1
|
Tannock GW. Understanding the gut microbiota by considering human evolution: a story of fire, cereals, cooking, molecular ingenuity, and functional cooperation. Microbiol Mol Biol Rev 2024; 88:e0012722. [PMID: 38126754 PMCID: PMC10966955 DOI: 10.1128/mmbr.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
SUMMARYThe microbial community inhabiting the human colon, referred to as the gut microbiota, is mostly composed of bacterial species that, through extensive metabolic networking, degrade and ferment components of food and human secretions. The taxonomic composition of the microbiota has been extensively investigated in metagenomic studies that have also revealed details of molecular processes by which common components of the human diet are metabolized by specific members of the microbiota. Most studies of the gut microbiota aim to detect deviations in microbiota composition in patients relative to controls in the hope of showing that some diseases and conditions are due to or exacerbated by alterations to the gut microbiota. The aim of this review is to consider the gut microbiota in relation to the evolution of Homo sapiens which was heavily influenced by the consumption of a nutrient-dense non-arboreal diet, limited gut storage capacity, and acquisition of skills relating to mastering fire, cooking, and cultivation of cereal crops. The review delves into the past to gain an appreciation of what is important in the present. A holistic view of "healthy" microbiota function is proposed based on the evolutionary pathway shared by humans and gut microbes.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Wang M, Xian Y, Lu Z, Wu P, Zhang G. Engineering polysaccharide hydrolases in the product-releasing cleft to alter their product profiles. Int J Biol Macromol 2024; 256:128416. [PMID: 38029919 DOI: 10.1016/j.ijbiomac.2023.128416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Polysaccharide hydrolases are enzymes capable of hydrolyzing polysaccharides to generate oligosaccharides that have diverse applications in the food, feed and pharmaceutical industries. However, the detailed mechanisms governing the compositions of their hydrolysates remain poorly understood. Previously, we identified a novel neopullulase Amy117, which exclusively converts pullulan to panose by specifically cleaving α-1,4-glycosidic bonds. Yet, several enzymes with high homology to Amy117 produce a mixture of glucose, maltose and panose during pullulan hydrolysis. To explore this particular phenomenon, we compared the sequences and structures between Amy117 and the maltose amylase ThMA, and identified a specific residue Thr299 in Amy117 (equivalent to His294 in ThMA) within the product-releasing cleft of Amy117, which might be responsible for this characteristic feature. Using structure-based rational design, we have successfully converted the product profiles of pullulan hydrolysates between Amy117 and ThMA by simply altering this key residue. Molecular docking analysis indicated that the key residue at the product-releasing outlet altered the product profile by affecting the panose release rate. Moreover, we modeled the long-chain pullulan substrate G8 to examine its potential conformations and found that G8 might undergo a conformational change in the narrow cleft that allows the Amy117 variant to specifically recognize α-1,6-glycosidic bonds.
Collapse
Affiliation(s)
- Meixing Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufan Xian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Jenkins DJ, Woolston BM, Hood-Pishchany MI, Pelayo P, Konopaski AN, Quinn Peters M, France MT, Ravel J, Mitchell CM, Rakoff-Nahoum S, Whidbey C, Balskus EP. Bacterial amylases enable glycogen degradation by the vaginal microbiome. Nat Microbiol 2023; 8:1641-1652. [PMID: 37563289 PMCID: PMC10465358 DOI: 10.1038/s41564-023-01447-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
The human vaginal microbiota is frequently dominated by lactobacilli and transition to a more diverse community of anaerobic microbes is associated with health risks. Glycogen released by lysed epithelial cells is believed to be an important nutrient source in the vagina. However, the mechanism by which vaginal bacteria metabolize glycogen is unclear, with evidence implicating both bacterial and human enzymes. Here we biochemically characterize six glycogen-degrading enzymes (GDEs), all of which are pullanases (PulA homologues), from vaginal bacteria that support the growth of amylase-deficient Lactobacillus crispatus on glycogen. We reveal variations in their pH tolerance, substrate preferences, breakdown products and susceptibility to inhibition. Analysis of vaginal microbiome datasets shows that these enzymes are expressed in all community state types. Finally, we confirm the presence and activity of bacterial and human GDEs in cervicovaginal fluid. This work establishes that bacterial GDEs can participate in the breakdown of glycogen, providing insight into metabolism that may shape the vaginal microbiota.
Collapse
Affiliation(s)
- Dominick J Jenkins
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Benjamin M Woolston
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - M Indriati Hood-Pishchany
- Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Paula Pelayo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - M Quinn Peters
- Department of Chemistry, Seattle University, Seattle, WA, USA
| | - Michael T France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caroline M Mitchell
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Seth Rakoff-Nahoum
- Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | | | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Chen R, Zhang C, Xu F, Yu L, Tian F, Chen W, Zhai Q. Meta-analysis reveals gut microbiome and functional pathway alterations in response to resistant starch. Food Funct 2023. [PMID: 37194392 DOI: 10.1039/d3fo00845b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Resistant starch (RS) has the ability to improve the structure of the gut microbiota, regulate glucolipid metabolism and maintain the health of the human body, and has been extensively studied by many scholars in recent years. However, previous studies have provided a wide range of results on the differences in the gut microbiota after RS intake. In this article, we performed a meta-analysis of a total of 955 samples of 248 individuals from the seven studies included to compare the gut microbiota of the baseline and the end-point of RS intake. At the end-point, RS intake was related to a lower gut microbial α-diversity and higher relative abundance of Ruminococcus, Agathobacter, Faecalibacterium and Bifidobacterium, and the functional pathways of the gut microbiota related to the carbohydrate metabolism, lipid metabolism, amino acid metabolism and genetic information processing were higher. Different types of resistant starch and different populations led to varied responses on the gut microbiome. The altered gut microbiome may contribute to improve the blood glucose level and insulin resistance, which may be a potential treatment route for diabetes, obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Ruimin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fusheng Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
5
|
Yan P, Sun Y, Luo J, Liu X, Wu J, Miao Y. Integrating the serum proteomic and fecal metaproteomic to analyze the impacts of overweight/obesity on IBD: a pilot investigation. Clin Proteomics 2023; 20:6. [PMID: 36759757 PMCID: PMC9909917 DOI: 10.1186/s12014-023-09396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) encompasses a group of chronic relapsing disorders which include ulcerative colitis (UC) and Crohn's disease (CD). The incidences of IBD and overweight/obesity are increasing in parallel. Here, we investigated alterations in proteomic in serum and metaproteomic in feces of IBD patients with overweight/obesity and aimed to explore the effect of overweight/ obesity on IBD and the underlying mechanism. METHODS This prospective observational study (n = 64) comprised 26 health control subjects (HC, 13 with overweight/obesity) and 38 IBD patients (19 with overweight/obesity) at a tertiary hospital. Overweight/obesity was evaluated by body mass index (BMI) and defined as a BMI greater than 24 kg/m2. The comprehensive serum proteomic and fecal metaproteomic analyses were conducted by ultra-performance liquid chromatography-Orbitrap Exploris 480 mass spectrometry. RESULTS UC and CD presented similar serum molecular profiles but distinct gut microbiota. UC and CD serum exhibited higher levels of cytoskeleton organization- associated and inflammatory response-related proteins than the HC serum. Compared the serum proteome of UC and CD without overweight/obesity, inflammatory response-associated proteins were dramatically decreased in UC and CD with overweight/obesity. Fecal metaproteome identified 66 species in the feces. Among them, Parasutterella excrementihominis was increased in CD compared with that in HC. UC group had a significant enrichment of Moniliophthora roreri, but had dramatically decreased abundances of Alistipes indistinctus, Clostridium methylpentosum, Bacteroides vulgatus, and Schizochytrium aggregatum. In addition, overweight/obesity could improve the microbial diversity of UC. Specifically, the UC patients with overweight/obesity had increased abundance of some probiotics in contrast to those without overweight/obesity, including Parabacteroides distasonis, Alistipes indistincus, and Ruminococcus bromii. CONCLUSION This study provided high-quality multi-omics data of IBD serum and fecal samples, which enabled deciphering the molecular bases of clinical phenotypes of IBD, revealing the impacts of microbiota on IBD, and emphasizing the important role of overweight/obesity in IBD.
Collapse
Affiliation(s)
- Ping Yan
- grid.285847.40000 0000 9588 0960Kunming Medical University, Kunming, China ,grid.440682.c0000 0001 1866 919XDepartment of Gastroenterology, First Affiliated Hospital of Dali University, Dali, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yang Sun
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Juan Luo
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Xiaolin Liu
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Jing Wu
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China. .,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China.
| |
Collapse
|
6
|
Discovery of a New Microbial Origin Cold-Active Neopullulanase Capable for Effective Conversion of Pullulan to Panose. Int J Mol Sci 2022; 23:ijms23136928. [PMID: 35805929 PMCID: PMC9267027 DOI: 10.3390/ijms23136928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Panose is a type of functional sugar with diverse bioactivities. The enzymatic conversion bioprocess to produce high purity panose with high efficiency has become increasingly important. Here, a new neopullulanase (NPase), Amy117 from B. pseudofirmus 703, was identified and characterized. Amy117 presented the optimal activity at pH 7.0 and 30 °C, its activity is over 40% at 10 °C and over 80% at 20 °C, which is cold-active. The enzyme cleaved α-1, 4-glycosidic linkages of pullulan to generate panose as the only hydrolysis product, and degraded cyclodextrins (CDs) and starch to glucose and maltose, with an apparent preference for CDs. Furthermore, Amy117 can produce 72.7 mg/mL panose with a conversion yield of 91% (w/w) based on 80 mg/mL pullulan. The sequence and structure analysis showed that the low proportion of Arg, high proportion of Asn and Gln, and high α-helix levels in Amy117 may contribute to its cold-active properties. Root mean square deviation (RMSD) analysis also showed that Amy117 is more flexible than two mesophilic homologues. Hence, we discovered a new high-efficiency panose-producing NPase, which so far achieves the highest panose production and would be an ideal candidate in the food industry.
Collapse
|
7
|
Wu Q, Fan L, Tan H, Zhang Y, Fang Q, Yang J, Cui SW, Nie S. Impact of pectin with various esterification degrees on the profiles of gut microbiota and serum metabolites. Appl Microbiol Biotechnol 2022; 106:3707-3720. [PMID: 35474485 DOI: 10.1007/s00253-022-11926-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
Colitis is generally affected by multiple factors, including the dysbiosis of intestinal microbiota, and may affect organs outside colon through circulation. Pectin, which is an edible polysaccharide widely present in plant cell walls, has been proved in our previous study to possess preventive potentials against acute ulcerative colitis, especially when the esterification degree is less than 50%. This study aimed to clarify the underlying correlations of gut microbiome and serum metabolites with the preventive effects of pectin with different esterification degrees (H121, L13, and L102) against colitis in mice. MiSeq sequencing data showed that symbiotic bacteria especially beneficial Lactobacillus and Bifidobacterium were enriched by pectin intake. Fiber consumers such as Prevotella and Bacteroides actively responded to L13 pectin, particularly under high dosage (L13-H). In addition, the abnormal abundance of Akkermansia associated with colitis would not appear in mice who had been provided with any of the three pectins before dextran sulfate sodium (DSS) treatment. Furthermore, pre-treatment of H121 and L13 pectins could improve the serum glycerophospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In contrast, lysophosphatidic acid (LPA) contributing to the glycerophospholipid metabolism pathway was enriched only in the L13-H group, which has been previously proved to be associated with the epithelial barrier and intestinal homeostasis. Positive relationships between the glycerophospholipids and the dominant candidates of intestinal bacteria such as Lactobacillus indicated the joint actions of intestinal microbes and serum metabolites as well as the underlying crosstalks among gut microbiome. Therefore, the results of this research suggested that the preventive effects of low-esterified pectin on DSS-induced colitis were likely to be initiated by the enrichment of probiotics in the gut and serum glycerophospholipids. KEY POINTS: • L13 pectin remarkably improved the diversity of the gut microbiome in healthy mice. • Probiotics were enriched and abnormal Akkermansia was restored by L13 and L102 pectins. • Glycerophospholipid metabolism was significantly enriched by H121 and L13 pectins.
Collapse
Affiliation(s)
- Quanyong Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047, China
| | - Linlin Fan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047, China.
| | - Yanli Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047, China
| | - Qingying Fang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047, China.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON, N1G 5C9, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
8
|
Ji H, Li X, Jiang T, Fang Q, Bai Y, Long J, Chen L, Jin Z. A novel amylolytic enzyme from Palaeococcus ferrophilus with malto-oligosaccharide forming ability belonging to subfamily GH13_20. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Abstract
Starch and pullulan degrading enzymes are essential industrial biocatalysts. Pullulan-degrading enzymes are grouped into pullulanases (types I and type II) and pullulan hydrolase (types I, II and III). Generally, these enzymes hydrolyse the α-1,6 glucosidic bonds (and α-1,4 for certain enzyme groups) of substrates and form reducing sugars such as glucose, maltose, maltotriose, panose or isopanose. This review covers two main aspects: (i) bibliometric analysis of publications and patents related to pullulan-degrading enzymes and (ii) biological aspects of free and immobilised pullulan-degrading enzymes and protein engineering. The collective data suggest that most publications involved researchers within the same institution or country in the past and current practice. Multi-national interaction shall be improved, especially in tapping the enzymes from unculturable prokaryotes. While the understanding of pullulanases may reach a certain extend of saturation, the discovery of pullulan hydrolases is still limited. In this report, we suggest readers consider using the next-generation sequencing technique to fill the gaps of finding more new sequences encoding pullulan-degrading enzymes to expand the knowledge body of this topic.
Collapse
|
10
|
Zhang J, Chen Z, Yu H, Lu Y, Yu W, Miao M, Shi H. Anti-aging effects of a functional food via the action of gut microbiota and metabolites in aging mice. Aging (Albany NY) 2021; 13:17880-17900. [PMID: 33878733 PMCID: PMC8312451 DOI: 10.18632/aging.202873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/13/2021] [Indexed: 12/13/2022]
Abstract
Wushen (WS) is a mixed food containing 55 natural products that is beneficial to human health. This study aimed to reveal the preventive effect of WS on aging via a combined analysis of gut microbiome and metabolome. Senescence-accelerated mouse prone 8 (SAMP8) mice were used as aging model and senescence-accelerated mouse resistant 1 (SAMR1) mice as control. The mice were fed four diet types; control diet (for SAMR1 mice), standard diet (for SAMP8 mice, as SD group), WS diet, and fecal microbiota transplantation (FMT; transplanted from aging-WS mice). Our results showed that the weight, food intake, neurological function, and general physical conditions significantly improved in WS-fed mice compared to those fed with SD. The CA1 hippocampal region in WS-fed aged mice showed fewer shriveled neurons and increased neuronal layers compared to that of the SD group. WS-fed mice showed a decrease in malondialdehyde and an increase in superoxide dismutase levels in the brain; additionally, IL-6 and TNF-α levels significantly decreased, whereas IL-2 levels and the proportion of lymphocytes, CD3+CD8+ T, and CD4+IFNγ+T cells increased in WS-fed mice. After fed with WS, the abundance of Ruminococcus and Butyrivibrio markedly increased, whereas Lachnoclostridium and Ruminiclostridium significantly decreased in the aging mice. In addition, 887 differentially expressed metabolites were identified in fecal samples, among these, Butyrivibrio was positively correlated with D-glucuronic acid and Ruminococcus was positively associated with 5-acetamidovalerate. These findings provide mechanistic insight into the impact of WS on aging, and WS may be a valuable diet for preventing aging.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Endocrinology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, China
| | - Zhewen Chen
- Department of Nutrition, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Huaixi Yu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, China
| | - Yanwen Lu
- Department of Endocrinology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, China
| | - Weinan Yu
- Department of Endocrinology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, China
| | - Mingyong Miao
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, Shandong, China.,Department of Biochemistry and Molecular Biology, The Naval Medical University, Shanghai 200433, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
11
|
Abstract
Resistant starch, microbiome, and precision modulation. Mounting evidence has positioned the gut microbiome as a nexus of health. Modulating its phylogenetic composition and function has become an attractive therapeutic prospect. Resistant starches (granular amylase-resistant α-glycans) are available as physicochemically and morphologically distinguishable products. Attempts to leverage resistant starch as microbiome-modifying interventions in clinical studies have yielded remarkable inter-individual variation. Consequently, their utility as a potential therapy likely depends predominantly on the selected resistant starch and the subject's baseline microbiome. The purpose of this review is to detail i) the heterogeneity of resistant starches, ii) how resistant starch is sequentially degraded and fermented by specialized gut microbes, and iii) how resistant starch interventions yield variable effects on the gut microbiome.
Collapse
Affiliation(s)
- Peter A. Dobranowski
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Cockburn DW, Cerqueira FM, Bahr C, Koropatkin NM. The structures of the GH13_36 amylases from Eubacterium rectale and Ruminococcus bromii reveal subsite architectures that favor maltose production. ACTA ACUST UNITED AC 2020. [DOI: 10.1515/amylase-2020-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBacteria in the human gut including Ruminococcus bromii and Eubacterium rectale encode starch-active enzymes that dictate how these bacteria interact with starch to initiate a metabolic cascade that leads to increased butyrate. Here, we determined the structures of two predicted secreted glycoside hydrolase 13 subfamily 36 (GH13_36) enzymes: ErAmy13B complexed with maltotetraose from E. rectale and RbAmy5 from R. bromii. The structures show a limited binding pocket extending from –2 through +2 subsites with limited possibilities for substrate interaction beyond this, which contributes to the propensity for members of this family to produce maltose as their main product. The enzyme structures reveal subtle differences in the +1/+2 subsites that may restrict the recognition of larger starch polymers by ErAmy13B. Our bioinformatic analysis of the biochemically characterized members of the GH13_36 subfamily, which includes the cell-surface GH13 SusG from Bacteroides thetaiotaomicron, suggests that these maltogenic amylases (EC 3.2.1.133) are usually localized to the outside of the cell, display a range of substrate preferences, and most likely contribute to maltose liberation at the cell surface during growth on starch. A broader comparison between GH13_36 and other maltogenic amylase subfamilies explain how the activity profiles of these enzymes are influenced by their structures.
Collapse
Affiliation(s)
- Darrell W. Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Filipe M. Cerqueira
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Constance Bahr
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Khongpradit A, Boonsaen P, Homwong N, Suzuki Y, Koike S, Sawanon S, Kobayashi Y. Effect of pineapple stem starch feeding on rumen microbial fermentation, blood lipid profile, and growth performance of fattening cattle. Anim Sci J 2020; 91:e13459. [PMID: 32996271 DOI: 10.1111/asj.13459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 11/27/2022]
Abstract
Pineapple stem starch (PS) was evaluated for its suitability as a new starch source in concentrate for fattening cattle, based on the growth performance, blood profile, and rumen parameters of 36 steers in a 206-day feeding study. PS was formulated as a 40% concentrate and fed with forage in comparison with ground corn (GC) and ground cassava (CA) formulated at the same level. PS feeding improved weight gain and feed conversion ratio without affecting feed intake. PS did not obviously influence blood lipid profiles throughout the experiment. Ruminal concentration of total short-chain fatty acids (SCFA) increased with PS without affecting SCFA composition throughout the feeding study. Rumen amylolytic group, especially Ruminococcus bromii, was dominant in the rumen microbial community, and showed increased abundance by PS feeding throughout the experiment. These results clearly indicate the potential of PS as a useful starch source for fattening cattle in terms of rumen fermentation and growth performance.
Collapse
Affiliation(s)
- Anchalee Khongpradit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Phoompong Boonsaen
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Nitipong Homwong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Yutaka Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoshi Koike
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Suriya Sawanon
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Qi W, Li XX, Guo YH, Bao YZ, Wang N, Luo XG, Yu CD, Zhang TC. Integrated metabonomic-proteomic analysis reveals the effect of glucose stress on metabolic adaptation of Lactococcus lactis ssp. lactis CICC23200. J Dairy Sci 2020; 103:7834-7850. [PMID: 32684472 DOI: 10.3168/jds.2019-17810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
A combined proteomic and metabonomic approach was used to investigate the metabolism of Lactococcus lactis ssp. lactis subjected to glucose stress treatment. A proteomic method was used to determine 1,427 altered proteins, including 278 proteins with increased expression and 255 proteins with decreased expression. A metabonomic approach was adopted to identify 98 altered metabolites, including 62 metabolites with increased expression and 26 metabolites with decreased expression. The integrated analysis indicated that the RNA and DNA mismatch repair process and energy metabolism were enhanced in response to high-glucose stress in L. lactis. Lactococcus lactis responded to glucose stress by up-regulating oxidoreductase activity, which acted on glycosyl bonds, hydrolase activity, and organic acid transmembrane transporter activity. This led to an improvement in the metabolic flux from glucose to pyruvate, lactate, acetate, and maltose. Down-regulation of amino acid transmembrane transporter, aminoacyl-transfer RNA ligase, hydroxymethyl-, formyl-, and related transferase activities resulted in a decrease in the nitrogen metabolism-associated metabolic pathway, which might be related to inhibition of the production of biogenic amines. Overall, we highlight the response of metabolism to glucose stress and provide potential possibilities for the reduced formation of biogenic amines in improved level of sugar in the dairy fermentation industry. Moreover, according to the demand for industrial production, sugar concentration in fermented foods should be higher, or lower, than a set value that is dependent on bacterial strain and biogenic amine yield.
Collapse
Affiliation(s)
- Wei Qi
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China.
| | - Xiao-Xue Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Yao-Hua Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Yan-Zhou Bao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Xue-Gang Luo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Chun-Di Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Tong-Cun Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China.
| |
Collapse
|
15
|
Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM. Starch Digestion by Gut Bacteria: Crowdsourcing for Carbs. Trends Microbiol 2020; 28:95-108. [DOI: 10.1016/j.tim.2019.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
|