1
|
Gao X, Chen X, Song S, Lu C, Zhang Z, Zhou Y, Yao L, Liu X, Zhang R. Hydrogel Based on Bletilla Striata Polysaccharide for Sustained Sodium Danshensu Release for Wound Healing. ACS APPLIED BIO MATERIALS 2025. [PMID: 40217567 DOI: 10.1021/acsabm.5c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Bletilla striata polysaccharide (BSP) is effective at healing wounds and has important application value in the research and development of biomedical materials. In this study, BSP, chitosan, and sodium β-glycerophosphate were used to generate a complex hydrogel with a very small pore size of 10-30 μm without the use of cross-linking agents. By improving the cross-linking density, the mechanical property defects caused by excessive BSP dissolution were overcome without affecting its physiological activity. Moreover, the small molecule Danshen sodium (SDSS) was loaded into the three-dimensional network of this hydrogel to form a hydrogel drug carrier system. SDSS could be released in the long term, and the total amount released after 53 h was 96.26 ± 2.57%. The BSP hydrogel had good water absorption (169.47 ± 4.54%) and bonding properties. In vitro studies confirmed that it has a good antibacterial performance and biocompatibility and the ability to promote cell proliferation (>200%) and migration. Molecular experiments confirmed that the hydrogel promotes collagen expression. In vivo experiments using a mouse wound healing model confirmed that the hydrogel has an excellent ability to promote wound healing, particularly during the first 7 days of the wound. The wound healing rate of the hydrogel group was higher than that of the blank group by 27.61% (p < 0.05), and the effect of the hydrogel to promote wound healing was confirmed by wound tissue staining.
Collapse
Affiliation(s)
- Xinyu Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314000, China
| | - Xinjiani Chen
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314000, China
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314006, PR China
| | - Suxian Song
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314000, China
| | - Changle Lu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314000, China
| | - Zhen Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314000, China
| | - Yu Zhou
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314000, China
| | - Liping Yao
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314000, China
| | - Xiaojun Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314000, China
- Zhejiang Key Laboratory of Multiomics and Molecular Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Zhejiang 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University,Zhejiang 318000,China
| | - Rongqing Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314000, China
- Zhejiang Key Laboratory of Multiomics and Molecular Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Zhejiang 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University,Zhejiang 318000,China
| |
Collapse
|
2
|
Yuan M, Wan Y, Wang Y, Li S, Tang J, Liang X, Tan X, Yi S, Wei X, Li X, Guo L, Guo Y. Ursodeoxycholic acid grafted chitosan oligosaccharide self-assembled micelles with enhanced oral absorption and antidiabetic effect of oleanolic acid. Food Chem 2025; 470:142708. [PMID: 39752745 DOI: 10.1016/j.foodchem.2024.142708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/26/2024] [Accepted: 12/28/2024] [Indexed: 01/29/2025]
Abstract
Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively. UCOS-OA exhibited enhanced gastrointestinal stability and prolonged intestinal retention time when compared with free OA, resulting in a 10.6-fold increase in oral bioavailability. The enhanced antidiabetic activity of UCOS-OA was confirmed in the type 2 diabetes mellitus mice model, as it significantly improved glycolipid metabolism disorders and mitigated liver injury. Furthermore, UCOS-OA ameliorated the dysbiosis of gut microbiota and fecal metabolites. In conclusion, UCOS serves as an effective polymeric carrier for encapsulating OA, thereby improving its bioavailability and antidiabetic activity. This work provides valuable insights for the advancement of oral delivery systems for bioactive compounds.
Collapse
Affiliation(s)
- Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yulu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Sihui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jiamei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xue Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Sirui Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xiaohang Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xiaohong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
3
|
Zhang H, Jiang F, Tang C, Liu Y, Zhang J. Prospects and applications of efficient physical field processing technologies for polysaccharide extraction and quality improvement in edible mushrooms: A systematic review. Int J Biol Macromol 2025; 301:140412. [PMID: 39880257 DOI: 10.1016/j.ijbiomac.2025.140412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/29/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Edible mushroom-derived polysaccharides (EMPs) have been widely used in foods, medicine, and cosmetics due to theirs' diverse and versatile biological activities. Currently, many conventional extraction methods for extracting EMPs are struggling to meet the growing demand, and the produced EMPs with poor quality and low bioactivity. Novel physical field (e.g., acoustic, electromagnetic, electrical, and mechanical field) processing technologies not only overcome the shortcomings of conventional extraction methods, but also improve the structural feature, bioactivity, and solution behavior of EMPs. Moreover, physical field-assisted techniques can induce the degradation or modification of EMPs, thereby effectively altering the physicochemical properties and structural features of EMPs to improve their bioactivities or processing properties. Therefore, a comprehensive review of physical field processing technologies such as ultrasound, high pressure, pulsed electric field, and microwave for extracting and modifying EMPs in recent years, is presented. In addition, recent advances in physical field-assisted extraction/degradation techniques for EMPs, as well as their mechanisms of action and synergistic effects, are discussed and summarized. In summary, this review provides a theoretical basis and practical guidance for the physical field processing technology in improving the extraction yield and quality of EMPs, as well as large-scale industrial production.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
4
|
Li Z, Yang L, Jin Q, Li W, Li Y, Zheng Y, Dong M, Bian Y. An anti-inflammatory and anti-fibrotic Janus hydrogel for preventing postoperative peritoneal adhesion. Mater Today Bio 2025; 31:101637. [PMID: 40151614 PMCID: PMC11946495 DOI: 10.1016/j.mtbio.2025.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Postoperative peritoneal adhesion (PPA) is pathological tissue hyperplasia between surgical wounds and nearby organs. Currently, traditional double-sided bioadhesives are limited in preventing PPA due to the indiscriminate adhesive properties and the poor interaction with wet tissues. Herein, we developed a Janus hydrogel, named PAA-Cos, by using the polycationic carbohydrate polymer of chitooligosaccharide (Cos) and the polyanionic polymer of polyacrylic acid (PAA). The adhesive layer of Janus hydrogels could adhere to wet tissue tightly due to surfaces composed of carboxyls, and the positively charged biomaterial (Cos) neutralized carboxyls on one side of PAA hydrogel to form Janus hydrogels. Moreover, PAA-Cos can further load with ligustrazine hydrochloride (Ligu), a pharmaceutical compound with anti-inflammatory and anti-fibrotic effects, finally obtaining PAA-Cos@Ligu. After the application of PAA-Cos@Ligu on the surgical trauma, the bottom surface can adhere to wet tissues robustly to restore the wound, while the top surface acts as a physical barrier with antiadhesive effects to avoid PPA. PAA-Cos@Ligu also exhibited anti-inflammatory effects by promoting M2 macrophage polarization, inhibiting the myofibroblast-like differentiation of peritoneal mesothelial cells, and blocking the TGF-β/Smad2/3 signaling pathway to hinder collagen deposition. Our findings suggest that PAA-Cos@Ligu has great potential as an anti-adhesion candidate with biocompatibility and ease of preparation.
Collapse
Affiliation(s)
- Zhengjun Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qi Jin
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High-Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wen Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Zheng
- Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Mei Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- TCM Rehabilitation Center, Jiangsu Second Chinese Medicine Hospital, Nanjing, 210023, China
| |
Collapse
|
5
|
Rivas MÁ, Benito MJ, Martín A, de Guía Córdoba M, Gizaw Y, Casquete R. Development of supercritical technology to obtain improved functional dietary fiber for the valorization of broccoli by-product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2203-2214. [PMID: 39494503 PMCID: PMC11824917 DOI: 10.1002/jsfa.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND This research aimed to enhance the functional value of dietary fiber from broccoli leaves using supercritical fluid technology. By optimizing pressure, temperature, and time parameters through response surface methodology, the study sought to improve the bioactive properties of the fiber and develop a predictive model for its chemical composition and functional properties. RESULTS Structural analysis indicated that modified samples had a higher concentration of oligosaccharides than control samples did, with significant increases in galacturonic acid and neutral sugars after supercritical fluid technology treatment, highlighting enhanced pectin release due to cell wall degradation. Functional properties, such as water solubility, glucose absorption capacity, and antioxidant activity, improved significantly under optimized conditions (191 bar, 40 °C, 1 h). Multivariate analysis confirmed the effectiveness of supercritical fluid technology in enhancing the dietary fiber properties, achieving a global desirability value of 0.805. CONCLUSION These results underscore the potential of supercritical technology for valorizing broccoli leaf by-products, enhancing their health-promoting characteristics and functional applications in the food industry. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- María Ángeles Rivas
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| | - María J. Benito
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| | - Alberto Martín
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| | - María de Guía Córdoba
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| | - Yesuneh Gizaw
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| | - Rocío Casquete
- School of Agricultural EngineeringUniversity of ExtremaduraBadajozSpain
- University Institute of Agro‐Food Resources Research (INURA), Campus Universitario, University of ExtremaduraBadajozSpain
| |
Collapse
|
6
|
Chen Q, Zhao L, Jing C, Yan M, Ren T, Zou P, Li Q, Chen S, Yang K, Fan J, He X, Li Y, Ma S. Chitooligosaccharide enhances plant resistance to P. nicotianae via sugar homeostasis and microorganism assembly. Int J Biol Macromol 2025; 307:142127. [PMID: 40090279 DOI: 10.1016/j.ijbiomac.2025.142127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Phytophthora nicotianae is a highly destructive soil-borne plant pathogen that leads to significant economic losses in agriculture. Chitooligosaccharides (COS) are popular biostimulant which can promote plant growth and responses to biotic and abiotic stresses. However, the role of COS in resisting the black-shank disease (BSD, caused by P. nicotianae) through regulating plant root exudates and rhizosphere microecology remains unclear. An integrative analysis, based on the transcriptome analysis, root exudate metabolome, and biochemical tests, revealed the secretion of more sugar-related differential metabolites and differential gene expressions expressed under COS treatment during the disease resistance response. Furthermore, increased accumulation of trehalose and trehalose 6-phosphate as well as increased activity of trehalose 6-phosphate synthase was observed under COS treatment after inoculation with P. nicotianae. Additionally, sucrose and glucose, which positively regulate resistance to plant diseases, also exhibited elevated levels. Beneficial microorganisms, such as Bacillus were enriched in the rhizosphere soil during COS treatment. The isolated Bacillus velezensis T-2 strain exerted inhibitory activity on P. nicotianae, which was enhanced by the presence of trehalose. This multi-omics study of transcriptome, metabolome, and microbiomics revealed that COS enhances resistance to tobacco BSD by regulating sugar homeostasis and recruiting beneficial microorganisms.
Collapse
Affiliation(s)
- Qianru Chen
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Liguang Zhao
- Qujing Branch, Yunnan Tobacco Company, Qujing, 655000, China
| | - Changliang Jing
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China; Qingdao Engineering Research Center for Land and Marine Waste Resource Recycling and Utilization, Qingdao 266101, China
| | - Min Yan
- Yibin Branch, Sichuan Tobacco Company, Yibin 644000, China
| | - Tingting Ren
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Ping Zou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China; Qingdao Center of Technology Innovation for Agricultural Microorganisms, Qingdao 266101, China
| | - Qingyu Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Shutong Chen
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Kexin Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jiajun Fan
- Green Chemistry Centre of Excellence, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China; Qingdao Engineering Research Center for Land and Marine Waste Resource Recycling and Utilization, Qingdao 266101, China; Qingdao Center of Technology Innovation for Agricultural Microorganisms, Qingdao 266101, China.
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| |
Collapse
|
7
|
Liu H, Ding S, Lyu W, Lu S, Liu X. Chito-oligosaccharide impairs the proliferation, invasion and migration of pancreatic cancer cells. Discov Oncol 2025; 16:298. [PMID: 40069446 PMCID: PMC11896950 DOI: 10.1007/s12672-025-02015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Chito-oligosaccharide (COS) is a low molecular weight polymer obtained by degrading chitosan through special enzymatic technology, with good water solubility and high biological activity. It is also the only positively charged cationic basic amino oligosaccharide in nature. Studies have confirmed that COS has antitumour effect, but research on its effect on pancreatic cancer (PC) remains limited and unclear. This study aimed to explore the effects of COS on PC cells (PANC-1 and MIAPaCa-2). METHOD We used different concentrations of COS to treat PC cells and conducted Cell Counting Kit-8, wound-healing, and transwell assays to evaluate the proliferation, invasion, and migration ability of PC cells, respectively. Western blot was conducted to assess the expression levels of epithelial-mesenchymal transition (EMT) related markers. RESULT The proliferation, invasion, and migration ability of PC cells (PANC-1 and MIAPaCa-2) gradually decreased in a manner dependent on COS concentration. COS at 10 mg/mL exerted the strongest inhibitory effect on the two PC cell lines. At 10 mg/mL, the proliferative activity was 60.61% ± 5.25% and 64.02% ± 4.96%, respectively; the invasive ability was (18.67 ± 4.416) and (31.33 ± 3.162), respectively; and the cell-migration ability was 26.83% ± 0.442% and 17.66% ± 0.647%, respectively. The expression levels of N-cadherin and vimentin were significantly downregulated in PANC-1 cells (0.198 ± 0.047 and 0.225 ± 0.038, respectively) and MIAPaCa-2 cells (0.214 ± 0.094 and 0.214 ± 0.094, respectively) at 10 mg/mL, respectively. Conversely, E-cadherin was upregulated (0.460 ± 0.037 and 0.491 ± 0.047, respectively). Compared with control group, the differences were statistically significant. CONCLUSION The upregulation of E-cadherin and the downregulation of vimentin and N-cadherin suggested that the specific mechanism of COS in PC may be related to EMT. This study provided a new direction for PC treatment.
Collapse
Affiliation(s)
- Han Liu
- Department of Gastroenterology, General Hospital of Northern Theatre Command, 83 Wenhua Road, Shenyang, 110840, Liaoning, China
| | - Siyuan Ding
- Department of Gastroenterology, General Hospital of Northern Theatre Command, 83 Wenhua Road, Shenyang, 110840, Liaoning, China
| | - Weiyan Lyu
- Department of Gastroenterology, General Hospital of Northern Theatre Command, 83 Wenhua Road, Shenyang, 110840, Liaoning, China
| | - Shengyan Lu
- Department of Gastroenterology, General Hospital of Northern Theatre Command, 83 Wenhua Road, Shenyang, 110840, Liaoning, China
| | - Xu Liu
- Department of Gastroenterology, General Hospital of Northern Theatre Command, 83 Wenhua Road, Shenyang, 110840, Liaoning, China.
| |
Collapse
|
8
|
Lim H, Seo Y, Min SJ, Yoo D, Heo DN, Kwon IK, Lee T. Construction of Chitosan Oligosaccharide-Coated Nanostructured Lipid Carriers for the Sustained Release of Strontium Ranelate. Tissue Eng Regen Med 2025:10.1007/s13770-025-00713-0. [PMID: 40072819 DOI: 10.1007/s13770-025-00713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS). METHODS To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer. The synthesis of COS-NLC was confirmed by measuring particle size and zeta potential, while surface morphology was evaluated using atomic force microscopy (AFM). SR loading efficiencies and release profiles were analyzed via reversed-phase high-performance liquid chromatography (RP-HPLC), and cytotoxicity was evaluated in mouse fibroblast L929 cells. RESULTS Particle characterization indicated that the COS coating slightly increased the particle size (i.e., from 128.99 ± 2.77 to 131.46 ± 2.13 nm) and zeta potential (i.e., from - 13.94 ± 0.49 to - 6.58 ± 0.32 mV) of the NLC. The COS-NLC exhibited a high SR-loading efficiency of ~ 86.31 ± 3.28%. An in vitro release test demonstrated an improved sustained release tendency of SR from the COS-NLC compared to that from the uncoated NLC. In cytotoxicity assays using L929 cells, the COS coating reduced the cytotoxicity of the formulated DDS, and the SR-COS-NLC exhibited a 1.4-fold higher cell regeneration effect than SR alone. CONCLUSION These findings suggest that the developed COS-NLC serve as an effective and biocompatible DDS platform for the delivery of poorly bioavailable drugs.
Collapse
Affiliation(s)
- Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdae-mun-Gu, Seoul, 02447, Republic of Korea
| | - Daehyeon Yoo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
9
|
Zhai X, Guo Y, Shang M, Guo Z, Ren D, Abd El-Aty AM. Preparation, characterization and antibacterial investigation of water-soluble curcumin-chitooligosaccharide complexes. Carbohydr Polym 2025; 351:123083. [PMID: 39779006 DOI: 10.1016/j.carbpol.2024.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Curcumin has a wide range of application prospects, with various bioactivities in the food industry and in the biomedical field. However, curcumin has poor water solubility and is sensitive to pH, light and temperature. In this study, curcumin-chitooligosaccharide (CUR-COS) complexes were prepared via mechanochemical methods, and the CUR-COS complex was more soluble after freeze-drying (up to 862-fold greater than that of curcumin). The complex was characterized by SEM, XRD, FT-IR and thermal analysis, and its stability against pH, light and thermal treatment was evaluated. COSs could serve as carriers for curcumin delivery. Additionally, the antibacterial activity of the formed complex was determined. As a result, CUR-COS exhibited significantly better water solubility, enhanced stability, and stronger antibacterial properties than did pure CUR, offering a promising pathway for the extensive application of lipophilic natural products in foods, especially water-based products.
Collapse
Affiliation(s)
- Xingchen Zhai
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Yu Guo
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Man Shang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Ziyan Guo
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Difeng Ren
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey.
| |
Collapse
|
10
|
Zhu N, Bi D, Huang J, Yao L, Wu Y, Jiang Z, Hu Z, Zhu B, Li S, Xu X. Genipin crosslinked sodium caseinate-chitosan oligosaccharide nanoparticles for optimizing β-carotene stability and bioavailability. Int J Biol Macromol 2025; 297:139626. [PMID: 39788249 DOI: 10.1016/j.ijbiomac.2025.139626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
In this study, genipin served as crosslinker to combine sodium caseinate (SC) and chitosan oligosaccharide (COS), aiming to improve the physicochemical properties and encapsulation efficiency of SC in delivering hydrophobic nutritional factors. The genipin crosslinked complex of SC and COS (GSCC) was characterized by circular dichroism spectrum and infrared spectrum analyses. Nanoparticles produced from GSCC (GSCCNP) exhibited a superior hydrophilicity compared to those derived from SC (SCNP). GSCCNP significantly augmented the encapsulation efficacy and photostability of β-carotene. β-Carotene encapsulated within GSCCNP (βC-GSCCNP) exhibited remarkable in vitro sustained release characteristics and heightened bioavailability. In addition, βC-GSCCNP showed significant in vitro anti-inflammatory activity. These findings indicated that genipin crosslinking COS-modified SC could construct a nano-delivery system to enhance the stability and bioavailability of insoluble nutritional factors, thereby presenting promising applications for hydrophobic nutrients in the development of functional foods and beverages.
Collapse
Affiliation(s)
- Nanting Zhu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Beiwei Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
11
|
Ashraf A, Sabu S, Sasidharan A, Sunooj KV. Natural Feed Supplements From Crustacean Processing Side Streams for Improved Growth of Finfishes and Crustaceans: A Review. J Anim Physiol Anim Nutr (Berl) 2025; 109:376-401. [PMID: 39410862 DOI: 10.1111/jpn.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 03/20/2025]
Abstract
Natural feed additives of plant/animal/microbial origin are researched as supplements in aquaculture to improve the properties of feed, minimize the usage of chemical alternatives, reduce food safety risks and ensure sustainability to combat global food and nutritional security. Side streams generated during shellfish processing possess valuable ingredients: protein, lipids, carotenoids, minerals and chitins. Considering the current trend of organic farming and antibiotic-free fish and shellfish, crustacean processing side streams and their derivatives seem promising and emerging resources as natural additives/supplements for formulating high-quality feeds with superior benefits. Lower concentrations of chitin and chitosan in diets are reported to stimulate the growth of shellfish and finfish under controlled conditions. Oligomers of chitosan and nano-chitosan are also the other potential derivatives as natural supplements in feed for better growth performance of aquaculture varieties. This review focuses on the significance of crustacean processing side streams and their derivatives, especially shrimp head meal, chitin, chitosan and chitosan oligosaccharides as potential natural additives in aquafeeds for promoting the growth performance of cultured fin fishes and shell fishes. Utilization in aquafeeds and the development of natural value-added supplements from crustacean processing side streams, especially shrimp head and shell leftover, offer an answer to the negative environmental impact due to its dumping; reduce the dependency on food fish for fish meal production & fishmeal for aquafeeds; solution to maintain the economic viability of the fish farmers & industry as well as to ensure the supply of safer and healthy aquatic foods to meet the objectives of sustainable development goals.
Collapse
Affiliation(s)
- Ancy Ashraf
- School of Industrial Fisheries, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Sarasan Sabu
- School of Industrial Fisheries, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Abhilash Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Cochin, Kerala, India
| | | |
Collapse
|
12
|
Liu X, Zhang F, Yu L, Zhao Q, He J, Tang H, Dong X. A low chemical consumption cationization and salt-free dyeing process for cotton fabrics by reusing polyallylamine modification bath. Int J Biol Macromol 2025; 297:139834. [PMID: 39809407 DOI: 10.1016/j.ijbiomac.2025.139834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Cationic polymers have been used in the cationization of cotton fabrics for salt-free dyeing, but commonly used polymers are limited by their high molecular weight and low adsorption efficiency, leading to high dosage or complex modification conditions. In this study, polyallylamine with low molecular weight was found to be an efficient cationic agent for cotton modification and the modified fabrics can be salt-free dyed with different kinds of reactive dyes after the optimization of the modification process. Furthermore, the modification bath was reused by replenishing a small amount of cationic agent and adjusting the pH to the original level. The results showed that all the salt-free dyed cotton fabrics had excellent performance when the fabrics were modified with a 2 g L-1 polyallylamine solution at pH 12 for 1 h. During five consecutive bath reusing cycles, the elemental nitrogen content, zeta potential, and salt-free dyeing performance of the modified cotton fabrics were relatively stable, all the uptakes of C.I. reactive red 24 were >75 %, and all the K/S values of the dyed fabrics were higher than 11, much greater than that of conventional dyeing (about 6). In addition, compared with the conventional dyeing process and the salt-free dyeing with the bath-unreused route, the bath-reused and salt-free dyeing process reduces by 98.36 % and 62.31 % chemicals consumption per kilogram of dyed cotton fabric, respectively. This work provides a low-pollution process for salt-free dyeing of cationic cotton fabrics and provides a reference for improving the utilization efficiency of the cationic agent.
Collapse
Affiliation(s)
- Xianxi Liu
- National Engineering Research Center for Dyeing and Finishing of Textile, Donghua University, Shanghai 201620, PR China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai, PR China
| | - Fengxuan Zhang
- National Engineering Research Center for Dyeing and Finishing of Textile, Donghua University, Shanghai 201620, PR China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai, PR China
| | - Lu Yu
- Zhejiang R.G.B Textile Printing & Dyeing Co., Ltd, Shaoxing, Zhejiang 312071, PR China
| | - Qiangqiang Zhao
- National Engineering Research Center for Dyeing and Finishing of Textile, Donghua University, Shanghai 201620, PR China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai, PR China
| | - Jinxin He
- National Engineering Research Center for Dyeing and Finishing of Textile, Donghua University, Shanghai 201620, PR China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai, PR China
| | - Hualiang Tang
- Zhejiang R.G.B Textile Printing & Dyeing Co., Ltd, Shaoxing, Zhejiang 312071, PR China
| | - Xia Dong
- National Engineering Research Center for Dyeing and Finishing of Textile, Donghua University, Shanghai 201620, PR China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, PR China.
| |
Collapse
|
13
|
Qiao X, Jiang M, Zhu E, Gu Y, Chen Z, Ju X, Li L, Zhong X, Chen Z. Mining, Identification, and Fermentation Optimization of Chitin Deacetylase from a Novel Strain Enterobacter sp. ZCDA27. Appl Biochem Biotechnol 2025; 197:1972-1990. [PMID: 39625611 DOI: 10.1007/s12010-024-05124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 03/29/2025]
Abstract
Chitin, a natural organic compound with content slightly lower than cellulose, is also known for chitosan, a substance derived from chitin through deacetylation. In this experiment, preliminary screening was conducted using the plate discoloration circle method, leading to the selection of a high-yield CDA-producing strain from 28 candidates through rescreening. Morphological characteristics and 16S rDNA sequence analysis revealed 99.93% homology with Enterobacter sichuanensis strain N24, thus naming this strain Enterobacter strain ZCDA27. Initial fermentation of the strain yielded CDA activity of 9.29 U/mL. Single-factor optimization was then performed, followed by a PB test to screen for significant factors affecting enzyme production. The response surface method was used to further optimize the fermentation conditions. The optimal fermentation conditions for the carbon source, nitrogen source, metal ion, fermentation temperature, time, liquid volume, and initial pH were explored. Significant factors affecting enzyme production, including MgSO4, initial medium pH, and fructose levels, were identified using the PB test. Finally, the fermentation conditions of ZCDA27 were optimized using the Box-Behnken design combined with RSM, which comprised fructose at 1.020%, magnesium sulfate at 0.016%, and peptone at 1%. The fermentation conditions included a temperature of 37, initial pH of 7.1, rotation speed of 140 × g, fermentation time of 28 h, inoculation amount of 2%, and liquid volume of 40%. Under these conditions, the enzyme activity of ZCDA27 reached 14.52 U/mL, a 1.6-fold increase from the pre-optimization levels. In summary, this study provides an experimental foundation for further development and application of Enterobacter spp. ZCDA27 CDA.
Collapse
Affiliation(s)
- Xi Qiao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Huqiu District, No. 99 Xuefu Road, Huqiu District, Suzhou City, 215009, Jiangsu Province, P.R. China
| | - Mengna Jiang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Huqiu District, No. 99 Xuefu Road, Huqiu District, Suzhou City, 215009, Jiangsu Province, P.R. China
| | - Enze Zhu
- Suzhou Experimental High School, Science and Technology City Campus, Suzhou, 215000, Jiangsu, China
| | - Yiwen Gu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Huqiu District, No. 99 Xuefu Road, Huqiu District, Suzhou City, 215009, Jiangsu Province, P.R. China
| | - Zhuoran Chen
- School of Business, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Huqiu District, No. 99 Xuefu Road, Huqiu District, Suzhou City, 215009, Jiangsu Province, P.R. China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Huqiu District, No. 99 Xuefu Road, Huqiu District, Suzhou City, 215009, Jiangsu Province, P.R. China
| | - Xia Zhong
- Abogen Biosciences Co., Ltd., Suzhou, Jiangsu, 215000, China.
| | - Zhi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Huqiu District, No. 99 Xuefu Road, Huqiu District, Suzhou City, 215009, Jiangsu Province, P.R. China.
| |
Collapse
|
14
|
Liu J, Wang T, Dong J, Lu Y. The blood-brain barriers: novel nanocarriers for central nervous system diseases. J Nanobiotechnology 2025; 23:146. [PMID: 40011926 DOI: 10.1186/s12951-025-03247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
The central nervous system (CNS) diseases are major contributors to death and disability worldwide. However, the blood-brain barrier (BBB) often prevents drugs intended for CNS diseases from effectively crossing into the brain parenchyma to deliver their therapeutic effects. The blood-brain barrier is a semi-permeable barrier with high selectivity. The BBB primarily manages the transport of substances between the blood and the CNS. To enhance drug delivery for CNS disease treatment, various brain-based drug delivery strategies overcoming the BBB have been developed. Among them, nanoparticles (NPs) have been emphasized due to their multiple excellent properties. This review starts with an overview of the BBB's anatomical structure and physiological roles, and then explores the mechanisms, both endogenous and exogenous, that facilitate the NP passage across the BBB. The text also delves into how nanoparticles' shape, charge, size, and surface ligands affect their ability to cross the BBB and offers an overview of different nanoparticle classifications. This review concludes with an examination of the current challenges in utilizing nanomaterials for brain drug delivery and discusses corresponding directions for solutions. This review aims to propose innovative diagnostic and therapeutic approaches for CNS diseases and enhance drug design for more effective delivery across the BBB.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Wang
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Dong
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan Lu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
de Maria Aguiar Carvalho C, da Silva BB, Brianezi SFS, Sanfelice RC, Balogh DT, Assis L, Tim CR, Pavinatto A. Chitosan-based structures for skin repair: A literature review. Int J Biol Macromol 2025; 306:141426. [PMID: 40010450 DOI: 10.1016/j.ijbiomac.2025.141426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
The use of chitosan in technological and biomedical applications has gained significant relevance due to its functional properties. Among its biological activities, its hemostatic, analgesic, antibacterial and anti-inflammatory activities make this natural biopolymer one of the most promising in the development of structures for skin repair. Its application and effects can be optimized by exploring efficient structuring techniques. In this context, this review is based on scientific evidence reported in the last decade regarding the development and use of chitosan-based structures in the skin repair process to show the most common structuring methods, the main mechanisms of action of chitosan, and its potential applications in skin repair processes. Additionally, this article brings a compilation of scientific and commercial works on the use of chitosan-based structures, in addition to vitro and/or in vivo results.
Collapse
Affiliation(s)
| | - Bruno Batista da Silva
- Institute of Energy and Nuclear Research, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | | | | | - Debora Terezia Balogh
- São Carlos Institute of Physics, University of São Paulo, 13566-970 São Carlos, SP, Brazil
| | - Lívia Assis
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Carla Roberta Tim
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil; Luiz de Queiroz College of Agriculture, University of São Paulo, PO Box 9, Piracicaba, São Paulo 13418-970, Brazil.
| |
Collapse
|
16
|
Zhou M, Wang B, Cai S, Wei T, Zhang Y, Fang L, Nie S, Wang B, Xiao B, Xiao J, Wu Y. Chitosan oligosaccharides ameliorates maternal diabetes-induced embryonic neural tube defects via inhibitting excessive pyroptosis of neuroepithelial cells. Int Immunopharmacol 2025; 148:114074. [PMID: 39818089 DOI: 10.1016/j.intimp.2025.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Maternal diabetes significantly induces embryonic neural tube defects (NTDs). Thus, it is urgent need to further investigate the regulatory mechanism and therapeutic strategy for maternal diabetes-induced embryonic NTDs. Pyroptosis is a novel mode of programmed cell death. The role of pyroptosis on the maternal diabetes-induced embryonic NTDs is still unclear. Chitosan oligosaccharides (COSs) is a kind of natural polysaccharide with anti-inflammatory and anti-oxidant bioactivities, and its role on NTDs formation is poorly understood. Here, we hypothesized that excessive pyroptosis is another important mechanism for diabetes-induced NTDs formation, and COSs can exert its anti-inflammatory and antioxidant activities to alleviate maternal diabetes-mediated embryonic neuroepithelial cells pyroptosis and NTDs formation. Firstly, we confirmed that maternal diabetes significantly induces the embryonic NTDs formation (13.2% of NTDs rate). More interestingly, the mechansim study found that maternal diabetes significantly triggers the elevated pyroptosis level in embryos. And VX765, a pyroptosis inhibitor, significantly ameliorated the diabetes-induced embryonic NTDs (1.9% NTDs). Additionally, COSs treatment significantly reduced the maternal diabetes-associated the embryonic NTDs formation with 2.6% NTDs rate. Mechanistic studies further demonstrated that COSs significantly inhibits maternal diabetes-induced elevated inflammatory response and oxidative stress in embryos, and subsequently ameliorates the pyroptotic level of embryonic neuroepithelial cells through inhibiting TXNIP-NLRP3 complex formation. In a conclusion, pyroptosis is a another key caused event for maternal diabetes-induced embryonic NTDs. COSs exerts its antioxidant effect to inhibit the pyroptosis of neuroepithelial cells and consequently alleviates maternal diabetes-induced embryonic NTDs.
Collapse
Affiliation(s)
- Mei Zhou
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035 China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035 China
| | - Shufang Cai
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035 China
| | - Tao Wei
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035 China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035 China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035 China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035 China
| | - Beini Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Biru Xiao
- Department of Obstetrics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035 China.
| |
Collapse
|
17
|
Leal MRS, Lima LRA, Rodrigues NER, Soares PAG, Carneiro-da-Cunha MG, Albuquerque PBS. A review on the biological activities and the nutraceutical potential of chitooligosaccharides. Carbohydr Res 2025; 548:109336. [PMID: 39637700 DOI: 10.1016/j.carres.2024.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Chitooligosaccharides (CHOS) or chitosan oligosaccharides (COS) are oligomers mainly composed of d-glucosamine (GlcN) units and structured in a positively charged, basic, amino molecule obtained from the degradation of chitin/chitosan through physical, chemical, or enzymatic methods. CHOS display physicochemical properties attractive to applications from the food to the biomedical field, such as non-toxicity to humans, high water solubility, low viscosity, biocompatibility, and biodegradability. These properties also allow CHOS to exert important biological activities, for example, antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, antitumor, and hypocholesterolemic ones, besides to exhibit applications in food systems, technological, and nutraceutical potential. Therefore, this study summarized the synthesis and chemical structure, biological functions, and mechanisms of action of CHOS; with this, we aimed to contribute to the knowledge about the application of CHOS from the food to the biomedical industries.
Collapse
Affiliation(s)
- Makyson R S Leal
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Luiza R A Lima
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil
| | - Natalie E R Rodrigues
- Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Paulo A G Soares
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Maria G Carneiro-da-Cunha
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Priscilla B S Albuquerque
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil.
| |
Collapse
|
18
|
Muniandy MT, Chee CF, Rahman NA, Wong TW. Enhancing Aqueous Solubility and Anticancer Efficacy of Oligochitosan-Folate-Cisplatin Conjugates through Oleic Acid Grafting for Targeted Nanomedicine Development. ACS OMEGA 2025; 10:2428-2441. [PMID: 39895753 PMCID: PMC11780459 DOI: 10.1021/acsomega.4c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 02/04/2025]
Abstract
Oligochitosan is an anticancer water-soluble biomaterial. Conjugating cisplatin (anticancer drug) and folic acid (targeting ligand) with oligochitosan reduces its aqueous solubility, thus requiring excessive drug dose to be biologically active and organic instead of aqueous processing into nanomedicine. Covalent grafting of oleic acid onto oligochitosan-folate-cisplatin conjugate is envisaged to promote aqueous solubility via reducing interchain interaction, but it is challenging where multiple functional moieties are covalently attached onto a short oligomer (<5 kDa). This study produced oligochitosan-oleate-folate-cisplatin conjugate dissolvable in aqueous media pH 3-7, which represents common processing pH in drug vehicle development and tumor microenvironmental pHs. Oligochitosan-oleate conjugation was effected through O-acylation to provide amino groups of oligochitosan for folate and cisplatin grafting. Oligochitosan-folate-cisplatin conjugate was poorly soluble in aqueous and organic media. A degree of oleic acid substitution (DS) < 10% conferred aqueous solubility beyond which became less soluble due to hydrophobicity rise. Oligochitosan-oleate-folate-cisplatin conjugate with 4.51 ± 0.32% DS, 8.50 ± 0.57% folate content, and 0.94 ± 0.80% cisplatin content was dissolvable in aqueous media pH 3.3-7, conferring processing safety with improved cancer cytotoxicity in the nanoparticulate form at the acidic tumor microenvironment.
Collapse
Affiliation(s)
- M. Tamilarasi Muniandy
- Department
of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
- Non-Destructive
Biomedical and Pharmaceutical Research Centre, Smart Manufacturing
Research Institute, Universiti Teknologi
MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Chin Fei Chee
- Nanotechnology
and Catalysis Research Centre, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Department
of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
- Institute
for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- Non-Destructive
Biomedical and Pharmaceutical Research Centre, Smart Manufacturing
Research Institute, Universiti Teknologi
MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
- Particle
Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
19
|
Kim YH, Park CH, Kim JM, Yoon YC. Chitooligosaccharides suppress airway inflammation, fibrosis, and mucus hypersecretion in a house dust mite-induced allergy model. FRONTIERS IN ALLERGY 2025; 6:1533928. [PMID: 39927112 PMCID: PMC11799285 DOI: 10.3389/falgy.2025.1533928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Background Respiratory allergy is a serious respiratory disorder characterized by inflammation, mucus hypersecretion, and airway tissue sclerosis. Disruption of the T helper 1 (Th1) and T helper 2 (Th2) immune systems by stimuli induced by house dust mites (HDM) and fine particulate matter leads to the secretion of various inflammatory cytokines, resulting in immune respiratory diseases characterized by airway inflammation. Chitooligosaccharides (COS) are known for their antioxidant and anti-inflammatory properties. Methods Human airway epithelial cells (BEAS-2B) were cultured in DMEM/F12 medium containing COS at concentrations of 25-100 µg/ml for 24 h. No intracellular toxicity was observed up to 1,000 µg/ml. Cell experiments were conducted at COS concentrations below 100 µg/ml, while animal experiments were performed at concentrations below 100 mg/kg body weight for 4 weeks. Samples of right lung tissue obtained from the experimental animals were used for gene and protein expression analysis, whereas samples of contralateral lung tissue were used for immunohistochemical analysis. Results COS regulated Th1 immunity by inhibiting major cytokines, including inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), in BEAS-2B cells. In the HDM-induced allergic respiratory model, COS suppressed the infiltration of inflammatory cells around the airways and inhibited the mRNA expression of Th1 immune cytokines in lung tissues, while also reducing the expression of nuclear factor kappa B (NF-κB)-related proteins. Furthermore, the results confirmed the suppression of the levels of immunoglobulin E (IgE) in the blood secreted by mast cells activated by HDM, which led to a reduction in allergic mucus hypersecretion and airway sclerosis. Conclusion In summary, COS are thought to improve airway resistance by alleviating inflammatory allergic respiratory diseases caused by HDM and are regarded as substances that regulate the balance of the Th1 and Th2 immune systems in epithelial cells affected by mucus hypersecretion.
Collapse
Affiliation(s)
| | | | | | - Yeo Cho Yoon
- Healthcare & Nutrition Laboratory, Amicogen, Inc., Seongnam, Republic of Korea
| |
Collapse
|
20
|
Klein RS, de Almeida DA, de Oliveira AC, Bonafé EG, Monteiro JP, Sabino RM, Martins AF. Iota-Carrageenan/Chitosan Nanoparticles via Coacervation: Achieving Stability for Tiny Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:161. [PMID: 39940137 PMCID: PMC11819667 DOI: 10.3390/nano15030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
This study investigated the influence of parameters such as pH condition, polyelectrolyte concentration, polymer ratio, and order of addition of the commercial polyelectrolytes chitosan and iota-carrageenan (ι-carrageenan) on the formation of polymeric nanoparticles in suspension (coacervates). A preliminary purification step of the polymers was essential for obtaining stable nanoparticles with small sizes as impurities, particularly metal ions that interfere with complexation, are removed by dialysis. Microparticles (13.5 μm in dry diameter) are obtained when aliquots of chitosan solution are poured into the ι-carrageenan solution. In general, an excess of chitosan results in the formation of agglomerated particles. The addition of an aliquot of ι-carrageenan solution (30 mL at 0.6 mg/mL and pH 4.0) to the chitosan solution (6.0 mL at 0.3 mg/mL and pH 4.0) leads to dispersed nanoparticles with a hydrodynamic radius of 278 ± 5 nm, a zeta potential of -31 ± 3 mV, and an average dry diameter of 45 ± 11 nm. The hydrodynamic radius increases as the pH rises. The partial deprotonation of ι-carrageenan chains enhances the interaction with water molecules, causing the particles to swell. These findings contribute to the fundamental understanding of polyelectrolyte complexation processes in aqueous suspension and provide insights for developing stable nanomaterials for potential practical applications.
Collapse
Affiliation(s)
- Rosecler S. Klein
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil
| | - Débora A. de Almeida
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil
| | - Ariel C. de Oliveira
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil
- Biomass, Bioproduct and Bioprocess Analysis, Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, 3000 Boul. de Université de Sherbrooke, Sherbrooke, QC J1K 0A5, Canada
| | - Elton G. Bonafé
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil
| | - Johny P. Monteiro
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
| | - Roberta M. Sabino
- Department of Chemical and Biomedical Engineering, University of Wyoming (UW), Laramie, WY 82071, USA
| | - Alessandro F. Martins
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil
- National Institute for Materials Advancement (NIMA), Pittsburg State University (PSU), Pittsburg, KS 66762, USA
- Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS 66762, USA
| |
Collapse
|
21
|
Karthick V, Zahir AA, Amalraj S, Rahuman AA, Anbarasan K, Santhoshkumar T. Sustained release of nano-encapsulated glimepiride drug with chitosan nanoparticles: A novel approach to control type 2 diabetes in streptozotocin-induced Wistar albino rats. Int J Biol Macromol 2025; 287:138496. [PMID: 39647738 DOI: 10.1016/j.ijbiomac.2024.138496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The objective of the present study was to encapsulate the effective antidiabetic glimepiride (GLM) drug with biodegradable chitosan nanoparticles (CS NPs) in order to reduce the risk of side effects, regulate and improve alternatives to therapy for people with type 2 Diabetes mellitus. The characterizations of the encapsulated EGLM-CS NPs were published in a previous paper. In continuation of the past study, here we report the in vitro and in vivo activities of EGLM-CS NPs in streptozotocin-induced diabetes Wistar albino rats orally treated for 28 days. Based on our results, the in vitro 3 T3-L1 cell lines observed that the highest concentration of 500 μg/mL exhibited 91.48 % cell viability after 24 h of treatment. The in vivo results of the EGLM-CS NPs treated rats group showed gradual control of the blood glucose level at 90 and 120 min compared to other groups because the drug showed a sustained release mechanism. A significant difference was observed in serum lipid profiles between diabetic treated and control rats. It is believed that the CS NPs served as a carrier system for the GLM drug, protected it from degradation, and enhanced its solubility as well as bioavailability. After 28 days of treatment, all the animal groups organs (pancreas, liver, and kidney) were dissected for histopathological analysis. The EGLM-CS NPs treated group displayed regeneration cells of the islets of Langerhans in the pancreas and normal cellular size with hyperplasia. The therapeutic potential was observed by the liver and kidney from rats reveals few tubule necrosis, improved bioavailability as compared to pure GLM drug treated rats. Hence, our formulated NPs are safe, no toxic effect on the vital organs, which will be helpful to improve the lives of diabetic patients and contribute to the overall health of the individuals.
Collapse
Affiliation(s)
- Venkatesan Karthick
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| | - Abdul Abduz Zahir
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India.
| | - Singamoorthy Amalraj
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi 683104, Kerala, India
| | - Abdul Abdul Rahuman
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| | - Karunanithi Anbarasan
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| | - Thirunavukkarasu Santhoshkumar
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| |
Collapse
|
22
|
Sharma D, Dhiman A, Thakur A, Kumar S, Saini R. Functional oligosaccharides as a promising food ingredient: a gleam into health apprehensions and techno-functional advantages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024. [DOI: 10.1007/s11694-024-02986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
|
23
|
Xu J, Chang L, Xiong Y, Peng Q. Chitosan-Based Hydrogels as Antibacterial/Antioxidant/Anti-Inflammation Multifunctional Dressings for Chronic Wound Healing. Adv Healthc Mater 2024; 13:e2401490. [PMID: 39036852 DOI: 10.1002/adhm.202401490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Due to repeated microbial infection, persistent inflammation, excessive oxidative stress, and cell dysfunction, chronic wounds are difficult to heal, posing a serious threat to public health. Therefore, developing multifunctional wound dressings that can regulate the complex microenvironment of chronic wounds and enhance cellular function holds great significance. Recently, chitosan has emerged as a promising biopolymer for wound healing due to its excellent biocompatibility, biodegradability, and versatile bioactivity. The aim of this review is to provide a comprehensive understanding of the mechanisms of delayed chronic wound healing and discuss the healing-promoting properties of chitosan and its derivatives, such as good biocompatibility, antibacterial activity, hemostatic capacity, and the ability to promote tissue regeneration. On this basis, the potential applications of chitosan-based hydrogels are summarized in chronic wound healing, including providing a suitable microenvironment, eliminating bacterial infections, promoting hemostasis, inhibiting chronic inflammation, alleviating oxidative stress, and promoting tissue regeneration. In addition, the concerns and perspectives for the clinical application of chitosan-based hydrogels are also discussed.
Collapse
Affiliation(s)
- Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuhuan Xiong
- Department of Stomatology, The First People's Hospital of Longquanyi District, Chengdu, Sichuan, 610100, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
24
|
Jeong GJ, Khan F, Kim DK, Cho KJ, Tabassum N, Choudhury A, Hassan MI, Jung WK, Kim HW, Kim YM. Marine polysaccharides for antibiofilm application: A focus on biomedical fields. Int J Biol Macromol 2024; 283:137786. [PMID: 39577534 DOI: 10.1016/j.ijbiomac.2024.137786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Microbial pathogens such as bacteria and fungi form biofilms, which represent substantial hurdles in treating human illness owing to their adaptive resistance mechanism to conventional antibiotics. Biofilm may cause persistent infection in a variety of bodily areas, including wounds, oral cavity, and vaginal canal. Using invasive devices such as implants and catheters contributes significantly to developing healthcare-associated infections because they offer an ideal surface for biofilm formation. Marine organisms produce a variety of polysaccharides, which have recently attracted worldwide attention due to their biochemical features, various applications, and advantageous properties such as bioactivity, biodegradability, and biocompatibility. Because of their antimicrobial and antibiofilm features, several polysaccharides such as chitosan, fucoidan, carrageenan, alginate, and hyaluronic acid have been used to treat infected wounds as well as ophthalmic, oral, and vaginal infections. In addition, marine polysaccharides are currently employed as coatings on medical devices and implant materials, alone or in combination with other bioactive substances or nanomaterials, to protect the materials' undertones from microbial contamination. This review discussed the recent advancements in marine polysaccharides and their derivatives as a therapeutic potential against biofilm-associated diseases. The potential obstacles in the scalability of their production, clinical translation, and/or regulatory hurdles have also been discussed.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Do-Kyun Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun-Woo Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
25
|
Song YT, Liu PC, Zhou XL, Chen YM, Wu W, Zhang JY, Li-Ling J, Xie HQ. Extracellular matrix-based biomaterials in burn wound repair: A promising therapeutic strategy. Int J Biol Macromol 2024; 283:137633. [PMID: 39549816 DOI: 10.1016/j.ijbiomac.2024.137633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Burns are common traumatic injuries affecting many people worldwide. Development of specialized burn units, advances in acute care modalities, and burn prevention programs have successfully reduced the mortality rate of severe burns. Autologous skin grafting has been considered as the gold standard for wound coverage after the removal of burned skin. For full-thickness burns of a larger scale, however, the autograft donor site may be quickly exhausted, so that alternative skin coverage is necessary. Although rapid progress has been made in the development of skin substitutes for burn wounds during the last decade, no skin substitute has fulfilled the criteria as a perfect replacement for the damaged skin. Extracellular matrix (ECM) derived components have emerged as a source for the engineering of biomaterials capable of inducing desirable cell-specific responses and one of the most promising biomaterials for burn wound healing. Among these, acellular dermal matrix, small intestinal submucosa, and amniotic membrane have been applied to treat burn wounds with acceptable outcomes. This review has explored the use of biomaterials derived from naturally occurring ECM and their derivatives for approaches aiming to promote burn wound healing, and summarized the ECM-based wound dressings products applicable in burn wound and postburn scar contracture to date.
Collapse
Affiliation(s)
- Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Peng-Cheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing-Li Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan-Ming Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wu Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China.
| |
Collapse
|
26
|
Wei J, Su J, Wang G, Li W, Wen Z, Liu H. Chitooligosaccharides improves intestinal mucosal immunity and intestinal microbiota in blue foxes. Front Immunol 2024; 15:1506991. [PMID: 39628477 PMCID: PMC11611864 DOI: 10.3389/fimmu.2024.1506991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Objective Gut health is critical to the health of the host. This study was conducted to investigate the effects of Chitooligosaccharides (COS) on intestinal morphology, intestinal barrier, intestinal immunity and cecum microbiota of blue foxes. Methods Seventy-two 125-day-old blue foxes were randomly divided into basal diet (BD) group, 200 ppm COS1 (1.5 kDa) group and 200 ppm COS2 (3 kDa) group for 8 weeks. Results We elucidated that dietary COS1 supplementation promoted the development of intestinal villus morphology in blue foxes. Importantly, COS1 increased the number of goblet cells in duodenum, jejunum and ileum by 27.71%, 23.67%, 14.97% and S-IgA secretion in duodenum, jejunum and ileum by 71.59% and 38.56%, and up-regulate the expression of Occludin and ZO-1 by 50.18% and 148.62%, respectively. Moreover, COS1 promoted the pro-inflammatory and anti-inflammatory balance of small intestinal mucosa, and increased the diversity of cecum microbiota of blue foxes, especially Lactobacillus_agilis and Lactobacillus_murinus, and up-regulated the signaling pathways related to polysaccharide decomposition and utilization. Conclusion Here, we present dietary COS1 (1.5 kDa) can promote intestinal villus development, enhance intestinal barrier function, regulate intestinal immune balance and cecum microbiota homeostasis.
Collapse
Affiliation(s)
- Jiali Wei
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Su
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guiwu Wang
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wei Li
- Technological Innovation Center for Fur Animal Breeding of Hebei, Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | | | - Huitao Liu
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
27
|
Yu C, Chen Y, Zhu Y, Wang Z, Bian R, Liu P, Li R, Lyu Y, Li J, Li J. Dynamic covalent bonds enabled recyclable chitosan oligosaccharide-based wood adhesive with high adhesion and anti-mildew performances. Int J Biol Macromol 2024; 282:137434. [PMID: 39522904 DOI: 10.1016/j.ijbiomac.2024.137434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Biomass wood adhesives have emerged as a promising alternative to traditional synthetic resins due to their ability to address issues related to formaldehyde pollution and reliance on petrochemical resources. However, these adhesives are generally not recyclable and require high curing temperatures. Herein, a novel eco-friendly, strong, and recyclable chitosan oligosaccharide (CS)-based wood adhesive named CS-PB was developed using CS, lignin-derived 3,4-dihydroxybenzaldehyde, and 1,4-phenylenediboronic acid. The cohesive strength and recyclability of the adhesive were significantly enhanced by the dynamic borate ester and imine networks formed through catalyst-free covalent cross-linking. The adhesive exhibited a maximum bonding strength of 5.60 MPa, surpassing many synthetic and biomass adhesives. Moreover, the recycled adhesive retained 88 % of its original strength. Even under extreme conditions such as 100 °C, -196 °C the CS-PB adhesive can still maintain high bonding strength. Notably, the CS-PB adhesive demonstrated low-temperature curing properties, achieving a high bonding strength of 5.21 MPa when cured at 90 °C, since imine bonds can be formed under mild conditions. Furthermore, the adhesive displayed excellent mildew resistance attributed to the synergistic effects of amino, boronic acid, and benzene rings. The proposed straightforward design strategy provides valuable insights for constructing high-strength and recyclable biomass adhesives.
Collapse
Affiliation(s)
- Caizhi Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Yi Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Ying Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Zhiqin Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Ruohong Bian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Pu Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Renjie Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Yan Lyu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China; Key Laboratory of Wood Materials Science and Application, Beijing Forestry University, Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China.
| | - Jiongjiong Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China.
| |
Collapse
|
28
|
Tang Y, Duan Z, Chen J, Zhang S. Isolation of a novel Bacillus strain with industrial potential of producing alkaline chitosanase. Int J Biol Macromol 2024; 281:135725. [PMID: 39414528 DOI: 10.1016/j.ijbiomac.2024.135725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/01/2024] [Accepted: 09/14/2024] [Indexed: 10/18/2024]
Abstract
A novel Bacillus strain, designated as HZ20-1, was discovered. This strain can produce naturally alkaline chitosanase without induction. Genomic analysis revealed that this chitosanase belongs to glycoside hydrolase family 8. When colloidal chitosan is used as a substrate, the maximum enzyme activity of 2.39 ± 0.03 U/mL is observed at a pH range of 8.5-9. This alkaline enzyme holds advantages over common acidic enzymes in various fields such as medicine, the environment, and daily chemical products, and thus has great market value. Moreover, as the chitosanase is a constitutive enzyme, there is no need for substrate induction. This can simplify fermentation equipment and reduce production cost. Additionally, in a preliminary study, we found that this strain can also degrade chitin and chitosan derivatives. After analysis, it was discovered that it has genes in glycoside hydrolase families 18 and 23. By controlling the enzymatic hydrolysis time, it is possible to produce products with different molecular weights, including N-acetylglucosamine, glucosamine, chito-oligosaccharides, and chitin oligosaccharides. Consequently, Bacillus sp. HZ20-1 is considered to have great potential for future industrial production of enzymes and oligosaccharides.
Collapse
Affiliation(s)
- Yuxin Tang
- Department of Biological Engineering, Shanghai Institute of Technology, Fengxian District, Shanghai, PR China
| | - Zhuliang Duan
- Department of Biological Engineering, Shanghai Institute of Technology, Fengxian District, Shanghai, PR China
| | - Julong Chen
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, PR China
| | - Shuo Zhang
- Department of Biological Engineering, Shanghai Institute of Technology, Fengxian District, Shanghai, PR China.
| |
Collapse
|
29
|
Liu Y, Wu J, Liu R, Li F, Xuan L, Wang Q, Li D, Chen X, Sun H, Li X, Jin C, Huang D, Li L, Tang G, Liu B. Vibrio cholerae virulence is blocked by chitosan oligosaccharide-mediated inhibition of ChsR activity. Nat Microbiol 2024; 9:2909-2922. [PMID: 39414933 DOI: 10.1038/s41564-024-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
Vibrio cholerae causes cholera, an important cause of death worldwide. A fuller understanding of how virulence is regulated offers the potential for developing virulence inhibitors, regarded as efficient therapeutic alternatives for cholera treatment. Here we show using competitive infections of wild-type and mutant bacteria that the regulator of chitosan utilization, ChsR, increases V. cholerae virulence in vivo. Mechanistically, RNA sequencing, chromatin immunoprecipitation with sequencing and molecular biology approaches revealed that ChsR directly upregulated the expression of the virulence regulator, TcpP, which promoted expression of the cholera toxin and the toxin co-regulated pilus, in response to low O2 levels in the small intestine. We also found that chitosan degradation products inhibit the ChsR-tcpP promoter interaction. Consistently, administration of chitosan oligosaccharide, particularly when delivered via sodium alginate microsphere carriers, reduced V. cholerae intestinal colonization and disease severity in mice by blocking the chsR-mediated pathway. These data reveal the potential of chitosan oligosaccharide as supplemental therapy for cholera treatment and prevention.
Collapse
Affiliation(s)
- Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - XinTong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Hao Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Xiaoya Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Di Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China.
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, People's Republic of China.
- Nankai International Advanced Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
30
|
Qing L, Gao J, Du L, Liu Y, Guo N, Sun J, Dong H, Mao X. Chitinase and Deacetylase-Based Chitin-Degrading Bacteria: One-Pot Cascade Bioconversion of Chitin to Chitooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23937-23946. [PMID: 39392110 DOI: 10.1021/acs.jafc.4c07053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cascade conversion of chitin into soluble and functional chitooligosaccharides has gained great attention. However, the biotransformation route is still limited to the low catalytic performances of chitin deacetylases (CDAs) and complicated procedures. In this study, a CDA from Arthrobacter sp. Jub115 (ArCDA) was identified and characterized, which showed a higher catalytic stability than the reported CDAs, with residual activity of 80.49%, 71.12%, and 56.09% after incubation at 30, 35, and 40 °C for 24 h, respectively. Additionally, ArCDA was identified to have a broad substrate spectrum toward β-chitin and N-acetyl chitooligosaccharides. Moreover, an engineered chitin-degrading bacteria (CDB) with cell-surface-displayed deacetylase ArCDA and chitinase SaChiB was constructed to simplify catalysis procedures, facilitating the chitobiose production of 294.30 ± 16.43 mg/L in 10 h. This study not only identified a CDA with the desirable catalytic performance but also provided a strategy for constructing CDB, facilitating the high-value utilization of chitin.
Collapse
Affiliation(s)
- Liwei Qing
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jing Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Liuhuan Du
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Yiying Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Na Guo
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
31
|
de Souza AMN, Avila LB, Contessa CR, Valério Filho A, de Rosa GS, Moraes CC. Biodegradation Study of Food Packaging Materials: Assessment of the Impact of the Use of Different Biopolymers and Soil Characteristics. Polymers (Basel) 2024; 16:2940. [PMID: 39458768 PMCID: PMC11511331 DOI: 10.3390/polym16202940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
In this article, the relationship between the properties of different membranes (agar, chitosan, and agar + chitosan) and biodegradability in natural and sterilized soil was investigated. The membranes under investigation exhibited variations in the biodegradation process, a phenomenon closely linked to both the soil microbiota composition and their water affinity. Higher solubility in water and greater swelling tendencies correlated with shorter initiation times for the biodegradation process in soil. Overall, all tested membranes began biodegradation within 14 days, as assessed through thickness and morphological analysis parameters, demonstrating a superior degradation rate compared to low-density polyethylene films.
Collapse
Affiliation(s)
- Amanda Martinello Neres de Souza
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil; (A.M.N.d.S.); (G.S.d.R.)
| | - Luisa Bataglin Avila
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil
| | - Camila Ramão Contessa
- Engineering and Science of Food Graduate Program, Laboratory Bioprocess Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Italy Avenue, km 08, Campus Carreiros, Rio Grande 96203-900, Brazil;
- Food Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil
| | - Alaor Valério Filho
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro, Pelotas 96010-610, Brazil;
| | - Gabriela Silveira de Rosa
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil; (A.M.N.d.S.); (G.S.d.R.)
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil
| | - Caroline Costa Moraes
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil; (A.M.N.d.S.); (G.S.d.R.)
- Food Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil
| |
Collapse
|
32
|
Sun Y, Luo K, He J, Zhu X, Song X, Sun Y, Wang L, Zhang M, Bao Y, Yang B, Yan J, Zhang J, Yang J, Zhao Y. Reactive oxygen species responsive chitooligosaccharides based nanoplatform for sonodynamic therapy in mammary cancer. Carbohydr Polym 2024; 342:122403. [PMID: 39048238 DOI: 10.1016/j.carbpol.2024.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Sonodynamic therapy (SDT) has been extensively studied as a new type of non-invasive treatment for mammary cancer. However, the poor water solubility and defective biocompatibility of sonosensitizers during SDT hinder the sonodynamic efficacy. Herein, a nanoplatform has been developed to achieve high efficient SDT against mammary cancer through the host-guest interaction of β-cyclodextrin/5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin (β-CD-TPP) and ferrocenecarboxylic acid/chitooligosaccharides (FC-COS). Moreover, the glucose oxidase (GOx) was loaded through electrostatic adsorption, which efficiently restricts the energy supply in tumor tissues, thus enhancing the therapeutic efficacy of SDT for tumors. Under optimal conditions, the entire system exhibited favorable water solubility, suitable particle size and viable biocompatibility. This facilitated the integration of the characteristics of starvation therapy and sonodynamic therapy, resulting in efficient inhibition of tumor growth with minimal side effects in vivo. This work may provide new insights into the application of natural oligosaccharides for construct multifunctional nanocarrier systems, which could optimize the design and development of sonodynamic therapy strategies and even combination therapy strategies.
Collapse
Affiliation(s)
- Yongyan Sun
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Kaixuan Luo
- The School of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Junnan He
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Xi Zhu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Xinxin Song
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Yuting Sun
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Lidong Wang
- Department of Oral and Maxillofacial Surgery, Kunming Medical University Affiliated Stomatological Hospital, Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Mengcai Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Yutai Bao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Bencui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Jin Yan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Jianmei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
33
|
Lan J, Wu Y, Chen J, Wang P, Chen H, Huang J, Lu D, Lin C, Ma X, Cao S. Enhancing plant fiber antibacterial and antiviral performance through synergistic action of amino and sulfonic acid groups. Carbohydr Polym 2024; 342:122384. [PMID: 39048195 DOI: 10.1016/j.carbpol.2024.122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
As the most abundant renewable resource, cellulose fibers are potential candidates for use in health-protective clothing. Herein, we demonstrate a novel strategy for preparing cellulose fiber with prominent antibacterial and antiviral performance by the synergistic effect of amino groups and sulfonic acid groups. Specifically, guanylated chitosan oligosaccharide (GCOS) and N-sulfopropyl chitosan oligosaccharide (SCOS) were synthesized and chemically grafted onto cellulose fibers (CFs) to endow the fibers with antibacterial and antiviral properties. Moreover, a compounding strategy was applied to make the fibers with simultaneously high antibacterial and antiviral activity, especially in short contact time. The bacteriostatic rate (against S. aureus: 95.81 %, against E. coli: 92.07 %, 1 h) of the compounded fibers improved substantially when a few GCOS-CFs were mixed with SCOS-CFs; especially, it was much higher than both the individual GCOS-CFs and SCOS-CFs. By contrast, the improvement of the antiviral properties was less dramatic; however, even a few SCOS-CFs was mixed, the antiviral properties increased pronouncedly. Although the electrostatic interaction between SCOS and GCOS can make the SCOS-GCOS mixture lose some extent of antibacterial activity, the long chains of cellulose restrain the electrostatic interaction between sulfonic and amino groups, leading to their synergistic action and eventually superior antibacterial and antiviral effects.
Collapse
Affiliation(s)
- Jinxin Lan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yao Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiazhen Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peng Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Hubei, Wuhan 430068, China
| | - Hui Chen
- Fujian Fynex Textile Science and Technology Co. Ltd., Quanzhou, Fujian 362200, China
| | - Jinfeng Huang
- Fujian Fynex Textile Science and Technology Co. Ltd., Quanzhou, Fujian 362200, China
| | - Dongdong Lu
- Key Lab for Sport Shoes Upper Materials, Fujian Huafeng New Material Co. Ltd., Putian 351164, China
| | - Changmei Lin
- College of Environmental and Biological Engineering, Putian University, Putian, Fujian 351100, China
| | - Xiaojuan Ma
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China..
| | - Shilin Cao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China..
| |
Collapse
|
34
|
Li N, Lu Y, Sheng X, Cao Y, Liu W, Zhou Z, Jiang L. Recent Progress in Enzymatic Preparation of Chitooligosaccharides with a Single Degree of Polymerization and Their Potential Applications in the Food Sector. Appl Biochem Biotechnol 2024; 196:6802-6816. [PMID: 38411934 DOI: 10.1007/s12010-024-04876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Chitosan oligosaccharides (COS), derived from chitin, have garnered considerable attention owing to their diverse biological activities and potential applications. Previous investigations into the bioactivity of COS often encountered challenges, primarily stemming from the use of COS mixtures, making it difficult to discern specific effects linked to distinct degrees of polymerization (DP). Recent progress underscores the significant variation in the biological activities of COS corresponding to different DPs, prompting dedicated research towards synthesizing COS with well-defined polymerization. Among the available methods, enzymatic preparation stands out as a viable and environmentally friendly approach for COS synthesis. This article provides a comprehensive overview of emerging strategies for the enzymatic preparation of single COS, encompassing protein engineering, enzymatic membrane bioreactors, and transglycosylation reactions. Furthermore, the bioactivities of single COS, including anti-tumor, antioxidant, antibacterial, anti-inflammatory, and plant defense inducer properties, exhibit close associations with DP values. The potential applications of single COS, such as in functional food, food preservation, and crop planting, are also elucidated.
Collapse
Affiliation(s)
- Na Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yuting Lu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xian Sheng
- Yixing Hospital of Traditional Chinese Medicine, Yixing, 214299, Jiangsu, China
| | - Yi Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Wei Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Zhi Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| |
Collapse
|
35
|
Deng Z, Liu H, Chen G, Deng H, Dong X, Wang L, Tao F, Dai F, Cheng Y. Coaxial nanofibrous aerogel featuring porous network-structured channels for ovarian cancer treatment by sustained release of chitosan oligosaccharide. Int J Biol Macromol 2024; 276:133824. [PMID: 39002906 DOI: 10.1016/j.ijbiomac.2024.133824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Ovarian cancer, the deadliest gynecological malignancy, primarily treated with chemotherapy. However, systemic chemotherapy often leads to severe toxic side effects and chemoresistance. Drug-loaded aerogels have emerged as a promising method for drug delivery, as they can improve drug solubility and bioavailability, control drug release, and reduce drug distribution in non-targeted tissues, thereby minimizing side effects. In this research, chitosan oligosaccharide (COS)-loaded nanofibers composite chitosan (CS) aerogels (COS-NFs/CS) with a porous network structure were created using nanofiber recombination and freeze-drying techniques. The core layer of the aerogel has a COS loading rate of 60 %, enabling the COS-NFs/CS aerogel to significantly inhibit the migration and proliferation of ovarian cancer cells (resulting in a decrease in the survival rate of ovarian cancer cells to 33.70 % after 48 h). The coaxial fiber's unique shell-core structure and the aerogel's porous network structure enable the COS-NFs/CS aerogels to release COS steadily and slowly over 30 days, effectively reducing the initial burst release of COS. Additionally, the COS-NFs/CS aerogels exhibit good biocompatibility, degradability (only retaining 18.52 % of their weight after 6 weeks of implantation), and promote angiogenesis, thus promoting wound healing post-oophorectomy. In conclusion, COS-NFs/CS aerogels show great potential for application in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Gantao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
36
|
Kumi M, Wang T, Ejeromedoghene O, Wang J, Li P, Huang W. Exploring the Potentials of Chitin and Chitosan-Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. SMALL METHODS 2024; 8:e2301341. [PMID: 38403854 DOI: 10.1002/smtd.202301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 02/27/2024]
Abstract
Chitin and chitosan-based bioink for 3D-printed flexible electronics have tremendous potential for innovation in healthcare, agriculture, the environment, and industry. This biomaterial is suitable for 3D printing because it is highly stretchable, super-flexible, affordable, ultrathin, and lightweight. Owing to its ease of use, on-demand manufacturing, accurate and regulated deposition, and versatility with flexible and soft functional materials, 3D printing has revolutionized free-form construction and end-user customization. This study examined the potential of employing chitin and chitosan-based bioinks to build 3D-printed flexible electronic devices and optimize bioink formulation, printing parameters, and postprocessing processes to improve mechanical and electrical properties. The exploration of 3D-printed chitin and chitosan-based flexible bioelectronics will open new avenues for new flexible materials for numerous industrial applications.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
37
|
Tang W, Hou H, Wang H, Gao X, Zhao F, Di Y, Ji S, Ling P, Wang F, Sun F, Tan H. Methotrexate-Loaded Chitosan Oligosaccharide-ES2 for Targeted Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44409-44427. [PMID: 39162197 DOI: 10.1021/acsami.4c06656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cancer presents a significant health threat, necessitating the development of more precise, efficient, and less damaging treatment approaches. To address this challenge, we employed the 1-ethyl-(3-dimethyl aminopropyl) carbodiimide/N-hydroxy succinimide (EDC/NHS) catalytic system and utilized quaternized chitosan oligosaccharide (HTCOSC) as a drug carrier to construct a nanoparticle delivery system termed HTCOSC-cRGD-ES2-MTX (CREM). This system specifically targets integrin αvβ3 on tumor cell surfaces and enables simultaneous loading of the antiangiogenic agent ES2 (IVRRADRAAVP) and the chemotherapy drug methotrexate (MTX). Due to its amphiphilic properties, CREM self-assembles into nanoparticles in aqueous solution, exhibiting an average diameter of 179.47 nm. Comparative studies demonstrated that CREM, in contrast to free ES2 and MTX-free nanoparticles (CRE), significantly suppressed the proliferation of EAhy926 endothelial cells and B16 melanoma cells in vitro, resulting in inhibition rates of 71.18 and 82.25%, respectively. Furthermore, CREM exhibited a hemolysis rate below 2%, indicating excellent in vitro antiangiogenic and antitumor activity as well as favorable blood compatibility. Additionally, both CRE and CREM demonstrated favorable tumor targeting capabilities through the specific binding action of cyclic RGD (cRGD) to integrin αvβ3. Further in vivo investigations revealed that CREM induced apoptosis in tumor cells via the mitochondrial apoptotic pathway and reduced the expression of angiogenic factors such as vascular endothelial growth factor (VEGF), thereby inhibiting tumor angiogenesis. This potent antitumor effect was evident through a tumor suppression rate of 80.19%. Importantly, histopathological staining (HE staining) demonstrated the absence of significant toxic side effects of CREM on various organs compared to MTX. In conclusion, the CREM nano drug delivery system synergistically enhances the therapeutic efficacy of antiangiogenic drugs and chemotherapeutic agents, thus offering a novel targeted approach for cancer treatment.
Collapse
Affiliation(s)
- Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Hanlin Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Yuhan Di
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Shengli Ji
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- ReaLi Tide Biological Technology (Weihai) Co., Ltd, Weihai 264207, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
38
|
Gupta S, Vasanth D, Kumar A. Physicochemical analysis of chitosan oligosaccharide revealed its usefulness in effective delivery of drugs. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-19. [PMID: 39169460 DOI: 10.1080/09205063.2024.2392365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Chitosan oligosaccharides are biopolymers with a wide range of potential applications in various fields. This biopolymer is diverse and promising, and current research is investigating its capabilities for improved drug delivery. As chitosan oligosaccharide has the potential to be used as a drug delivery option, the purpose of this study was to examine its physicochemical characteristics and its potential for drug delivery. In this study, the pharmacokinetic properties of chitosan oligosaccharide were studied through Insilco investigation, which revealed that it is an extremely soluble and effective drug delivery candidate because it does not inhibit CYP isoenzymes and has a log Kp of -12.10 cm/s. It belongs to toxicity class 6 for acute oral toxicity, with an average similarity of 87.5% and a prediction accuracy of 70.97%. Additionally, XRD peak analysis revealed that the material was amorphous, as the peak appeared at 2θ = 24.62°, indicating the absence of well-defined crystalline areas. This characteristic makes the material more suitable for customization in many applications such as drug delivery and tissue engineering. FTIR, SEM, and TGA analysis were performed to gain a better understanding. These findings also emphasize the distinctive qualities and benefits of the oligosaccharides in this domain. Application of chitosan oligosaccharides in the development of efficient drug delivery systems. In the future, it would be more effective, targeted, and safe, with potent therapeutic efficacy for drug delivery.
Collapse
Affiliation(s)
- Shraddha Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | | | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
39
|
Cheng X, Zhang S, Qian Y, Ren Y, Chen C, Zhao B, Chen M, Liu H, Zhang C. Construction and characterization of Zn-WPH-COS complex nanoparticles with improved zinc bioavailability. Food Chem 2024; 449:139163. [PMID: 38604024 DOI: 10.1016/j.foodchem.2024.139163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Precipitation was an important obstacle to improving zinc's bioavailability. Therefore, zinc-whey protein hydrolysate-chitosan oligosaccharide (Zn-WPH-COS) complexes (167 nm) were prepared by linking Zn-WPH (zinc: 18.4%) with COS (1:1, 2 h) to enhance zinc's bioaccessibility. Fourier-transform infrared showed Zn-WPH formed with zinc replaced hydrogen (from 3274 to 3279 cm-1) and reacted with COO- (C-N: from 1394 to 1402 cm-1), a new peak at 1025 cm-1 proved COS can be successful cross-linked (Zn-WPH-COS). Fluorescence spectra showed zinc and COS reduced WPH hydrophobicity (28.0 and 39.0%, respectively). Circular dichroism showed zinc decreased WPH α-helix (from 13.7 to 11.5%), in contrast with COS to Zn-WPH. Zinc solubility and dialyzability were increased (64.5/ 54.2% vs 50.2/ 41.2% vs 29.5/ 21.7%) in Zn-WPH-COS, compared with Zn-WPH and ZnSO4·7H2O, respectively, due to the smallest size (167 nm) and COS protection on Zn-WPH (gastric digestion). These results indicate Zn-WPH-COS could significantly improve the digestion and absorption of zinc.
Collapse
Affiliation(s)
- Xiaofang Cheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuangling Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yaru Qian
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuhang Ren
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengwang Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Bingnan Zhao
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Wisconsin 53706, United States
| | - Min Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Heping Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Cheng Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
40
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
41
|
Kuroiwa T, Nakagawa Y, Takayanagi R, Kanazawa A. Chitosanase-immobilized magnetite-agar gel particles as a highly stable and reusable biocatalyst for enhanced production of physiologically active chitosan oligosaccharides. Enzyme Microb Technol 2024; 178:110443. [PMID: 38593516 DOI: 10.1016/j.enzmictec.2024.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
A novel immobilized chitosanase was developed and utilized to produce chitosan oligosaccharides (COSs) via chitosan hydrolysis. Magnetite-agar gel particles (average particle diameter: 338 μm) were prepared by emulsifying an aqueous agar solution dispersing 200-nm magnetite particles with isooctane containing an emulsifier at 80 °C, followed by cooling the emulsified mixture. The chitosanase from Bacillus pumilus was immobilized on the magnetite-agar gel particles chemically activated by introducing glyoxyl groups with high immobilization yields (>80%), and the observed specific activity of the immobilized chitosanase was 16% of that of the free enzyme. This immobilized chitosanase could be rapidly recovered from aqueous solutions by applying magnetic force. The thermal stability of the immobilized chitosanase improved remarkably compared with that of free chitosanase: the deactivation rate constants at 35 °C of the free and immobilized enzymes were 8.1 × 10-5 and 3.9 × 10-8 s-1, respectively. This immobilized chitosanase could be reused for chitosan hydrolysis at 75 °C and pH 5.6, and 80% of its initial activity was maintained even after 10 cycles of use. COSs with a degree of polymerization (DP) of 2-7 were obtained using this immobilized chitosanase, and the product content of physiologically active COSs (DP ≥ 5) reached approximately 50%.
Collapse
Affiliation(s)
- Takashi Kuroiwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan.
| | - Yuta Nakagawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| | - Ryuichi Takayanagi
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| | - Akihiko Kanazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
| |
Collapse
|
42
|
Li Q, Shi WR, Huang YL. Comparison of the protective effects of chitosan oligosaccharides and chitin oligosaccharide on apoptosis, inflammation and oxidative stress. Exp Ther Med 2024; 28:310. [PMID: 38873041 PMCID: PMC11170321 DOI: 10.3892/etm.2024.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
Chitin degradation products, especially chitosan oligosaccharides (COSs), are highly valued in various industrial fields, such as food, medicine, cosmetics and agriculture, for their rich resources and high cost-effectiveness. However, little is known about the impact of acetylation on COS cellular bioactivity. The present study aimed to compare the differential effects of COS and highly N-acetylated COS (NACOS), known as chitin oligosaccharide, on H2O2-induced cell stress. MTT assay showed that pretreatment with NACOS and COS markedly inhibited H2O2-induced RAW264.7 cell death in a concentration-dependent manner. Flow cytometry indicated that NACOS and COS exerted an anti-apoptosis effect on H2O2-induced oxidative damage in RAW264.7 cells. NACOS and COS treatment ameliorated H2O2-induced RAW264.7 cell cycle arrest. Western blotting revealed that the anti-oxidation effects of NACOS and COS were mediated by suppressing expression of proteins involved in H2O2-induced apoptosis, including Bax, Bcl-2 and cleaved PARP. Furthermore, the antagonist effects of NACOS were greater than those of COS, suggesting that acetylation was essential for the protective effects of COS.
Collapse
Affiliation(s)
- Qiongyu Li
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| | - Wan-Rong Shi
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| | - Yun-Lin Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
43
|
Xie J, Yin D, Ou J, Lu B, Liao S, Yang D, Zhang H, Shen N. A new strain of Rhodococcus indonesiensis T22.7.1 T and its functional potential for deacetylation of chitin and chitooligsaccharides. Front Microbiol 2024; 15:1427143. [PMID: 39113839 PMCID: PMC11303147 DOI: 10.3389/fmicb.2024.1427143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Chitin, abundant in marine environments, presents significant challenges in terms of transformation and utilization. A strain, T22.7.1T, with notable chitin deacetylation capabilities, was isolated from the rhizosphere of Acanthus ebracteatus in the North Sea of China. Comparative 16S rDNA sequence analysis showed that the new isolate had the highest sequence similarity (99.79%) with Rhodococcus indonesiensis CSLK01-03T, followed by R. ruber DSM 43338T, R. electrodiphilus JC435T, and R. aetherivorans 10bc312T (98.97%, 98.81%, and 98.83%, respectively). Subsequent genome sequencing and phylogenetic analysis confirmed that strain T22.7.1T belongs to the R. indonesiensis species. However, additional taxonomic characterization identified strain T22.7.1T as a novel type strain of R. indonesiensis distinct from CSLK01-03T. Methods This study refines the taxonomic description of R. indonesiensis and investigates its application in converting chitin into chitosan. The chitin deacetylase (RiCDA) activity of strain T22.7.1T was optimized, and the enzyme was isolated and purified from the fermentation products. Results Through optimization, the RiCDA activity of strain T22.7.1T reached 287.02 U/mL, which is 34.88 times greater than the original enzyme's activity (8.0 U/mL). The natural CDA enzyme was purified with a purification factor of 31.83, and the specific activity of the enzyme solution reached 1200.33 U/mg. RiCDA exhibited good pH and temperature adaptability and stability, along with a wide range of substrate adaptabilities, effectively deacetylating chitin, chitooligosaccharides, N-acetylglucosamine, and other substrates. Discussion Product analysis revealed that RiCDA treatment increased the deacetylation degree (DD) of natural chitin to 83%, surpassing that of commercial chitosan. Therefore, RiCDA demonstrates significant potential as an efficient deacetylation tool for natural chitin and chitooligosaccharides, highlighting its applicability in the biorefining of natural polysaccharides.
Collapse
Affiliation(s)
- Junjie Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Doudou Yin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Junchao Ou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Bo Lu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Siming Liao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
44
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
45
|
de Azevedo MIG, Souza PFN, Monteiro Júnior JE, Grangeiro TB. Chitosan and Chitooligosaccharides: Antifungal Potential and Structural Insights. Chem Biodivers 2024; 21:e202400044. [PMID: 38591818 DOI: 10.1002/cbdv.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
Chitosan is a cationic polysaccharide derived from chitin deacetylation. This polysaccharide and its oligosaccharides have many biological activities and can be used in several fields due to their favorable characteristics, such as biodegradability, biocompatibility, and nontoxicity. This review aims to explore the antifungal potential of chitosan and chitooligosaccharides along with the conditions used for the activity and mechanisms of action they use to kill fungal cells. The sources, chemical properties, and applications of chitosan and chitooligosaccharides are discussed in this review. It also addresses the threat fungi pose to human health and crop production and how these saccharides have proven to be effective against these microorganisms. The cellular processes triggered by chitosan and chitooligosaccharides in fungal cells, and prospects for their use as potential antifungal agents are also examined.
Collapse
Affiliation(s)
| | - Pedro Filho Noronha Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
- Visiting Researcher at the Cearense Foundation to Support Scientific and Technological Development, Foratelza, Ceará, Brazil
| | - José Edvar Monteiro Júnior
- Laboratory of Molecular Genetics, Department of Biology, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Thalles Barbosa Grangeiro
- Laboratory of Molecular Genetics, Department of Biology, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
46
|
Fan Z, Gao K, Wang L, Qin Y, Liu S, Xing R, Yu H, Li K, Li P. Sulfonamide modified chitosan oligosaccharide with high nematicidal activity against Meloidogyne incognita. Int J Biol Macromol 2024; 269:132131. [PMID: 38719017 DOI: 10.1016/j.ijbiomac.2024.132131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.
Collapse
Affiliation(s)
- Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
47
|
Wang L, Wang L, Wang N, Song C, Wen C, Yan C, Song S. Fucoidan alleviates the inhibition of protein digestion by chitosan and its oligosaccharides. Int J Biol Macromol 2024; 269:132072. [PMID: 38705339 DOI: 10.1016/j.ijbiomac.2024.132072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Chitosan (CTS) and chitosan oligosaccharides (COS) have been widely applied in food industry due to their bioactivities and functions. However, CTS and COS with positive charges could interact with proteins, such as whey protein isolate (WPI), influencing their digestion. Interaction among CTS/COS, FUC, and WPI/enzymes was studied by spectroscopy, chromatography, and chemical methods in order to reveal the role of FUC in relieving the inhibition of protein digestibility by CTS/COS and demonstrate the action mechanisms. As shown by the results, the addition of FUC increased degree of hydrolysis (DH) and free protein in the mixture of CTS and WPI to 3.1-fold and 1.8-fold, respectively, while raise DH value and free protein in the mixture of COS and WPI to 6.7-fold and 1.2-fold, respectively. The interaction between amino, carboxyl, sulfate, and hydroxyl groups from carbohydrates and protein could be observed, and notably, FUC could interact with CTS/COS preferentially to prevent CTS/COS from combining with WPI. In addition, the addition of FUC could also relieve the combination of CTS to trypsin, increasing the fluorescence intensity and concentration of trypsin by 83.3 % and 4.8 %, respectively. Thus, the present study demonstrated that FUC could alleviate the inhibitory effect of CTS/COS on protein digestion.
Collapse
Affiliation(s)
- Linlin Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lilong Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Nan Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chen Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunhong Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
48
|
He J, Li J, Gao Q, Shen W, Liu W, Xia M, Xiao H, Xiao D. In Vitro Evaluation of Chito-Oligosaccharides on Disappearance Rate of Nutrients, Rumen Fermentation Parameters, and Micro-Flora of Beef Cattle. Animals (Basel) 2024; 14:1657. [PMID: 38891704 PMCID: PMC11170994 DOI: 10.3390/ani14111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The study aimed to investigate the effect of dietary chitosan oligosaccharides (COS) meal levels on the nutrient disappearance rate, rumen fermentation, and microflora of beef cattle in vitro. A total of 24 fermentation tanks were randomly divided into four treatments containing 0% COS (CON), 0.02% COS, 0.04% COS, and 0.08% COS for an 8-day experiment period, with each treatment comprising six replicates. The disappear rates of DM, CP, EE, and total gas production were quadratically increased with increasing COS levels. The disappear rates of DM, CP, EE, and ADF were greatest, whereas the total gas production was lowest in the 0.08% COS group. The pH, NH3-N, MCP, the content of propionate, isobutyrate, butyrate, valerate, and the A/P were quadratically increased with increasing COS levels, while the A/P were linearly decreased. The pH, MCP, and the content of propionate, and butyrate were highest, whereas the NH3-N and the content of acetate, isobutyrate, valerate, and the A/P were lowest in the 0.08% COS group. Microbiomics analysis showed that the rumen microbial diversity was not altered between the CON and the 0.08% COS group. However, the relative abundance of Methanosphaera, Ruminococcus, Endomicrobium, and Eubacterium groups was increased, and the relative abundance of pathogenic bacteria Dorea and Escherichia-Shigella showed a decrease in the 0.08% COS group. Overall, the 0.08% COS was the most effective among the three addition levels, resulting in an increase in the disappearance rate of in vitro fermented nutrients and improvements in rumen fermentation indexes and microbial communities. This, in turn, led to the maintenance of rumen health.
Collapse
Affiliation(s)
- Jianfu He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
| | - Qian Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Wenchang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
| | - Min Xia
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
| | - Haixiang Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (J.H.); (J.L.); (Q.G.); (W.S.); (W.L.); (M.X.); (H.X.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
49
|
Li B, Cui J, Xu T, Xu Y, Long M, Li J, Liu M, Yang T, Du Y, Xu Q. Advances in the preparation, characterization, and biological functions of chitosan oligosaccharide derivatives: A review. Carbohydr Polym 2024; 332:121914. [PMID: 38431416 DOI: 10.1016/j.carbpol.2024.121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Chitosan oligosaccharide (COS), which represent the positively charged basic amino oligosaccharide in nature, is the deacetylated and degraded products of chitin. COS has become the focus of intensive scientific investigation, with a growing body of practical and clinical studies highlighting its remarkable health-enhancing benefits. These effects encompass a wide range of properties, including antibacterial, antioxidant, anti-inflammatory, and anti-tumor activities. With the rapid advancements in chemical modification technology for oligosaccharides, many COS derivatives have been synthesized and investigated. These newly developed derivatives possess more stable chemical structures, improved biological activities, and find applications across a broader spectrum of fields. Given the recent interest in the chemical modification of COS, this comprehensive review seeks to consolidate knowledge regarding the preparation methods for COS derivatives, alongside discussions on their structural characterization. Additionally, various biological activities of COS derivatives have been discussed in detail. Lastly, the potential applications of COS derivatives in biomedicine have been reviewed and presented.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jingchun Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Tiantian Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yunshu Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingxin Long
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiaqi Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingzhi Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Ting Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
50
|
Zhang Y, Li W, Wu Y, Tian X, Li G, Zhou Y, Sun J, Liao X, Liu Y, Wang Y, Yu Y. Chitosan oligosaccharide accelerates the dissemination of antibiotic resistance genes through promoting conjugative plasmid transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133922. [PMID: 38442604 DOI: 10.1016/j.jhazmat.2024.133922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The dissemination of antibiotic resistance genes (ARGs), especially via plasmid-mediated horizontal gene transfer, poses a pervasive threat to global health. Chitosan-oligosaccharide (COS) is extensively utilized in medicine, plant and animal husbandry. However, their impact on microflora implies the potential to exert selective pressure on plasmid transfer. To explore the role of COS in facilitating the dissemination of ARGs via plasmid conjugation, we established in vitro mating models. The addition of COS to conjugation mixtures significantly enhanced the transfer of RP4 plasmid and mcr-1 positive IncX4 plasmid in both intra- and inter-specific. Phenotypic and transcriptome analysis revealed that COS enhanced intercellular contact by neutralizing cell surface charge and increasing cell surface hydrophobicity. Additionally, COS increased membrane permeability by inhibiting the Tol-Pal system, thereby facilitating plasmid conjugative transfer. Furthermore, COS served as the carbon source and was metabolized by E. coli, providing energy for plasmid conjugation through regulating the expression of ATPase and global repressor factor-related genes in RP4 plasmid. Overall, these findings improve our awareness of the potential risks associated with the presence of COS and the spread of bacterial antibiotic resistance, emphasizing the need to establish guidelines for the prudent use of COS and its discharge into the environment.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Wenjie Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yashuang Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Xiaomin Tian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Gong Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yufeng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Yu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
| |
Collapse
|