1
|
Liu XM, Xia QY, Ju XH. Theoretical study on optimizing dipeptidomimetic isocyanonaphthalene chemosensor and the fluorescence mechanism for detecting Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124835. [PMID: 39024787 DOI: 10.1016/j.saa.2024.124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
The excited (S1) state charge distribution characteristics and fluorescence mechanism of fluorescence probes benzyl (6-cyano-2-naphthoyl)-L-valinate (NPI) and benzyl (6-amino-2-naphthoyl)-L-valinate (NPA) have been discussed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). Further analysis by constructing a torsional potential energy curve (PEC) shows that a well-defined minimum energy conformation is observed when the C-C single bond between the valine benzyl ester and naphthalene ring in NPI rotates. For NPA, the most stable conformation is the naphthalene ring conformation with dihedral angle N2C1C2C3 of -30.60°, whose total energy is 0.17 kcal/mol lower than that of the second most stable conformer. The frontier molecular orbitals (FMOs) demonstrate that NPI exhibits a low degree of charge coupling, and the oscillator intensity is close to zero, indicating that it is not conducive to luminescence. However, in the S1 state, the oscillator strength of NPA is 1.2044, which is a bright state, resulting in the strong emitting. Additionally, fluorescence imaging is favored as a visual observation technique, and Stokes shift is an important physical parameter to measure fluorescence. According to the idea that changing the number and position of functional groups can affect the photophysical properties of fluorescent dyes, o-NPDI, p-NPDI and m-NPDI dyes were newly designed and o-NPDA, p-NPDA, m-NPDA produced after recognition of Hg2+. The spectral performance results show that the newly designed fluorescent dye (p-NPDA) can not only emit in the near infrared region after recognizing Hg2+, but also has a large Stokes shift (236 nm). This indirectly reflects that para-substitution is more conducive to Stokes shift, and has become one of the strategies for fluorescent dye design.
Collapse
Affiliation(s)
- Xiu-Min Liu
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Qi-Ying Xia
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China.
| | - Xue-Hai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
2
|
Sumit, Sharma K, Tewatia P, Samota S, Kaur M, Paulik C, Sharma M, Kaushik A. Efficient mercury ion abatement through highly porous cellulose nanofibrils combined with microporous organic polymer enhancements. Int J Biol Macromol 2024; 280:136136. [PMID: 39349077 DOI: 10.1016/j.ijbiomac.2024.136136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Pristine microporous organic polymer (p-MOP), owing to the presence of heteroatoms, has emerged as a significant platform for sensing and adsorption of heavy metal ions. The present work is a novel approach for developing highly porous hybrid architectures with trimesic acid and phenylene diamine-based p-MOP embedded over rice straw-derived cellulose nanofibers (ACNFs/MOP) for the sensing and remediation of mercury ions in the aqueous medium. The ACNFs/MOP were successfully characterized by various techniques, such as FTIR spectroscopy, BET surface area analysis, X-ray diffraction, XPS, HR-TEM, and TGA. The hybrid exhibited excellent porosity and crystallinity. The ACNFs/MOP hybrid was highly selective for Hg(II) ions, displaying substantial enhancement in fluorescence intensity with an LOD of 3.927 nM while also facilitating simultaneous adsorption. The adsorption showed a strong fit with pseudo-second-order kinetics and Langmuir isotherm models with an excellent adsorption capacity of 416.18 mg g-1, attributed to electrostatic interactions, coordination surface complexation, and metal-π interactions, as confirmed by XPS studies. Thermodynamic studies indicated an endothermic adsorption process. Box-Behnken Design-Response Surface methodology with Design Expert Software-13 was applied to model the process parameters. The hybrids were 97 % efficient even after five cycles of reusability, exhibiting their excellent potential for removing perilous Hg(II) ions from wastewater.
Collapse
Affiliation(s)
- Sumit
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Kavita Sharma
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | | | - Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University, Linz, Austria
| | - Mukta Sharma
- Department of Civil Engineering, IKG Punjab Technical University, Jalandhar, India
| | - Anupama Kaushik
- Energy Research Centre, Panjab University, Chandigarh, India; Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Cheng X, Luo T, Chu F, Feng B, Zhong S, Chen F, Dong J, Zeng W. Simultaneous detection and removal of mercury (II) using multifunctional fluorescent materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167070. [PMID: 37714350 DOI: 10.1016/j.scitotenv.2023.167070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Environmental problems caused by mercury ions are increasing due to growing industrialization, poor enforcement, and inefficient pollutant treatment. Therefore, detecting and removing mercury from the ecological chain is of utmost significance. Currently, a wide range of small molecules and nanomaterials have made remarkable progress in the detection, detoxification, adsorption, and removal of mercury. In this review, we summarized the recent advances in the design and construction of multifunctional materials, detailed their sensing and removing mechanisms, and discussed with emphasis the advantages and disadvantages of different types of sensors. Finally, we elucidated the problems and challenges of current multifunctional materials and further pointed out the direction for the future development of related materials. This review is expected to provide a guideline for researchers to establish a robust strategy for the detection and removal of mercury ionsin the environment.
Collapse
Affiliation(s)
- Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shibo Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China.
| |
Collapse
|
4
|
Liu C, Li Y, Gai X, Xiang Z, Jiang W, He S, Liu Y, Xiao H. Advances in green materials derived from wood for detecting and removing mercury ions in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122351. [PMID: 37567404 DOI: 10.1016/j.envpol.2023.122351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The issue of mercury pollution in environmental remediation has garnered significant attention due to its severe health hazards to humans. Various strategies have been devised to mitigate the impact of toxic mercury ions, including coagulation, ion exchange, adsorption, membrane technology, and electrochemical treatment. Among these approaches, adsorption has emerged as an efficient and widely employed method for the uptake of low concentrations of mercury ions. It offers convenient operation, high removal efficiency, and facile regeneration of the adsorbent. Wood, being the most abundant renewable and sustainable bioresource, has garnered attention as a promising material for treating heavy metal wastewater. This is attributed to its unique physical and chemical characteristics, encompassing hierarchical pores, aligned channels, active functional groups, biodegradability, and cost-effectiveness. However, a comprehensive examination of the cutting-edge applications of wood and wood-derived biopolymers in the detection and removal of mercury ions from wastewater has yet to be undertaken. Consequently, this article presents a chronological overview of recent advancements in materials and structures derived from bulk wood and its constituents, including cellulose, lignin, hemicellulose, and tannin, with a specific focus on their utility in detecting and eliminating mercury from water sources. Subsequently, the most promising techniques and strategies involving wood and wood-derived biopolymers in addressing the predicament of mercury pollution are explored. Furthermore, this piece offers insights into the existing challenges and future prospects concerning environmentally friendly materials derived from wood, aiming to foster the development of cost-effective mercury adsorbents and detection devices.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yu Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoqian Gai
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Weikun Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Shuaiming He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Yu Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B5A3, Canada
| |
Collapse
|
5
|
Li M, Zhang P, Zhang X, Chen Q, Cao Q, Zhang Y, Xiao H. Bis-Schiff base cellulosic nanocrystals for Hg (II) removal from aqueous solution with high adsorptive capacity and sensitive fluorescent response. Int J Biol Macromol 2023; 242:124802. [PMID: 37182619 DOI: 10.1016/j.ijbiomac.2023.124802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Mercury pollution in aqueous solutions is a severe problem in environmental protection and the contaminated water may cause serious risks to human health. Based on the constant development of adsorptive materials, adsorption technique is widely applied as an efficient and convenient approach to eliminate mercury species from waters. In this work, we report a one-pot procedure to prepare a bis-Schiff base cellulosic adsorbent to integrate the advantages of large adsorptive capacity and excellent fluorescent recognition towards mercury ions. The adsorption experiments demonstrate that sulfydryl-contained cellulosic nanocrystals exhibit specific affinity with mercury species and the adsorption capacity reaches as high as 624.8 mg/g at room temperature. Besides, the introduction of rhodamine moiety endows the material a 19 times enhancement of selective "off-on" fluorescent sensing while exposed to mercury. Additionally, the bifunctional adsorbent material shows high sensitivity towards mercury ions in aqueous solution with detection limits of as low as 8.29 × 10-8 M for fluorescence and 5.9 × 10-9 M for UV-vis spectrum, respectively. The fitting results of the adsorption models indicate a monolayer adsorption during the uptake of mercury ions and the removal process follows the pseudo-second order kinetics. Moreover, density functional theory studies are employed to further understand the adsorptive and responsive mechanisms.
Collapse
Affiliation(s)
- Ming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Panpan Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xuemeng Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Qian Chen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Qianyong Cao
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Yuling Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada.
| |
Collapse
|
6
|
Li B, Li M, Zhang P, Pan Y, Huang Z, Xiao H. Remediation of Cd (II) ions in aqueous and soil phases using novel porous cellulose/chitosan composite spheres loaded with zero-valent iron nanoparticles. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Li M, Zhang S, Cui S, Qin K, Zhang Y, Li P, Cao Q, Xiao H, Zeng Q. Pre-grafting effect on improving adsorption efficiency of cellulose based biosorbent for Hg (II) removal from aqueous solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Dib M, Moutcine A, Ouchetto H, Chtaini A, Hafid A, Khouili M. New efficient modified carbon paste electrode by Fe2O3@Ni/Al-LDH magnetic nanocomposite for the electrochemical detection of mercury. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Nawaz H, Zhang X, Chen S, You T, Xu F. Recent studies on cellulose-based fluorescent smart materials and their applications: A comprehensive review. Carbohydr Polym 2021; 267:118135. [PMID: 34119124 DOI: 10.1016/j.carbpol.2021.118135] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
The progress of bio-based fluorescent smart materials and their multifunctional applications have attained increasing interest in the recent decades. Cellulose is among the cheapest and widespread raw material on earth which can be modified into diverse useful materials. This review summarizes the chemical modification of cellulose into smart fluorescent materials. This further highlights on the fabrication of the prepared fluorescent materials into films, fibers, paper strips, carbon dots, hydrogels and solutions which are applied for the sensing of toxic metals and anions, pH, bioimaging, common organic solvents, aliphatic and aromatic amines, nitroaromatics, fluorescent printing, coating, and anti-counterfeiting applications. Finally, the discussion about the upcoming investigations, challenges, and options open for the cellulose-based luminescence sensors are communicated. We believe that this review will appeal more and more attention and curiosity for the chemists, biochemists, and chemical engineers working with the synthesis of cellulose-based fluorescent materials for widespread applications.
Collapse
Affiliation(s)
- Haq Nawaz
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xun Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
10
|
Seidi F, Reza Saeb M, Huang Y, Akbari A, Xiao H. Thiomers of Chitosan and Cellulose: Effective Biosorbents for Detection, Removal and Recovery of Metal Ions from Aqueous Medium. CHEM REC 2021; 21:1876-1896. [PMID: 34101343 DOI: 10.1002/tcr.202100068] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Removal of toxic metal ions using adsorbents is a well-known strategy for water treatment. While chitosan and cellulose can adsorb weakly some types of metals, incorporating thiols as metal chelating agents can improve their sorption behaviors significantly. Presented in this review are the various chemical modification strategies applicable for thiolation of chitosan and cellulose in the forms of mercaptans, xanthates and dithiocarbamates. Moreover, much attention has been paid to the specific strategies for controlling the thiolation degree and characterization approaches for establishing the structure-property relationship. Also, the kinetics and isotherm models that elucidate the adsorption processes and mechanisms induced by the thiomers have been explained. These thiomers have found great potentials in the applications associated with metal removal, metal recovery and metal detection.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037, Nanjing, China
| | | | - Yang Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037, Nanjing, China
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, E3B 5A3, Fredericton, New Brunswick, Canada
| |
Collapse
|
11
|
Li B, Zhang Q, Pan Y, Li Y, Huang Z, Li M, Xiao H. Functionalized porous magnetic cellulose/Fe3O4 beads prepared from ionic liquid for removal of dyes from aqueous solution. Int J Biol Macromol 2020; 163:309-316. [DOI: 10.1016/j.ijbiomac.2020.06.280] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
|
12
|
Li X, Zhang J, Xie H, Pan Y, Liu J, Huang Z, Long X, Xiao H. Cellulose-based adsorbents loaded with zero-valent iron for removal of metal ions from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33234-33247. [PMID: 32533473 DOI: 10.1007/s11356-020-09390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Sawdust loaded with zero-valent iron (S-ZVI) was prepared using a liquid phase reduction method for removing heavy metal ions from contaminated water. Surface chemistry and morphology of adsorbents were characterized with Fourier transform infrared (FT-IR) spectrometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), SEM-mapping, EDX, and X-ray photoelectron spectrum (XPS). The results demonstrated that the zero-valent iron was successfully loaded onto the sawdust. The impact of various factors such as pH, initial metal ion concentration, temperature, and contact time on the removal capability of the adsorbents was systematically investigated. The equilibrium adsorption data showed that the adsorption of arsenic ions and Cr(III) followed the Langmuir model well, and the maximum adsorption reached 111.37 and 268.7 mg/g in an aqueous solution system. In addition, the adsorption kinetics was more accurately described by the pseudo-second-order model, suggesting the domination of chemical adsorption. Meanwhile, the results on recyclability indicated that the high performance of S-ZVI on the removal of arsenic ions was well maintained after three regeneration cycles. The adsorption mechanism revealed in this work suggested that S-ZVI improved the dispersion of ZVI by minimizing the agglomeration, thus leading to highly effective adsorption via chelation, electrostatic interaction, and redox reaction.
Collapse
Affiliation(s)
- Xiaoning Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Jinyao Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Hongtian Xie
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Yuanfeng Pan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Jie Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, Beijing, 102206, China
| | - Zhihong Huang
- ShengQing Environmental Protection Ltd. Co., Kunming, 650093, Yunnan, China
| | - Xiang Long
- ShengQing Environmental Protection Ltd. Co., Kunming, 650093, Yunnan, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
13
|
Darroudi M, Mohammadi Ziarani G, Ghasemi JB, Badiei A. Acenaphtoquinoxaline as a selective fluorescent sensor for Hg (II) detection: experimental and theoretical studies. Heliyon 2020; 6:e04986. [PMID: 33005795 PMCID: PMC7509793 DOI: 10.1016/j.heliyon.2020.e04986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/23/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
A new fluorescent chemosensor based on quinoxaline was successfully synthesized through a facile and green catalytic reaction of ortho-phenylenediamine (O-PDA) and acenaphthylene-1,2-dione in the presence of SBA-Pr-SO3H. Prepared a "switch-off" quinoxaline-based receptor to recognized Hg2+ ion in high selectively and, without any interference from other metal ions, was developed. The photophysical behavior of this fluorophore was studied in acetonitrile by using fluorescence spectra. The fluorescence properties of several cations to acenaphtoquinoxaline were investigated in acetonitrile, and the competition test displayed that the probe fluorescence changes were specific for Hg2+ ion. The obtained results have shown high selectivity and sensitivity only for Hg2+. Also, the detection limit was as low as 42 ppb, and a top linear trend was observed between the concentration of Hg2+ ions and fluorescence intensity. The binding stoichiometry between chemosensor L and Hg2+ was found to be 1:1. Moreover, a computational study was performed to obtain an electronic description of the fluorescence emission and quenching mechanisms. The optimized structures and binding mechanisms were supported with a high correlation and agreement by spectroscopy and DFT calculations.
Collapse
Affiliation(s)
- Mahdieh Darroudi
- Department of Chemistry, Faculty of Physic and Chemistry, Alzahra University, Tehran P.O. Box 1993893973, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physic and Chemistry, Alzahra University, Tehran P.O. Box 1993893973, Iran
| | - Jahan B. Ghasemi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Abdullah Issa M, Z. Abidin Z. Sustainable Development of Enhanced Luminescence Polymer-Carbon Dots Composite Film for Rapid Cd 2+ Removal from Wastewater. Molecules 2020; 25:E3541. [PMID: 32756377 PMCID: PMC7436165 DOI: 10.3390/molecules25153541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/18/2022] Open
Abstract
As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
Collapse
Affiliation(s)
- Mohammed Abdullah Issa
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Zurina Z. Abidin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
15
|
Bejan A, Doroftei F, Cheng X, Marin L. Phenothiazine-chitosan based eco-adsorbents: A special design for mercury removal and fast naked eye detection. Int J Biol Macromol 2020; 162:1839-1848. [PMID: 32745550 DOI: 10.1016/j.ijbiomac.2020.07.232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
The aim of the paper was to investigate the ability of an eco-friendly luminescent xerogel prepared by chitosan crosslinking with a phenothiazine luminogen to detect and remove heavy metals. Its ability to give a divergent morphological and optical response towards fifteen environmental relevant metals was investigated by naked eye and UV lamp, fluorescence spectroscopy and scanning electron microscopy. A distinct response was noted for mercury, consisting in the transformation of the xerogel into a rubber-like material accompanied by the red shifting of the color of emitted light from yellow-green to greenish-yellow domain. The particularities of the metals anchoring into the xerogel were analyzed by FTIR spectroscopy and X-ray diffraction. The morphological changes and the metal uptake were analyzed by SEM-EDAX, swelling and gravimetric methods. It was concluded that mercury has a superior affinity towards this heteroatoms rich system, leading to a secondary crosslinking. This directed a great absorption capacity of 1673 mg/g and a specific morphological response for mercury ion concentrations up to 0.001 ppm.
Collapse
Affiliation(s)
- Andrei Bejan
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Florica Doroftei
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania.
| |
Collapse
|
16
|
Fan J, Zhang S, Li F, Shi J. Cellulose-based sensors for metal ions detection. CELLULOSE 2020; 27:5477-5507. [PMID: 0 DOI: 10.1007/s10570-020-03158-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/08/2020] [Indexed: 05/27/2023]
|
17
|
Li M, Xiong G, Zhang Y, Yu X, Cao Q, Xiao H. Remarkable fluorimetric response and colorimetric sense on the mercury deionization in aqueous solution by a new adsorbent based on chitosan. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Hao R, Mao X, Ma Z, Qian Z, Luo Y, Zhao X, Yuan B. Multi-air-pollutant removal by using an integrated system: Key parameters assessment and reaction mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136434. [PMID: 31923700 DOI: 10.1016/j.scitotenv.2019.136434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/21/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
How to cost-efficiently and cooperatively remove SO2, NO and Hg0 in flue gas is a hot topic in the field of air pollution control. This work developed an integrated system that consists of a dual-absorption system and a vapor oxidation system, in which Na2CO3 and H2O2/Na2S2O8 were used as the absorbent and oxidant. The results indicated that the efficiencies of SO2 removal and NO conversion reached 99.5% and 93% respectively. Rising the vaporization temperature and decreasing the pH of H2O2/Na2S2O8 could facilitate the NO conversion. The spent Na2CO3 after desulfurization was demonstrated to be a good absorbent for NO2 removal. The best conditions of pH and temperatures for the dual-absorber were determined as 10/8 and 60/60 °C, respectively. The presence of 1000 mg/m3 SO2 and 300 mg/m3 NO favored the Hg0 removal. TMT-15, an organic sulfur compound, was demonstrated to be useful in retaining Hg2+, with an efficiency of 92%. According to the analyses of electron spin resonance (ESR), ion chromatography (IC), atom fluorescence spectrometry (AFS) and X-ray photoelectron spectroscopy (XPS), SO4- and HO were proved to be the key radicals, and the existing forms of N- and Hg- species in the product were identified as NaNO2/NaNO3 and HgCl2.
Collapse
Affiliation(s)
- Runlong Hao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Xingzhou Mao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhao Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Zhen Qian
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Yichen Luo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Xu Zhao
- Key Laboratory of Environmental Nanotechnoloy and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bo Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
19
|
Yu X, Jiang J. Phosphate microbial mineralization consolidation of waste incineration fly ash and removal of lead ions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110224. [PMID: 31991396 DOI: 10.1016/j.ecoenv.2020.110224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
This paper proposes a green environment-friendly Bacillus subtilis to mineralize and consolidate waste incineration fly ash and heavy metal cations, and there is no harmful by-product in the mineralization process. Different phosphate products can be prepared, and are more stable than the microbially-induced carbonate precipitation (MICP) in nature. Typical heavy metal oxides were mainly PbO, ZnO, CdO, NiO, CuO and Cr2O3 in the chemical composition of waste incineration fly ash. Microstructure and chemical composition of waste incineration fly ash before and after treatment were characterized by powder X-ray diffraction (XRD) analysis and scanning electron microscopy. Scanning electron microscopy (SEM) images showed that the morphology of the Bacillus subtilis was mainly a rod-like structure. The optimal hydrolysis dosage of the organic phosphate monoester sodium salt was 0.2mol in the bacterial solution (1L, 20 g/L). The optimum required mass of the bacterial powder was 15 g/kg in treatment process of the waste incineration fly ash. The initial concentration of lead ions was 40.28 mg/L in waste incineration fly ash solution. After the optimum dosage treatment, the removal efficiency of lead ions was 78.15%, 79.64%, 77.70% and 80.14% when curing time was 1, 2, 4 and 6d, respectively. The waste incineration fly ash had a Shore hardness of 22 after the optimum amount of bacterial liquid treatment. Results of wind erosion test showed that the wind erosion rate of waste incineration fly ash was 2.6, 0, 0, 0, 0 and 0 g/h when blank group, deionized water, 100, 200, 300 and 400 mL of bacterial solutions treated, respectively. The bio-mineralization method provides an approach for the safe disposal of heavy metals in the contaminated areas of tailings, electroplating sewage, waste incineration plants, and so on.
Collapse
Affiliation(s)
- Xiaoniu Yu
- School of Environment, Tsinghua University, Beijing, 100084, China; College of Architecture and Civil Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
20
|
The enhancement of mechanical properties of P84 hollow fiber membranes by thermally annealing below and above Tg. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Li Y, Hou X, Pan Y, Wang L, Xiao H. Redox-responsive carboxymethyl cellulose hydrogel for adsorption and controlled release of dye. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109447] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Yu X, Jiang J. Phosphate microbial mineralization removes nickel ions from electroplating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:447-453. [PMID: 31170633 DOI: 10.1016/j.jenvman.2019.05.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Nickel ions in electroplating wastewater can be removed by the bio-mineralization method. Bacillus subtilis can produce alkaline phosphatase, which hydrolyzes organophosphate monoesters and produces phosphate ions. Fourier-transform infrared spectroscopy (FTIR) showed that the precipitated material contains phosphate ions. X-ray diffraction (XRD) showed that nickel ions in electroplating wastewater react with Bacillus subtilis and organophosphate monoesters to obtain nickel phosphate octahydrate (Ni3(PO4)2·8H2O). The removal efficiency of nickel ions could reach 76.41% with the optimum content of the organophosphate monoester (0.02 mol), Bacillus subtilis powder (2 g), pH (6), standing time (36 h), and reaction temperature (25 °C) in the medium solution (100 mL). The average particle size of Ni3(PO4)2·8H2O was 80.51 nm, which was calculated by the Scherrer formula. The Lorentz-Transmission Electron Microscope (L-TEM) further showed that Ni3(PO4)2·8H2O was composed of clusters of irregular nanoparticles, and the individual particle size was in the range of 40-90 nm. The TGA curve shows that the mass loss of crystal water was 25.45%, which was close to the theoretical total mass loss of 28.24% in bio-Ni3(PO4)2·8H2O.
Collapse
Affiliation(s)
- Xiaoniu Yu
- School of Environment, Tsinghua University, Beijing, 100084, China; College of Architecture and Civil Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China, Beijing, 100084, China.
| |
Collapse
|
23
|
Meng X, Liang F, Kang K, Tang J, Zeng T, Lin Z, Xia M. Facile Growth of an Ultraviolet Hydroisocyanurate Crystal with Strong Nonlinearity and a Wide Phase-Matching Region from π-Conjugated (HC3N3O3)2– Groups. Inorg Chem 2019; 58:11289-11293. [PMID: 31414800 DOI: 10.1021/acs.inorgchem.9b02152] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xianghe Meng
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Liang
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaijin Kang
- Physics and Space Science College, China West Normal University, Nanchong 637002, China
| | - Jian Tang
- Physics and Space Science College, China West Normal University, Nanchong 637002, China
| | - Tixian Zeng
- Physics and Space Science College, China West Normal University, Nanchong 637002, China
| | - Zheshuai Lin
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingjun Xia
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|