1
|
Malik S, Siddiqi MK, Naseem N, Nabi F, Masroor A, Majid N, Hashmi A, Khan RH. Biophysical insight into the anti-fibrillation potential of Glyburide for its possible implication in therapeutic intervention of amyloid associated diseases. Biochimie 2023; 211:110-121. [PMID: 36958592 DOI: 10.1016/j.biochi.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Protein aggregation is an underlying cause of many neurodegenerative diseases. Also, the overlapping pathological disturbances between neurodegenerative diseases and type-2 diabetes mellitus have urged the scientific community to explore potential of already available anti-diabetic medications in impeding amyloid formation too. Recent study brief out promising potential of an anti-diabetic drug Glyburide(GLY) as an inhibitor of amyloid fibrillation utilizing several biophysical techniques, computational methods and imaging tools. The mechanism of interaction was elucidated and the structural alterations in human serum albumin(HSA) as well as the microenvironment changes of its fluorophores(tryptophan, tyrosine) upon interacting with GLY were studied by spectroscopic techniques like Circular dichroism and synchronous fluorescence. Binding studies detailing about the GLY-HSA complex distance and the energy transfer efficiency was obtained by Fluorescence resonance energy transfer. For aggregation inhibition studies, the existence and size of aggregates formed in HSA and their inhibition by GLY was determined by Turbidity assay, Dynamic light scattering and Rayleigh light scattering along with dye binding assays. The ThT kinetics measurements analysis suggested that GLY deaccelerates fibrillation by decrement of apparent rate(Kapp) constant. The inhibitory effect of GLY might be attributed to native structure stabilization of HSA by obstruction into β-sheet conversion as confirmed by CD spectroscopy results. Amyloid inhibition and suppression of amyloid-induced hemolysis by GLY was further delineated by TEM and SEM analysis respectively. All these findings for the first time report the new facet of the anti-amyloidogenic potential of GLY, making it a promising candidate to treat neurodegenerative diseases too in the near future.
Collapse
Affiliation(s)
- Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | | | - Nida Naseem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
2
|
Antioxidants: an approach for restricting oxidative stress induced neurodegeneration in Alzheimer's disease. Inflammopharmacology 2023; 31:717-730. [PMID: 36933175 DOI: 10.1007/s10787-023-01173-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, affecting millions of people worldwide. Oxidative stress contributes towards induction of neurodegeneration. It is one of the reasons behind initiation and progression of Alzheimer's disease. Understanding of oxidative balance and restoration of oxidative stress has demonstrated its effectiveness in the management of AD. Various natural and synthetic molecules have been found to be effective in different models of AD. Some clinical studies also support the use of antioxidants for prevention of neurodegeneration in AD. In this review we are summarizing the development of antioxidants to restrict oxidative stress induced neurodegeneration in AD.
Collapse
|
3
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|
4
|
Martano S, De Matteis V, Cascione M, Rinaldi R. Inorganic Nanomaterials versus Polymer-Based Nanoparticles for Overcoming Neurodegeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2337. [PMID: 35889562 PMCID: PMC9317100 DOI: 10.3390/nano12142337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Neurodegenerative disorders (NDs) affect a great number of people worldwide and also have a significant socio-economic impact on the aging population. In this context, nanomedicine applied to neurological disorders provides several biotechnological strategies and nanoformulations that improve life expectancy and the quality of life of patients affected by brain disorders. However, available treatments are limited by the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (B-CSFB). In this regard, nanotechnological approaches could overcome these obstacles by updating various aspects (e.g., enhanced drug-delivery efficiency and bioavailability, BBB permeation and targeting the brain parenchyma, minimizing side effects). The aim of this review is to carefully explore the key elements of different neurological disorders and summarize the available nanomaterials applied for neurodegeneration therapy looking at several types of nanocarriers. Moreover, nutraceutical-loaded nanoparticles (NPs) and synthesized NPs using green approaches are also discussed underling the need to adopt eco-friendly procedures with a low environmental impact. The proven antioxidant properties related to several natural products provide an interesting starting point for developing efficient and green nanotools useful for neuroprotection.
Collapse
|
5
|
Pradhan LK, Sahoo PK, Chauhan S, Das SK. Recent Advances Towards Diagnosis and Therapeutic Fingerprinting for Alzheimer's Disease. J Mol Neurosci 2022; 72:1143-1165. [PMID: 35553375 DOI: 10.1007/s12031-022-02009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022]
Abstract
Since the report of "a peculiar severe disease process of the cerebral cortex" by Alois Alzheimer in 1906, it was considered to be a rare condition characterized by loss of cognition, memory impairment, and pathological markers such as senile plaques or neurofibrillary tangles (NFTs). Later on, the report was published in the textbook "Psychiatrie" and the disease was named as Alzheimer's disease (AD) and was known to be the consequences of aging; however, owing to its complex etiology, there is no cure for the progressive neurodegenerative disorder. Our current understanding of the mechanisms involved in the pathogenesis of AD is still at the mechanistic level. The treatment strategies applied currently only alleviate the symptoms and co-morbidities. For instance, the available treatments such as the usage of acetylcholinesterase inhibitors and N-methyl D-aspartate antagonists have minimal impact on the disease progression and target the later aspects of the disease. The recent advancements in the last two decades have made us more clearly understand the pathophysiology of the disease which has led to the development of novel therapeutic strategies. This review gives a brief idea about the various facets of AD pathophysiology and its management through modern investigational therapies to give a new direction for development of targeted therapeutic measures.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar-751023, India.
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India.
| |
Collapse
|
6
|
Triterpenoids impede the fibrillation and cytotoxicity of human islet amyloid polypeptide. Int J Biol Macromol 2022; 199:189-200. [PMID: 34973981 DOI: 10.1016/j.ijbiomac.2021.12.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/05/2023]
Abstract
The inhibition of human islet amyloid polypeptide (hIAPP) deposition to block its toxicity is an important strategy for the prevention and treatment of type II diabetes mellitus (T2DM).Natural compounds with pharmacological properties and low toxicity can serve as a good point to discover potential inhibitors of protein misfolding, which may be useful for the treatment of various amyloidosis-related diseases. Previous studies have reported that triterpenoids, such as maslinic acid (MA) and momordicin I (MI), can modulate glucose metabolism partially by reducing insulin resistance. However, the internal antidiabetic mechanism of these triterpenoids remains unclear. In this study, we examined the inhibition and disaggregation of MAandits isomer MI on the fibrillation of hIAPP using various experimental and computational approaches. The assembly behaviors and peptide-induced cytotoxicity of hIAPP could be effectively resisted by MA and MI. Moreover, the interaction of the two triterpenoids with hIAPP displayed a spontaneous and exothermic process. Moreover, molecular dynamics simulation results of different peptides revealed that MA and MI could bind to Asn and other non-polar residues near the core C-terminal region and reduce the oligomerization of hIAPP. The binding affinity was predominantly contributed by hydrophobic, electrostatic and hydrogen bonding interactions. The present work provides valuable data for MA and MI to treat T2DM and amyloidosis-related diseases.
Collapse
|
7
|
Mir HA, Ali R, Wani ZA, Khanday FA. Pro-oxidant vitamin C mechanistically exploits p66Shc/Rac1GTPase pathway in inducing cytotoxicity. Int J Biol Macromol 2022; 205:154-168. [PMID: 35181322 DOI: 10.1016/j.ijbiomac.2022.02.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 12/25/2022]
Abstract
P66Shc is the master regulator of oxidative stress whose pro-oxidant functioning is governed by ser36 phosphorylation. Phosphorylated p66Shc via Rac1GTPase activation modulates ROS levels which in turn influence its pro-oxidative functions. Vitamin C at higher concentrations exhibits cytotoxic activity in various cancers, inducing ROS mediated cell death via pro-apoptotic mechanisms. Here we show a novel role of p66Shc in mediating pro-oxidant activity of vitamin C. Effect of vitamin C on the viability of breast cancer and normal cells was studied. High doses of vitamin C decreased viability of cancerous cells but not normal cells. Docking study displayed significant binding affinity of vitamin C with p66Shc PTB domain. Western blot results suggest that vitamin C not only enhances p66Shc expression but also induces its ser36 phosphorylation. Vitamin C at high doses was also found to activate Rac1, enhance ROS production and induce apoptosis. Interestingly, ser36 phosphorylation mutant transfection and pretreatment with antioxidant N-acetylcysteine results indicate that vitamin C induced Rac1 activation, ROS production and apoptosis is p66Shc ser36 phosphorylation dependent. Overall, results highlight that vitamin C mechanistically explores p66Shc/Rac1 pathway in inducing apoptosis and thus can pave a way to use this pathway as a potential therapeutic target in breast cancers.
Collapse
Affiliation(s)
- Hilal Ahmad Mir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Roshia Ali
- Department of Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Zahoor Ahmad Wani
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Firdous Ahmad Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
8
|
Basu A, Bhowmick S, Mukherjee A. Flavonolignan silibinin abrogates SDS induced fibrillation of human serum albumin. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Ghadami SA, Ahmadi Z, Moosavi-Nejad Z. The albumin-based nanoparticle formation in relation to protein aggregation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119489. [PMID: 33524819 DOI: 10.1016/j.saa.2021.119489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Albumin is an attractive protein for the preparation of nanoparticle with possible therapeutic applications, due to its biodegradable, nontoxic, non-immunogenic, and metabolizable properties. Many studies have investigated the formation of albumin nanoparticles, generally by the desolvation or coacervation approaches. One of the most important parameters that should be considered in the formation of nanoparticles is their morphology (size and shape). There are many proposals to control the nanoparticle size, but it remains a challenge for researchers yet. In this study, we showed that control of BSA-based nanoparticles/microparticles size could be achieved by varying the temperature and pH and therefore controlling the rate of aggregation. The aggregation behavior was monitored by UV-Vis spectroscopy, SEM, and dye-binding assay. Our results provide more options for the size and shape control of BSA-based nanoparticle in natural buffer systems. The aggregation of BSA at different temperatures within the range of 50-80 °C were studied under the effect of different pHs in the range of 4.7-6.2. In this research, we found that protein aggregation under extreme conditions of pH and temperature, or at the pH near to pI appears to be amorphous, and at the pH above the pI seems to be the amyloid fibril structure. In some instances where the aggregation is neither too fast nor too slow, in the initial phase of the aggregation process, nanoparticle structures can be identified and separated by mechanistic approaches. This observation suggests that the best condition for monitoring the formation of albumin-based nanoparticles could be pH 5.7, 70 °C. Satisfactory rationalization of all aspects of our experimental observation requires further and more detailed study.
Collapse
Affiliation(s)
| | - Zahra Ahmadi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| |
Collapse
|
10
|
Ghorbanizamani F, Moulahoum H, Sanli S, Bayir E, Zihnioglu F, Timur S. pH-bioresponsive poly(ε-caprolactone)-based polymersome for effective drug delivery in cancer and protein glycoxidation prevention. Arch Biochem Biophys 2020; 695:108643. [PMID: 33122162 DOI: 10.1016/j.abb.2020.108643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022]
Abstract
Artificial nanostructures using polymers to produce polymeric vesicles are inspired by the many intricate structures found in living organisms. Polymersomes are a class of self-assembled vesicles known for their great stability and application in drug delivery. They can be tuned according to their intended use by changing their components and introducing activable block copolymers that transform these polymersomes into smart nanocarriers. In this study, we propose the synthesis of a poly (ethylene oxide)-poly (ε-caprolactone)-based polymersome (PEO-PCL) loaded with GSH as a pH-responsive drug delivery molecule for cancer and protein alteration inhibition. Initially, the nanocarrier was synthesized and characterized by DLS, TEM/SEM microscopy as well as gel permeation chromatography (GPC) and 1H NMR. Their CMC formation, encapsulation efficiency, and pH responsiveness were analyzed. In addition, empty and GSH-loaded PEO-PCL polymersomes were tested for their toxicity and therapeutic effect on normal and cancer cells via an MTT test. Subsequently, protein alteration models (aggregation, glycation, and oxidation) were performed in vitro where the polymersomes were tested. Results showed that other than being non-toxic and able to highly encapsulate and release the GSH in response to acidic conditions, the nanocomposites do not hinder its content's ameliorative effects on cancer cells and protein alterations. This infers that polymeric nanocarriers can be a base for future smart biomedicine applications and theranostics.
Collapse
Affiliation(s)
- Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey.
| | - Serdar Sanli
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - Ece Bayir
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, Izmir, 35100, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, Izmir, 35100, Turkey.
| |
Collapse
|
11
|
Ghasemzadeh S, Riazi GH. Inhibition of Tau amyloid fibril formation by folic acid: In-vitro and theoretical studies. Int J Biol Macromol 2020; 154:1505-1516. [DOI: 10.1016/j.ijbiomac.2019.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
|
12
|
Al Adem K, Lukman S, Kim TY, Lee S. Inhibition of lysozyme aggregation and cellular toxicity by organic acids at acidic and physiological pH conditions. Int J Biol Macromol 2020; 149:921-930. [DOI: 10.1016/j.ijbiomac.2020.01.267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
|
13
|
Luo Z, Gao G, Ma Z, Liu Q, Gao X, Tang X, Gao Z, Li C, Sun T. Cichoric acid from witloof inhibit misfolding aggregation and fibrillation of hIAPP. Int J Biol Macromol 2020; 148:1272-1279. [PMID: 31759017 DOI: 10.1016/j.ijbiomac.2019.10.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
The misfolding, aggregation and fibrillation of human islet amyloid polypeptide (hIAPP) has been acknowledged as a hallmark event in type-II diabetes. Hence, inhibiting the misfolding, aggregation and fibrillation of hIAPP have been accepted as a vital factor to treat the disease. Here cichoric acid was extracted from witloof to explore its inhibition effects on misfolding, aggregation and fibrillation of hIAPP. Thioflavin-T (ThT) fluorescence assay, dynamic light scattering (DLS) and atomic force microscopy (AFM) images showed that cichoric acid inhibited the aggregation and fibrillation of hIAPP in a dosage-dependent manner. Circular dichroism (CD) spectra showed that cichoric acid inhibited the misfolding of hIAPP from unfolded to β-sheet. Molecular docking and further experiments revealed interactions between hIAPP and cichoric acid. Cichoric acid could bind to K1 and R11 of hIAPP via electrostatic interaction. In addition, cichoric acid could form π-π stacking with hIAPP residues F15 and F23. These interactions inhibited the misfolding, aggregation and fibrillation of hIAPP. These results, together with cichoric acid's good cytocompatibility and significant protective effects in hIAPP lesioned cell models, not only showed that cichoric acid could be used to fight against amyloidosis, but also brought a new perspective for Chinese herbal medicine as natural compound's medical potential.
Collapse
Affiliation(s)
- Zhuoying Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhongjie Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qian Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaobing Gao
- General Hospital of Central Theater Command, Wuhan 430070, China
| | - Xintong Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenxing Gao
- Affiliated Cancer Hospital &Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou 510000, China
| | - Chaoyang Li
- Affiliated Cancer Hospital &Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou 510000, China.
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
14
|
Yao P, Zhang J, You S, Qi W, Su R, He Z. Ferrocene-modified peptides as inhibitors against insulin amyloid aggregation based on molecular simulation. J Mater Chem B 2020; 8:3076-3086. [PMID: 32202581 DOI: 10.1039/d0tb00144a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Peptide-based inhibitors have gradually been implicated as drugs for treating protein folding diseases because of their favorable biocompatibility and low toxicity. To develop potential therapeutic strategies for amyloid-related disorders, short peptides modified by Fc, ferrocene-l-Phe-l-Phe (Fc-FF) and ferrocene-l-Phe-l-Tyr (Fc-FY), were used as inhibitors for the investigation of the aggregation behavior of insulin. Firstly, molecular docking predicted the interaction between both Fc-peptides and insulin. Then, the experimental data from ThT, DLS, CD and TEM confirmed that Fc-FF and Fc-FY effectively inhibited insulin fibrillation and disaggregated mature insulin fibrils. Based on a dose-dependent manner, both Fc-peptides can strongly inhibit insulin fibrillation, extend lag phase time, reduce final fibril formation (beyond 99% by Fc-peptides of 400 µM), decrease the formation of high-content β-sheet structures and reduce the size of insulin fibrils. Additionally, we found that compared with Fc-FY, the better inhibitory effect of Fc-FF at concentration below 400 µM was mainly resulted from the difference in π-π interaction and hydrogen bonds between Fc-peptides and insulin, according to molecular dynamics analysis. Our results demonstrated Fc-peptides, Fc-FF and Fc-FY, may play effective roles in the development of new therapeutic drugs or strategies for amyloid-related disorders, and the molecular dynamics simulation may be helpful for designing appropriate inhibitors of anti-amyloidosis diseases.
Collapse
Affiliation(s)
- Pin Yao
- Chemical Engineering Research Centre, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem 2020; 192:112197. [PMID: 32172082 DOI: 10.1016/j.ejmech.2020.112197] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Protein misfolding diseases (PMDs) are chronic and progressive, with no effective therapy so far. Aggregation and misfolding of amyloidogenic proteins are closely associated with the onset and progression of PMDs, such as amyloid-β (Aβ) in Alzheimer's disease, α-Synuclein (α-Syn) in Parkinson's disease and human islet amyloid polypeptide (hIAPP) in type 2 diabetes. Inhibiting toxic aggregation of amyloidogenic proteins is regarded as a promising therapeutic approach in PMDs. The past decade has witnessed the rapid progresses of this field, dozens of inhibitors have been screened and verified in vitro and in vivo, demonstrating inhibitory effects against the aggregation and misfolding of amyloidogenic proteins, together with beneficial effects. Natural products are major sources of small molecule amyloid inhibitors, a number of natural derived compounds have been identified with great bioactivities and translational prospects. Here, we review the non-polyphenolic natural inhibitors that potentially applicable for PMDs treatment, along with their working mechanisms. Future directions are proposed for the development and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yushuo Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430035, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
16
|
Kiraly VTR, Dores-Silva PR, Serrão VHB, Cauvi DM, De Maio A, Borges JC. Thermal aggregates of human mortalin and Hsp70-1A behave as supramolecular assemblies. Int J Biol Macromol 2020; 146:320-331. [PMID: 31899237 PMCID: PMC7024674 DOI: 10.1016/j.ijbiomac.2019.12.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
The Hsp70 family of heat shock proteins plays a critical function in maintaining cellular homeostasis within various subcellular compartments. The human mitochondrial Hsp70 (HSPA9) has been associated with cellular death, senescence, cancer and neurodegenerative diseases, which is the rational for the name mortalin. It is well documented that mortalin, such as other Hsp70s, is prone to self-aggregation, which is related to mitochondria biogenesis failure. Here, we investigated the assembly, structure and function of thermic aggregates/oligomers of recombinant human mortalin and Hsp70-1A (HSPA1A). Summarily, both Hsp70 thermic aggregates have characteristics of supramolecular assemblies. They display characteristic organized structures and partial ATPase activity, despite their nanometric size. Indeed, we observed that the interaction of these aggregates/oligomers with liposomes is similar to monomeric Hsp70s and, finally, they were non-toxic over neuroblastoma cells. These findings revealed that high molecular mass oligomers of mortalin and Hsp70-1A preserved some of the fundamental functions of these proteins.
Collapse
Affiliation(s)
- Vanessa T R Kiraly
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil; Department of Surgery, School of Medicine University of California, La Jolla, USA
| | - Vitor H B Serrão
- Department Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David M Cauvi
- Department of Surgery, School of Medicine University of California, La Jolla, USA
| | - Antonio De Maio
- Department of Surgery, School of Medicine University of California, La Jolla, USA; Center for Investigations of Health and Education Disparities, University of California, San Diego, La Jolla, USA; Department of Neurosciences, School of Medicine, University of California, La Jolla, USA
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
17
|
De Simone A, Naldi M, Tedesco D, Bartolini M, Davani L, Andrisano V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J Pharm Biomed Anal 2020; 178:112899. [DOI: 10.1016/j.jpba.2019.112899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
18
|
Siddiqi MK, Majid N, Alam P, Malik S, Alam A, Rajan S, Ajmal MR, Khan RH. Both beta sheet breaker and alpha helix forming pentapeptide inhibits protein fibrillation: Implication for the treatment of amyloid disorders. Int J Biol Macromol 2019; 143:102-111. [PMID: 31811850 DOI: 10.1016/j.ijbiomac.2019.11.222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/29/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022]
Abstract
For the first time, the effect of two novel designed pentapeptides on amyloid growth of human insulin using combined biophysical, microscopic, cell viability and computational approaches. Collective experimental data from ThT, ANS, and TEM demonstrate that in spite of having contrasting features, both peptides can effectively inhibit amyloid formation by prolonging lag phase, slowing down aggregation rate, and reducing final fibril formation (up to 84.26% and 85.24% by P1 and P7 respectively). Although pure amyloid caused profound cellular toxicity in SH-SY5Y neuronal cells, amyloid formed in the presence of peptides showed much reduced cellular toxicity. Such an inhibitory effect can be attributed to interference with the structural transition of insulin toward β-sheet structure by peptides. Furthermore, molecular dynamic simulations confirm that peptide preferentially binds to nearby region which is more prone to form aggregates that consequently disrupts self-assembly into amyloid fibrils (P1 and P7 possess inhibition constant value of 0.000183 and 0.000216 nm, respectively), supporting our experimental observations. This study underscores the information about the sequence based inhibition mechanism of peptides that might dictate their inhibition or modulation capacity, which might be helpful in designing anti-amyloid therapeutics.
Collapse
Affiliation(s)
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Sudeepa Rajan
- National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Mohd Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
19
|
Teleanu RI, Chircov C, Grumezescu AM, Volceanov A, Teleanu DM. Antioxidant Therapies for Neuroprotection-A Review. J Clin Med 2019; 8:E1659. [PMID: 31614572 PMCID: PMC6832623 DOI: 10.3390/jcm8101659] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Although moderate concentrations of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are crucial for various physiological processes within the human body, their overproduction leads to oxidative stress, defined as the imbalance between the production and accumulation of ROS and the ability of the body to neutralize and eliminate them. In the brain, oxidative stress exhibits significant effects, due to its increased metabolical activity and limited cellular regeneration. Thus, oxidative stress is a major factor in the progressive loss of neurons structures and functions, leading to the development of severe neurodegenerative disorders. In this context, recent years have witnessed tremendous advancements in the field of antioxidant therapies, with a special emphasis for neuroprotection. The aim of this paper is to provide an overview of the oxidative stress and antioxidant defense mechanisms and to present the most recent studies on antioxidant therapies for neuroprotection.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- "Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Adrian Volceanov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
20
|
Wang H, Ding H, Ma B, Chen Z. A redox cycle meets insulin fibrillation in vitro. Int J Biol Macromol 2019; 138:89-96. [DOI: 10.1016/j.ijbiomac.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 01/29/2023]
|
21
|
Tao X, Huang Y, Wang C, Chen F, Yang L, Ling L, Che Z, Chen X. Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14325] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuan Tao
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Yukun Huang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| | - Chong Wang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Fang Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Lingling Yang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Li Ling
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Zhenming Che
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Xianggui Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| |
Collapse
|
22
|
Moulahoum H, Sanli S, Timur S, Zihnioglu F. Potential effect of carnosine encapsulated niosomes in bovine serum albumin modifications. Int J Biol Macromol 2019; 137:583-591. [DOI: 10.1016/j.ijbiomac.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
23
|
Siddiqi MK, Malik S, Majid N, Alam P, Khan RH. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:333-369. [PMID: 31928731 DOI: 10.1016/bs.apcsb.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid diseases especially, Alzheimer's disease (AD), is characterized by an imbalance between the production and clearance of amyloid-β (Aβ) species. Amyloidogenic proteins or peptides can transform structurally from monomers into β-stranded fibrils via multiple oligomeric states. Among various amyloid species, structured oligomers are proposed to be more toxic than fibrils; however, the identification of amyloid oligomers has been challenging due to their heterogeneous and metastable nature. Multiple techniques have recently helped in better understanding of oligomer's assembly details and structural properties. Moreover, some progress on elucidating the mechanisms of oligomer-triggered toxicity has been made. Based on the collection of current findings, there is growing consensus that control of toxic amyloid oligomers could be a valid approach to regulate amyloid-associated toxicity, which could advance development of new diagnostics and therapeutics for amyloid-related diseases. In this review, we have described the recent scenario of amyloid diseases with a great deal of information about the recent understanding of oligomers' assembly, structural properties, and toxicity. Also comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates.
Collapse
Affiliation(s)
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|