petersen
- Department of Pharmaceutical Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.M.P.); (B.H.); (E.B.)
| | - Bastian Höger
- Department of Pharmaceutical Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.M.P.); (B.H.); (E.B.)
| | - Eric Beitz
- Department of Pharmaceutical Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.M.P.); (B.H.); (E.B.)
| | - Birgit Classen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany; (L.P.); (A.B.)
- Correspondence: ; Tel.: +49-431-8801130
| |
Collapse
|
30
|
Ning X, Liu Y, Jia M, Wang Q, Sun Z, Ji L, Mayo KH, Zhou Y, Sun L. Pectic polysaccharides from Radix Sophorae Tonkinensis exhibit significant antioxidant effects. Carbohydr Polym 2021; 262:117925. [PMID: 33838804 DOI: 10.1016/j.carbpol.2021.117925] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 10/22/2022]
Abstract
Two pectic polysaccharides (WRSP-A2b and WRSP-A3a) have been obtained from Radix Sophorae Tonkinensis and comparatively investigated in terms of their physical properties and antioxidant activities. Monosaccharide composition, FT-IR, NMR and enzymatic analyses indicate that both WRSP-A2b (13.6 kDa) and WRSP-A3a (44.6 kDa) consist of homogalacturonan (HG), rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II) domains, with mass ratios of 0.9:1.8:1 and 2.3:2.9:1, respectively. The RG-I domains were further purified and characterized. Results show that WRSP-A2b contains a highly branched RG-I domain, primarily substituted with α-(1→5)-linked arabinans, whereas WRSP-A3a contains a small branched RG-I domain mainly composed of β-(1→4)-linked galactan side chains. WRSP-A3a exhibits stronger antioxidant activity in scavenging different radicals than WRSP-A2b, a finding that may be due to its higher content of GalA residues and HG domains. Our results provide useful information for screening natural polysaccharide-based antioxidants from Radix Sophorae Tonkinensis.
Collapse
Affiliation(s)
- Xin Ning
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Ying Liu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Mengdi Jia
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Qidi Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Ziyan Sun
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Li Ji
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Lin Sun
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
31
|
Structural characterization and immunomodulatory activity of a heterogalactan from Panax ginseng flowers. Food Res Int 2021; 140:109859. [PMID: 33648177 DOI: 10.1016/j.foodres.2020.109859] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 01/16/2023]
Abstract
A neutral polysaccharide fraction (WGFPN) was isolated from Panax ginseng flowers. Monosaccharide composition and HPSEC-MALLS-RI (high-performance size exclusion chromatography coupled with multi-angle laser light scattering detector and refractive index detector) analyses showed WGFPN was a heterogalactan with a molecular weight of 11.0 kDa. Methylation, 1D/2D NMR (nuclear magnetic resonance) spectra and enzymatic hydrolysis methods were used to characterize the structure of WGFPN. It possessed a less branched (1 → 4)-β-D-galactan and a significantly branched (1 → 6)-β-D-galactan. The side chains of (1 → 6)-β-D-galactan were branched with α-L-1,5-Araf and t-α-L-Araf residues at O-3. Trace amount of 1,4-linked Glcp, terminal Galp, terminal Glcp and terminal Manp residues might attached to the 1,6-linked galactan through O-3 or 1,4-linked galactan through O-6 as side chains. WGFPN could activate RAW264.7 macrophages through increasing macrophage phagocytosis, releasing NO and secreting TNF-α, IL-6, IFN-γ and IL-1β in vitro. Moreover, WGFPN could enhance the immunity of cyclophosphamide (CTX)-induced immunosuppressed mice in vivo. Hence, WGFPN might be a potential natural immunomodulatory agent.
Collapse
|
32
|
Chen YM, Wang IL, Zhou S, Tsai TY, Chiu YS, Chiu WC. Six weeks of Jilin ginseng root supplementation attenuates drop jump-related muscle injury markers in healthy female college students. Food Funct 2021; 12:1458-1468. [PMID: 33507202 DOI: 10.1039/d0fo03146a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Eccentric muscle contraction is an inherent component of numerous sporting movements but can result in muscle fatigue and injury, especially when engaging in unfamiliar exercise, which requires pharmacological intervention. Jilin ginseng root (GS) has been used to protect muscles and reduce the risk of exercise injury. AIM OF THE STUDY In this study, we sought to examine and demonstrate the effectiveness of using GS in preventing muscle stiffness and reducing the risk of exercise injury in women. METHODS Twenty females were randomly assigned to GS and placebo groups. Body composition, serum biochemistry index, kinematics, and endurance exercise tests were measured at two time point presupplementation and 6 weeks after supplementation. The major compounds of GS were characterized using a high-performance liquid chromatograph with a gradient delivery system (HPLC). RESULTS After 6 weeks of supplementation, the GS group exhibited significant increases in the serum levels of free fatty acids and glucose as well as greater maximum oxygen consumption (VO2 max, mL min-1 kg-1) compared with the placebo group in an exhaustive biking test. Following drop jump tests, the jump height and reactive strength index were increased in the GS group after completing 70 DJs. In addition, subjects in the GS group also showed decreased knee and ankle stiffness in DJs, leading to reduced fatigue associated with eccentric movement. CONCLUSIONS GS supplementation leads to ameliorates drop jump muscle stiffness and fatigue in females and is to be used as a nutrient supplement to reduce the risk of musculoskeletal system injuries when performing drop jumps.
Collapse
Affiliation(s)
- Yi-Ming Chen
- The College of Physical Education, Hubei Normal University, Huangshi City, 435002, China.
| | - I-Lin Wang
- The College of Physical Education, Hubei Normal University, Huangshi City, 435002, China.
| | - Shu Zhou
- The College of Physical Education, Hubei Normal University, Huangshi City, 435002, China.
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan. and Ph.D. Program in Nutrition and Food Sciences, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yen-Shuo Chiu
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan and School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan. and Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
33
|
Guo M, Shao S, Wang D, Zhao D, Wang M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct 2020; 12:494-518. [PMID: 33331377 DOI: 10.1039/d0fo01896a] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Panax ginseng C. A. Meyer (P. ginseng) has a long history of medicinal use and can treat a variety of diseases. P. ginseng contains a variety of active ingredients, such as saponins, polypeptides, volatile oils, and polysaccharides. Among them, saponins have always been considered as the main components responsible for its pharmacological activities. However, more and more studies have shown that polysaccharides play an indispensable role in the medicinal value of ginseng. Modern biological and medical studies have found that ginseng polysaccharides have complex structural characteristics and diverse biological activities, such as immune regulation, anti-tumor, antioxidant, hypoglycemic, and anti-radiation functions, among others. Additionally, the structural characteristics of ginseng polysaccharides are closely related to their activity. In this review, the research background, extraction, purification, structural characteristics, and biological activities of ginseng polysaccharides from different parts of P. ginseng (roots, flowers stems and leaves, and berries) under different growth conditions (artificially cultivated ginseng, mountain ginseng, and wild ginseng) are summarized. The structural characteristics of purified polysaccharides were reviewed. Meanwhile, their biological activities were introduced, and some possible mechanisms were listed. Furthermore, the structure-activity relationship of polysaccharides was discussed. Some research perspectives for the study of ginseng polysaccharides were also provided.
Collapse
Affiliation(s)
- Mingkun Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | | | | | | | | |
Collapse
|
34
|
Analysis of the water-soluble polysaccharides from Camellia japonica pollen and their inhibitory effects on galectin-3 function. Int J Biol Macromol 2020; 159:455-460. [DOI: 10.1016/j.ijbiomac.2020.05.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/11/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
|
35
|
An acidic heteropolysaccharide from Lycii fructus: Purification, characterization, neurotrophic and neuroprotective activities in vitro. Carbohydr Polym 2020; 249:116894. [PMID: 32933702 DOI: 10.1016/j.carbpol.2020.116894] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Regeneration of neurites network constitutes a neurotrophic and therapeutic strategy for Parkinson's disease (PD). Increasing evidence is supporting the potential application of natural polysaccharides in prevention or treatment of PD. In this study, an acidic heteropolysaccharide LFP-1 was isolated from Lycii fructus, and purified by ion-exchange and gel filtration chromatography. Structural features of LFP-1 were analyzed with molecular weight (MW) distribution, monosaccharide composition, methylation and nuclear magnetic resonance (NMR) spectra. LFP-1 was a complicated structured polysaccharide with an average MW of 1.78 × 104 Da and composed of highly branched arabinogalactans, homogalacturonan and rhamnogalacturonan moieties. LFP-1 promoted neuronal differentiation and neurite outgrowth in vitro in PC12 cell models. Furthermore, LFP-1 had a significantly protective effect against 1-methyl-4-phenylpyridiniumion (MPP+)-induced neurotoxicity in PD model PC12 cells. These observations unambiguously indicated the neurotrophic and neuroprotective activities of LFP-1, which may be developed for prevention or treatment of neurodegeneration in PD.
Collapse
|
36
|
Liu W, Xiao K, Ren L, Sui Y, Chen J, Zhang T, Li XQ, Cao W. Leukemia cells apoptosis by a newly discovered heterogeneous polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydr Polym 2020; 241:116279. [DOI: 10.1016/j.carbpol.2020.116279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/05/2023]
|
37
|
Cao J, Yang J, Wang Z, Lu M, Yue K. Modified citrus pectins by UV/H 2O 2 oxidation at acidic and basic conditions: Structures and in vitro anti-inflammatory, anti-proliferative activities. Carbohydr Polym 2020; 247:116742. [PMID: 32829861 DOI: 10.1016/j.carbpol.2020.116742] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Two modified citrus pectins, MCP4 and MCP10, were prepared by UV/H2O2 treatment at pH 4 and pH 10, respectively, and their structures were characterized. MCP10 had a rhamnogalacturonan-I (RG-I) enriched backbone with a high degree of branching (DB ∼61 %) and a low methoxylation degree (24 %). MCP4 had a homogalacturonan enriched backbone with a high degree (46 %) of methoxylation and a low DB (∼41 %) of RG-I branches. MCP10 exhibited a higher anti-inflammatory activity than MCP4 in suppressing the NF-κB expression and the production of pro-inflammatory factors TNF-α and IL-1β of THP-1 cells stimulated by lipopolysaccharide. MCP10 also showed a stronger inhibitory effect on Caco-2 cell proliferation. The stronger bioactivities of MCP10 may be attributable to the abundant branches and the proper length of terminal galactan residues attached to the RG-I domain.
Collapse
Affiliation(s)
- Jing Cao
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, 510640, PR China.
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, 510640, PR China
| | - Kaiting Yue
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China
| |
Collapse
|
38
|
An active heteropolysaccharide from the rinds of Garcinia mangostana Linn.: Structural characterization and immunomodulation activity evaluation. Carbohydr Polym 2020; 235:115929. [DOI: 10.1016/j.carbpol.2020.115929] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
|
39
|
Dranca F, Vargas M, Oroian M. Physicochemical properties of pectin from Malus domestica ‘Fălticeni’ apple pomace as affected by non-conventional extraction techniques. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105383] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Purification and structural characterization of polysaccharides isolated from Auricularia cornea var. Li. Carbohydr Polym 2020; 230:115680. [DOI: 10.1016/j.carbpol.2019.115680] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
|
41
|
Reconsidering conventional and innovative methods for pectin extraction from fruit and vegetable waste: Targeting rhamnogalacturonan I. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Zhang S, He F, Chen X, Ding K. Isolation and structural characterization of a pectin from Lycium ruthenicum Murr and its anti-pancreatic ductal adenocarcinoma cell activity. Carbohydr Polym 2019; 223:115104. [DOI: 10.1016/j.carbpol.2019.115104] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
|
43
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|