1
|
Feng A, Xu J, Fu Y, Li Z, Liu C, Luan X, Wang X, Sun Q, Yang Y, Rong R. An integrative pharmacology-based study on the efficacy and mechanism of essential oil of Chaihu Guizhi Decoction on influenza A virus induced pneumonia in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118654. [PMID: 39098621 DOI: 10.1016/j.jep.2024.118654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaihu Guizhi Decoction (CGD) has a long history of use in China for the treatment of influenza, which involves the use of a variety of aromatic herbs. Our previous studies have found that the contents of aromatic constituents in CGD affected the efficacy of treatment of influenza-infected mice, suggesting a clue that essential oil from CGD may play a relatively important role in ameliorating influenza induced pneumonia. AIM OF THE STUDY To evaluate the anti-influenza potential of essential oil derived from Chaihu Guizhi Decoction (CGD-EO), to characterize and predict the key active components in CGD-EO, and to explore the mechanism of action of CGD-EO. MATERIALS AND METHODS CGD-EO was obtained by steam distillation, and the components of the essential oil were characterized by gas chromatography-mass spectrometry (GC-MS) in conjunction with the retention index. The constituents absorbed into the blood of mice treated with CGD-EO were analyzed by headspace solid phase microextraction gas chromatography/mass spectrometry (HS-SPME-GC/MS). The potential anti-influenza active constituents and their possible action pathway were predicted by simulation using a network pharmacology approach. The protective effect of CGD-EO and its major components on H1N1/PR8-infected cells was determined using the CCK8 assay kit. Mice infected with influenza A virus H1N1/PR8 were administered different doses of CGD-EO orally and the body weights and lung weights were recorded. Mice with varying degrees of H1N1/PR8 infection were administered CGD-EO orally, and their daily weight, water consumption, and clinical indicators were recorded. Necropsies were conducted on days 3 and 5, during which lung weights were measured and lung tissues were preserved. Furthermore, the mRNA expression of the H1N1/PR8 virus and inflammatory factors in lung tissue was analyzed using RT-qPCR. RESULTS (E)-cinnamaldehyde was the most abundant compound in the CGD-EO. The results of serum medicinal chemistry combined with network pharmacological analysis indicated that (E)-cinnamaldehyde and 3-phenyl-2-propenal may be potential active components of the CGD-EO anti-influenza, and may be involved in the NF-κB signalling pathway. In vitro studies have demonstrated that both CGD-EO and cinnamaldehyde exert a protective effect on MDCK cells infected with H1N1/PR8. In a 0.5 TCID50 H1N1/PR8-induced influenza model, mice treated with CGD-EO at a dose of 63.50 μg/kg exhibited a reduction in lung index, pathological lung lesions, and H1N1/PR8 viral gene levels. In addition, CGD-EO treatment was found to regulate the levels of inflammatory cytokines, including IL-6, TNF-α, and IFN-γ. Moreover, following three days of administration, an upregulation of NF-κB mRNA levels in mouse lung tissue was observed in response to CGD-EO treatment. CONCLUSIONS The findings of our study indicate CGD-EO exerts a protective effect against H1N1-induced cytopathic lesions in vitro and is capable of alleviating H1N1-induced pneumonitis in mice. Moreover, it appears to be more efficacious in the treatment of mild symptoms of H1N1 infection. Studies have demonstrated that CGD-EO has antiviral potential to attenuate influenza-induced lung injury by modulating inflammatory cytokines and NF-κB signalling pathways during the early stages of influenza infection. It is possible that (E)-cinnamaldehyde is a potential active ingredient in the anti-influenza efficacy of CGD-EO.
Collapse
Affiliation(s)
- Anjie Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinke Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Yan Fu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhuangzhuang Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chen Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiumei Luan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yong Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Collaborative Innovation Center for Antiviral Traditional Chinese Medicine in Shandong Province, Jinan, 250355, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Wang X, Lu Y, Li M, Xia X, Jin C, Ding K, Chen D. Structural characterization and Bacteroides proliferation promotion activity of a novel homogeneous arabinoglucuronoxylan from Commelina communis L. Bioorg Chem 2024; 153:107790. [PMID: 39241582 DOI: 10.1016/j.bioorg.2024.107790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Commelina communis L., a functional food and herbal plant in Asia, has been used against obesity, diabetes, and infections for centuries. A growing body of studies has demonstrated that indigestible polysaccharides are significant in obesity management. However, the structures and bioactivities of homogeneous polysaccharides from C. communis remain unclear. This study presented the structural characterization, simulated digestion, and human gut Bacteroides proliferation promotion activity of a novel homogeneous polysaccharide (CCB-3) from C. communis. The results showed that CCB-3 was an arabinoglucuronoxylan, primarily composed of arabinose, galactose, xylose, glucuronic acid (GlcA), and 4-O-methyl GlcA with a molecular weight (Mw) of 58.8 kDa. Following a 6-hour exposure to simulated gastrointestinal fluid, the Mw of CCB-3 remained unchanged, revealing that CCB-3 was an indigestible polysaccharide. Notably, CCB-3 could promote the proliferation of B. thetaiotaomicron, B. ovatus, and B. cellulosilyticus and produce short-chain fatty acids (SCFAs) and 1,2-propanediol. These findings might shed light on the discovery of polysaccharide-based leading compounds from C. communis against obesity.
Collapse
Affiliation(s)
- Xiaojiang Wang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhang Heng Road, Shanghai 201203, China; Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhang Heng Road, Shanghai 201203, China.
| | - Meixia Li
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Xiao Xia
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhang Heng Road, Shanghai 201203, China.
| | - Can Jin
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhang Heng Road, Shanghai 201203, China.
| |
Collapse
|
3
|
Wang Z, Sun L, Zhao H, Sow MD, Zhang Y, Wang W. Inhibition Effects and Mechanisms of Marine Compound Mycophenolic Acid Methyl Ester against Influenza A Virus. Mar Drugs 2024; 22:190. [PMID: 38786581 PMCID: PMC11122424 DOI: 10.3390/md22050190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Influenza A virus (IAV) can cause infection and illness in a wide range of animals, including humans, poultry, and swine, and cause annual epidemics, resulting in thousands of deaths and millions of hospitalizations all over the world. Thus, there is an urgent need to develop novel anti-IAV drugs with high efficiency and low toxicity. In this study, the anti-IAV activity of a marine-derived compound mycophenolic acid methyl ester (MAE) was intensively investigated both in vitro and in vivo. The results showed that MAE inhibited the replication of different influenza A virus strains in vitro with low cytotoxicity. MAE can mainly block some steps of IAV infection post adsorption. MAE may also inhibit viral replication through activating the cellular Akt-mTOR-S6K pathway. Importantly, oral treatment of MAE can significantly ameliorate pneumonia symptoms and reduce pulmonary viral titers, as well as improving the survival rate of mice, and this was superior to the effect of oseltamivir. In summary, the marine compound MAE possesses anti-IAV effects both in vitro and in vivo, which merits further studies for its development into a novel anti-IAV drug in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (Z.W.); (L.S.); (H.Z.); (M.D.S.); (Y.Z.)
| |
Collapse
|
4
|
Jiao Y, Zhou L, Huo J, Li H, Zhu H, Chen D, Lu Y. Flavonoid substituted polysaccharides from Tamarix chinensis Lour. alleviate H1N1-induced acute lung injury via inhibiting complement system. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117651. [PMID: 38135232 DOI: 10.1016/j.jep.2023.117651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viral pneumonia is a highly pathogenic respiratory infectious disease associated with excessive activation of the complement system. Our previous studies found that the anticomplement polysaccharides from some medicinal plants could significantly alleviate H1N1-induced acute lung injury (H1N1-ALI). The leaves and twigs of Tamarix chinensis Lour. are traditionally used as a Chinese medicine Xiheliu for treating inflammatory disorders. Interestingly, its crude polysaccharides (MBAP90) showed potent anticomplement activity in vitro. AIM OF THE STUDY To evaluate the therapeutic effects and possible mechanism of MBAP90 on viral pneumonia and further isolate and characterize the key active substance of MBAP90. MATERIALS AND METHODS The protective effects of MBAP90 were evaluated by survival tests and pharmacodynamic experiments on H1N1-ALI mice. Histopathological changes, viral load, inflammatory markers, and complement deposition in lungs were analyzed by H&E staining, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC), respectively. An anticomplement homogenous polysaccharide (MBAP-3) was obtained from MBAP90 by bio-guided separation, and its structure was further characterized by methylation analysis and NMR spectroscopy. RESULTS Oral administration of MBAP90 at a dose of 400 mg/kg significantly increased the survival rate of mice infected with the lethal H1N1 virus. In H1N1-induced ALI, mice treated with MBAP90 (200 and 400 mg/kg) could decrease the lung index, lung pathological injury, the levels of excessive proinflammatory cytokines (IL-6, TNF-α, MCP-1, IL-18, and IL-1β), and complement levels (C3c and C5b-9). In addition, MBAP-3 was characterized as a novel homogenous polysaccharide with potent in vitro anticomplement activity (CH50: 0.126 ± 0.002 mg/mL), containing 10.51% uronic acids and 9.67% flavonoids, which were similar to the composition of MBAP90. The backbone of MBAP-3 consisted of →4)-α-D-Glcp-(1→, →3,4,6)-α-D-Glcp-(1→, and →3,4)-α-D-Glcp-(1→, with branches comprising α-L-Araf-(1→, α-D-GlcpA-(1→, →4,6)-α-D-Manp-(1→ and →4)-β-D-Galp-(1 → . Particularly, O-6 of →4)-β-D-Galp-(1→ was conjugated with a flavonoid, myricetin. CONCLUSIONS MBAP90 could ameliorate H1N1-ALI by inhibiting inflammation and over-activation of the complement system. These polysaccharides (MBAP90 and MBAP-3) with relative high contents of uronic acid and flavonoid substituent might be vital components of T. chinensis for treating viral pneumonia.
Collapse
Affiliation(s)
- Yukun Jiao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Lishuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Jiangyan Huo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China; Institutes of Integrative Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Li H, Liu M, Liu Z, Cheng L, Li M, Li C. Purification, Structural Characterization, and Antitumor Activity of a Polysaccharide from Perilla Seeds. Int J Mol Sci 2023; 24:15904. [PMID: 37958887 PMCID: PMC10649407 DOI: 10.3390/ijms242115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
A previous study found that a crude Perilla seed polysaccharide (PFSP) fraction exhibited obviously antitumor activity; however, the structural characterization and antitumor properties of this polysaccharide remain unclear. In this study, the PFSP was extracted and purified via combined column chromatography, and the structure of a single polysaccharide fraction was characterized by methylation, IC, GC-MS, NMR, and AFM. The results demonstrated that the efficient antitumor polysaccharide fraction PFSP-2-1 was screened from PFSP with a relative molecular weight of 8.81 × 106 Da. The primary structure of the PFSP main chain was →1)-Araf-(5→, →1,3)-Galp-(6→, →1)-Galp-(6→, →1,3)-Araf-(5→ and →1)-Xylp-(4→, and that of the side chains was →1)-Arap, →1,3)-Galp-(6→, →1)-Araf and →1)-Glcp-(4→, →1)-Galp-(3→ and →1)-Glcp, leading to a three-dimensional helical structure. CCK-8 experiments revealed that PFSP-2-1 significantly inhibited the growth of human hepatocellular carcinoma cells in vitro (p < 0.05), and its inhibitory effect positively correlation with the concentration of PFSP-2-1, and when the concentration of PFSP-2-1 was 1600 µg/mL, it showed the highest inhabitation rate on three hepatocellular carcinoma cells (HepG-2, Hep3b, and SK-Hep-1), for which the survival rates of HepG-2, Hep3b, and SK-Hep-1 were 53.34%, 70.33%, and 71.06%. This study clearly elucidated the structure and antitumor activity of PFSP-2-1, which lays a theoretical foundation for revealing the molecular mechanism of antitumor activity of Perilla seed polysaccharides and provides an important theoretical basis for the development of high-value Perilla.
Collapse
Affiliation(s)
- Hui Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (H.L.); (M.L.); (Z.L.); (L.C.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ming Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (H.L.); (M.L.); (Z.L.); (L.C.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zikun Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (H.L.); (M.L.); (Z.L.); (L.C.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Li Cheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (H.L.); (M.L.); (Z.L.); (L.C.)
| | - Mengsha Li
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin 150080, China
| | - Chongwei Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; (H.L.); (M.L.); (Z.L.); (L.C.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
6
|
Yang SY, Guo LF, Liu Y, Zou JB, Zhu HY, Lu Y, Chen DF. Trichosanates A-G and cucurbitacins W-Y, anticomplement monoterpenoids and cucurbitane-type triterpenoids from the pericarps of Trichosanthes kirilowii. Bioorg Chem 2023; 139:106710. [PMID: 37418785 DOI: 10.1016/j.bioorg.2023.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
The pericarps of Trichosanthes kirilowii are often used to treat cough in traditional Chinese medicine, and its ethanol extract exhibited effective therapeutic effects on acute lung injury (ALI) in vivo caused by H1N1. An anticomplement activity-guided fractionation on the extract resulted in the isolation of ten new terpenoids, including seven monoterpenoids, trichosanates A-G (1-7), and three cucurbitane-type triterpenoids, cucurbitacins W-Y (8-10), as well as eleven known terpenoids (11-21). The new terpenoids' structures were determined by spectroscopic analysis, X-ray crystallographic analysis (1), electronic circular dichroism (ECD) analysis and calculations (2-10). Twelve monoterpenoids (1-7 and 11-15) and five cucurbitane-type triterpenoids (8-10, 18, and 20) exhibited anticomplement activity in vitro. For the monoterpenoids, the long aliphatic chain substituents might enhance their anticomplement activity. Additionally, two representative anticomplement terpenoids, 8 and 11, obviously attenuated H1N1-induced ALI in vivo by inhibiting complement overactivation and reducing inflammatory responses.
Collapse
Affiliation(s)
- Shui-Yuan Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Lin-Feng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Ji-Bin Zou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Hai-Yan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China.
| | - Dao-Feng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China; Institutes of Integrative Medicine, Fudan University, Shanghai 201203, People's Republic of China.
| |
Collapse
|
7
|
Song Q, Cheng SW, Li D, Cheng H, Lai YS, Han Q, Wu HY, Shaw PC, Zuo Z. Gut microbiota mediated hypoglycemic effect of Astragalus membranaceus polysaccharides in db/db mice. Front Pharmacol 2022; 13:1043527. [PMID: 36452223 PMCID: PMC9703139 DOI: 10.3389/fphar.2022.1043527] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 08/29/2023] Open
Abstract
Gut microbiota has been reported to be closely associated with Type-II diabetes. Restoration of disordered gut microbiota ecosystem has been developed into a therapeutic strategy and gradually applied on Type-II diabetes treatment with both western drugs and herbal polysaccharides. Although Astragalus membranaceus polysaccharides (AMP) have also been used to treat Type-II diabetes, no study investigated correlations between gut microbiota regulation and its hypoglycemic effect. In the present study, the role of gut microbiota on the hypoglycemic effect of AMP in db/db mice was investigated for the first time. Sixteen days treatment of AMP at the dosage of 600 mg/kg in db/db mice not only alleviated its diabetic symptoms significantly but also restored its gut microbiota community with increased production of fecal short chain fatty acids (SCFA). Our further Pearson correlation analyses revealed that the relative abundance of two intestinal bacteria, Akkermansia and Faecalibaculum, were significantly positively correlated with the hypoglycemic effect of AMP as well as fecal SCFA production. It was also noted that treatment of AMP resulted in increased secretion of glucagon-like peptide-1 (GLP-1) in serum and enhanced intestinal integrity. Further mechanistic study revealed that the increased SCFA after AMP treatment could stimulate GLP-1 secretion and improve intestinal integrity via enhancing the expression of G protein-coupled receptors 41/43 and tight junction proteins (Occudin and ZO-1), respectively, leading to the alleviation of diabetic symptoms in db/db mice.
Collapse
Affiliation(s)
- Qianbo Song
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sau Wan Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dan Li
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Huiyuan Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yuen Sze Lai
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Quanbin Han
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hoi Yan Wu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Pang Chui Shaw
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Tian R, Zhu H, Lu Y, Shi X, Tu P, Li H, Huang H, Chen D. Therapeutic Potential of 2-Methylquinazolin-4(3H)-one as an Antiviral Agent against Influenza A Virus-Induced Acute Lung Injury in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227857. [PMID: 36431955 PMCID: PMC9697438 DOI: 10.3390/molecules27227857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Qingdai-Mabo (QM), a traditional Chinese herbal formula composed of medicinal herb and fungus, has been used for treatment of cough and viral pneumonia. However, the underlying mechanism and bioactive components against anti-influenza A virus remain unclear. In the present study, ethyl acetate (EA) extract of QM decoctions was tested for its biological activity against acute lung injury (ALI) and its main components were identified using UPLC-MS/MS. In total, 18 bioactive components were identified, including 2-Methylquinaozlin-4(3H)-one (C1), which showed significant antiviral activity in vitro with an IC50 of 23.8 μg/mL. Furthermore, we validated the efficacy of C1 in ameliorating ALI lesions and inflammation in influenza A virus-infected mice. The results showed that C1 significantly reduced the lung index, downregulated neuraminidase (NA) and nucleoprotein (NP), and decreased the expression of pro-inflammatory molecules IFN-α, TNF-α, MCP-1, IL-6, and IL-8; however, they enhanced levels of IL-10 and IFN-γ in lung homogenate from mice infected by influenza A virus. In addition, C1 inhibited the recruitment of macrophages. These in vitro and in vivo studies suggested that the significant anti-influenza A virus activity contributed to its curative effect on lesions and inflammation of viral pneumonia in mice. Given its potential antiviral activity against influenza A virus, C1 is determined to be a main active component in the EA extract of QM. Taken together, the antiviral activity of C1 suggests its potential as an effective treatment against viral pneumonia via the inhibition of virus replication, but the mechanism C1 on antiviral research needs to be explored further.
Collapse
Affiliation(s)
- Rong Tian
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
- Correspondence: (H.Z.); (D.C.)
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Peng Tu
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Hong Li
- Department of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 3728, Jin Ke Road, Shanghai 201203, China
- Correspondence: (H.Z.); (D.C.)
| |
Collapse
|
9
|
Wang X, Jiao Y, Zhu H, Lu Y, Chen D. Exploring the anticomplement components from Fagopyrum dibotrys for the treatment of H1N1-induced acute lung injury by UPLC-Triple-TOF-MS/MS. J Pharm Biomed Anal 2022; 223:115158. [DOI: 10.1016/j.jpba.2022.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
|
10
|
Huang P, Zhang J, Duan W, Jiao J, Leng A, Qu J. Plant polysaccharides with anti-lung injury effects as a potential therapeutic strategy for COVID-19. Front Pharmacol 2022; 13:982893. [DOI: 10.3389/fphar.2022.982893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
When coronavirus disease 2019 (COVID-19) develops into the severe phase, lung injury, acute respiratory distress syndrome, and/or respiratory failure could develop within a few days. As a result of pulmonary tissue injury, pathomorphological changes usually present endothelial dysfunction, inflammatory cell infiltration of the lung interstitium, defective gas exchange, and wall leakage. Consequently, COVID-19 may progress to tremendous lung injury, ongoing lung failure, and death. Exploring the treatment drugs has important implications. Recently, the application of traditional Chinese medicine had better performance in reducing fatalities, relieving symptoms, and curtailing hospitalization. Through constant research and study, plant polysaccharides may emerge as a crucial resource against lung injury with high potency and low side effects. However, the absence of a comprehensive understanding of lung-protective mechanisms impedes further investigation of polysaccharides. In the present article, a comprehensive review of research into plant polysaccharides in the past 5 years was performed. In total, 30 types of polysaccharides from 19 kinds of plants have shown lung-protective effects through the pathological processes of inflammation, oxidative stress, apoptosis, autophagy, epithelial–mesenchymal transition, and immunomodulation by mediating mucin and aquaporins, macrophage, endoplasmic reticulum stress, neutrophil, TGF-β1 pathways, Nrf2 pathway, and other mechanisms. Moreover, the deficiencies of the current studies and the future research direction are also tentatively discussed. This research provides a comprehensive perspective for better understanding the mechanism and development of polysaccharides against lung injury for the treatment of COVID-19.
Collapse
|
11
|
Ultrafiltration isolation, structure and effects on H1N1-induced acute lung injury of a heteropolysaccharide from Houttuynia cordata. Int J Biol Macromol 2022; 222:2414-2425. [DOI: 10.1016/j.ijbiomac.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
12
|
Jiao Y, Yang Y, Zhou L, Chen D, Lu Y. Two Natural Flavonoid Substituted Polysaccharides from Tamarix chinensis: Structural Characterization and Anticomplement Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144532. [PMID: 35889403 PMCID: PMC9315555 DOI: 10.3390/molecules27144532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
Two novel natural flavonoid substituted polysaccharides (MBAP-1 and MBAP-2) were obtained from Tamarix chinensis Lour. and characterized by HPGPC, methylation, ultra-high-performance liquid chromatography-ion trap tandem mass spectrometry (UPLC-IT-MSn), and NMR analysis. The results showed that MBAP-1 was a homogenous heteropolysaccharide with a backbone of 4)-β-d-Glcp-(1→ and →3,4,6)-β-d-Glcp-(1→. MBAP-2 was also a homogenous polysaccharide which possessed a backbone of →3)-α-d-Glcp-(1→, →4)-β-d-Glcp-(1→ and →3,4)-β-d-Glcp-2-OMe-(1→. Both the two polysaccharides were substituted by quercetin and exhibited anticomplement activities in vitro. However, MBAP-1 (CH50: 0.075 ± 0.004 mg/mL) was more potent than MBAP-2 (CH50: 0.249 ± 0.006 mg/mL) and its reduced product, MBAP-1R (CH50: 0.207 ± 0.008 mg/mL), indicating that multiple monosaccharides and uronic acids might contribute to the anticomplement activity of the flavonoid substituted polysaccharides of T. chinensis. Furthermore, the antioxidant activity of MBAP-1 was also more potent than that of MBAP-2. In conclusion, these two flavonoid substituted polysaccharides from T. chinensis were found to be potential oxidant and complement inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Yan Lu
- Correspondence: (D.C.); (Y.L.)
| |
Collapse
|
13
|
Fan Y, Wang Y, Yu S, Chang J, Yan Y, Wang Y, Bian Y. Natural products provide a new perspective for anti-complement treatment of severe COVID-19: a review. Chin Med 2021; 16:67. [PMID: 34321065 PMCID: PMC8318062 DOI: 10.1186/s13020-021-00478-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
Exaggerated immune response and cytokine storm are accounted for the severity of COVID-19, including organ dysfunction, especially progressive respiratory failure and generalized coagulopathy. Uncontrolled activation of complement contributes to acute and chronic inflammation, the generation of cytokine storm, intravascular coagulation and cell/tissue damage, which may be a favorable target for the treatment of multiple organ failure and reduction of mortality in critically ill patients with COVID-19. Cytokine storm suppression therapy can alleviate the symptoms of critically ill patients to some extent, but as a remedial etiological measure, its long-term efficacy is still questionable. Anti-complement therapy has undoubtedly become an important hotspot in the upstream regulation of cytokine storm. However, chemosynthetic complement inhibitors are expensive, and their drug resistance and long-term side effects require further investigation. New complement inhibitors with high efficiency and low toxicity can be obtained from natural products at low development cost. This paper puts forward some insights of the development of natural anti-complement products in traditional Chinese medicine, that may provide a bright perspective for suppressing cytokine storm in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Yadong Fan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Shuang Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Jun Chang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Yiqi Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
14
|
Yang YT, De J, Fu ZL, Wang XL, Chen DF, Xie H, Lu Y. Molecular Identification Based on Chloroplast Sequences and Anti-complementary Activity Comparison of Juniperus Samples from the Qinghai-Tibet Plateau. PLANTA MEDICA 2020; 86:1176-1184. [PMID: 32645740 DOI: 10.1055/a-1194-0471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Juniperus (Cupressaceae, Pinales) plants are widely distributed in the Qinghai-Tibet Plateau of China. The leaves and twigs of at least 8 Juniperus species (J. pingii, J. pingii var. wilsonii, J. squamata, J. recurva var. coxii, J. saltuaria, J. indica, J. tibetica and J. convallium var. microsperma) have been used as the Tibetan medicine Xuba. At present, it is difficult to distinguish among the original species of Xuba based only on their similar morphological characteristics. However, in our previous studies, 4 Xuba samples from different Juniperus species exhibited significant differences in both anticomplementary activity in vitro and anti-inflammatory effects on acute lung injury in vivo. To identify the effective original species of Xuba reliably, in this study, we developed a sequencing-based DNA molecular technology to distinguish 14 populations of 8 Juniperus species collected from Tibet region, using trnS-G, trnD - T, and petN-psbM genomic regions to build phylogenetic trees. In addition, their anticomplementary activities were evaluated. The results showed that combined sequence of these 3 genomic regions could identify 8 Juniperus species clearly and clustered individuals of one species but from different locations, whichever phylogenetic tree was constructed. Moreover, the anticomplementary activities of the 8 species were clustered into 2 groups. Among them, J. saltuaria and J. recurva var. coxii, which formed an independent branch apart from the other 6 species in phylogenetic trees, were the most potent (CH50: 0.029 - 0.032 mg/mL). Consequently, DNA identification of Juniperus using the combined sequence could provide beneficial guidance for further efficacy evaluation and quality control of Xuba.
Collapse
Affiliation(s)
- Yi-Ting Yang
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China
| | - Ji De
- College of Science, Tibet University, Lhasa, People's Republic of China
| | - Ze-Long Fu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China
| | - Xie-Li Wang
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China
| | - Dao-Feng Chen
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China
| | - Hui Xie
- Human Phenome Institute, Fudan University, Shanghai, People's Republic of China
| | - Yan Lu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Structural characterization and immunostimulatory activity of polysaccharides from Pyrus sinkiangensis Yu. Int J Biol Macromol 2020; 157:444-451. [PMID: 32335112 DOI: 10.1016/j.ijbiomac.2020.04.146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/25/2020] [Accepted: 04/19/2020] [Indexed: 11/23/2022]
Abstract
Two neutral polysaccharides (PSNP-1, 104.7 kDa; PSNP-2, 24.5 kDa) were isolated from the pulp of Pyrus sinkiangensis Yu. by using the combined techniques of ion-exchange and gel permeation chromatography. According to the IR, NMR spectra, monosaccharide composition, and methylation analyses, PSNP-1 was mainly composed of glucose and xylose residues, which form a typical xyloglucan. PSNP-2 contained an arabinan region composed of 1,5-linked Araf residues, a xyloglucan region that was mainly composed of t-, 1,2-linked Xylp, and 1,4-, 1,4,6-linked Glcp residues. PSNP-1 and PSNP-2 could stimulate the cell viability, NO release, and cytokine secretion (IL-6 and TNF-α) of RAW264.7 macrophages at the adosage of 250 μg/mL. It was suggested that PSNP-1 and PSNP-2 may increase macrophage-mediated immunostimulatory activity.
Collapse
|
16
|
Yu WY, Li L, Wu F, Zhang HH, Fang J, Zhong YS, Yu CH. Moslea Herba flavonoids alleviated influenza A virus-induced pulmonary endothelial barrier disruption via suppressing NOX4/NF-κB/MLCK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112641. [PMID: 32017949 DOI: 10.1016/j.jep.2020.112641] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moslae Herba, a common traditional Chinese herb with special flavor, has potential for treating respiratory and gastrointestinal diseases. AIM OF THIS STUDY Lung endothelial barrier dysfunction (LEBD) accelerates the pathogenesis of influenza A virus (IAV)-induced secondary acute lung injury. New strategies against LEBD provide benefits in prevention and treatment of IAV. Previous studies showed that flavonoids (MHF), main bioactivity fraction derived from M. Herba, exerted anti-inflammatory and antiviral activities, but the underlying protection of MHF against IAV-induced acute lung injury remained obscure. The present study was to investigate the protection of MHF against IAV-induced LEBD in vivo and in vitro. MATERIALS AND METHODS Mice were intranasally challenged with IAV and orally administered with MHF for 5 days. The pulmonary hyperpermeability of infected mice was evaluated by Evans Blue staining and in vivo imaging. Serum levels of inflammatory cytokines and mediators were detected by ELISA assay. The transepithelial electrical resistance (TER) of human pulmonary microvascular endothelial cells (HPMVECs) was measured by using TER meter. The expressions of key proteins in NOX4-mediated NF-κB/MLCK pathways were determined by western blotting. RESULTS MHF treatment reduced lung index, W/D ratios, and serum levels of inflammatory factors (IL-6, TNF-α, IL-1β, PLA2, LBT4 and ICAM-1) in IAV-infected mice. Evans blue staining and in vivo imaging results revealed that MHF alleviated IAV-induced barrier dysfunction and pulmonary hyperpermeability. Moreover, luteolin and kaempferol, the main activity compounds in MHF, significantly inhibited TNF-α-induced HPMVEC apoptosis, and downregulated NF-κB/MLCK pathway by targeting NOX4. CONCLUSION MHF attenuated IAV-induced barrier dysfunction by suppressing NOX4/NF-κB/MLCK pathway and may serve as a potential agent for the prevention of LEBD and IAV.
Collapse
Affiliation(s)
- Wen-Ying Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Lan Li
- Zhejiang Provincial Hospital of TCM, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China; Zhejiang Provincial Hospital of TCM, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Yu-Sen Zhong
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China.
| |
Collapse
|
17
|
Acetylated Polysaccharides From Pleurotus geesteranus Alleviate Lung Injury Via Regulating NF-κB Signal Pathway. Int J Mol Sci 2020; 21:ijms21082810. [PMID: 32316588 PMCID: PMC7216226 DOI: 10.3390/ijms21082810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
The present work investigated the anti-inflammatory, antioxidant, and lung protection effects of acetylated Pleurotus geesteranus polysaccharides (AcPPS) on acute lung injury (ALI) mice. The acetylation of AcPPS was successfully shown by the peaks of 1737 cm−1 and 1249 cm−1 by FTIR. The animal experiments demonstrated that lung damage can be induced by zymosan. However, the supplementation of AcPPS had potential effects on reducing lung index, remitting inflammatory symptoms (TNF-α, IL-1β, and IL-6), inhibiting NF-κB signal pathway based on up-regulating the level of IκBα and down-regulating p-IκBα level by Western blotting and immunofluorescence assay, preventing oxidative stress (ROS, SOD, GSH-Px, CAT, T-AOC, and MDA), reducing lipid accumulation (TC, TG, LDL-C, HDL-C, and VLDL-C), and alleviating lung functions by histopathologic observation. These results demonstrated that AcPPS might be suitable for natural food for prevention or remission in ALI.
Collapse
|
18
|
Juniperus pingii var. wilsonii acidic polysaccharide: Extraction, characterization and anticomplement activity. Carbohydr Polym 2020; 231:115728. [DOI: 10.1016/j.carbpol.2019.115728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/15/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
|
19
|
Huo J, Lu Y, Jiao Y, Chen D. Structural characterization and anticomplement activity of an acidic polysaccharide from Hedyotis diffusa. Int J Biol Macromol 2019; 155:1553-1560. [PMID: 31751720 DOI: 10.1016/j.ijbiomac.2019.11.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/26/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
Abstract
An acidic homogeneous polysaccharide (HD-PS-1) was purified from Hedyotis diffusa (Willd.) Roxb. HD-PS-1 possessed a backbone chain of →[4)-β-Glcp-3-OAc-(1]6→[6)-β-Manp-(1]2→6)-α-Galp-(1→[4)-α-Galp-(1]2→, with three branches of β-Manp-(1→3)-β-GlcpA, α-Rhap-(1→3)-α-Rhap and α-Galp attached to the backbone chain at O-4 position of 1,4,6-linked β-Manp, O-3 position of 1,3,6-linked α-Galp and O-3 position of 1,3,4-linked α-Galp, respectively. HD-PS-1 exhibited significant anticomplement activity (CH50: 0.084 ± 0.009 mg/mL, AP50: 0.176 ± 0.013 mg/mL). It was found that the presence of uronic acids is important to anticomplement activity of HD-PS-1, given that the reduced HD-PS-1 showed weaker activity (CH50: 0.456 ± 0.008 mg/mL, AP50: 0.572 ± 0.010 mg/mL). Preliminary mechanism study indicated that HD-PS-1 interacted with C3 and C4 in the complement activation cascade. In addition, a neutral homogeneous polysaccharide (HD-PS-2) was also purified and characterized. HD-PS-2 displayed antioxidant activity by scavenging DPPH· radicals without anticomplement activity.
Collapse
Affiliation(s)
- Jiangyan Huo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; School of Pharmacy, Fudan University, Shanghai, China
| | - Yan Lu
- School of Pharmacy, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yukun Jiao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Daofeng Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; School of Pharmacy, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|