1
|
Purushothaman E, Shanmugavadivu A, Balagangadharan K, Lekhavadhani S, Saranya I, Babu S, Selvamurugan N. Osteogenic potential of esculetin-loaded chitosan nanoparticles in microporous alginate/polyvinyl alcohol scaffolds for bone tissue engineering. Int J Biol Macromol 2025; 286:138518. [PMID: 39647745 DOI: 10.1016/j.ijbiomac.2024.138518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Bone tissue engineering (BTE) is an emerging strategy for the treatment of critical bone defects using biomaterials and cells. Esculetin (ES), a coumarin phytocompound, has demonstrated therapeutic potential, although its osteogenic effects remain insufficiently explored. Owing to its hydrophobic nature, which limits its bioavailability, this study developed a drug delivery system using chitosan nanoparticles (nCS) to achieve sustained release of ES. These ES-loaded nCS nanoparticles were incorporated into biocomposite scaffolds composed of alginate (Alg) and polyvinyl alcohol (PVA) using freeze-drying. The synthesized nCS-ES nanoparticles exhibited spherical morphology with a uniform size distribution, ranging from 105 to 117 nm, and demonstrated excellent entrapment efficiencies (94.07 to 97.61 %). The nanoparticles displayed high zeta potential values (+27.8 to +33.2 mV), ensuring stable dispersion. The biocomposite scaffolds exhibited a uniform distribution of pores, with pore diameters ranging from 106 ± 14 μm to 112 ± 14 μm. The biocomposite scaffolds exhibited excellent swelling, protein adsorption, biodegradation, and biomineralization properties. The ES-loaded scaffolds showed sustained ES release, promoting osteogenesis in vitro, with the activation of the Wnt/β-catenin signaling pathway. In vivo studies using a rat tibial bone defect model further confirmed that these scaffolds stimulated new bone formation, highlighting the ES's potential for BTE applications.
Collapse
Affiliation(s)
- Elumalai Purushothaman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sushma Babu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Progress and opportunities in Gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydr Polym 2023; 311:120782. [PMID: 37028862 DOI: 10.1016/j.carbpol.2023.120782] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Gellan gum, a microbial exopolysaccharide, is biodegradable and has potential to fill several key roles in many fields from food to pharmacy, biomedicine and tissue engineering. In order to improve the physicochemical and biological properties of gellan gum, some researchers take advantage of numerous hydroxyl groups and the free carboxyl present in each repeating unit. As a result, design and development of gellan-based materials have advanced significantly. The goal of this review is to provide a summary of the most recent, high-quality research trends that have used gellan gum as a polymeric component in the design of numerous cutting-edge materials with applications in various fields.
Collapse
|
3
|
Zhang Q, Hu S, Wu J, Sun P, Zhang Q, Wang Y, Zhao Q, Han T, Qin L, Zhang Q. Nystose attenuates bone loss and promotes BMSCs differentiation to osteoblasts through BMP and Wnt/β-catenin pathway in ovariectomized mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Song JE, Lee DH, Khang G, Yoon SJ. Accelerating bone regeneration using poly(lactic-co-glycolic acid)/hydroxyapatite scaffolds containing duck feet-derived collagen. Int J Biol Macromol 2023; 229:486-495. [PMID: 36587641 DOI: 10.1016/j.ijbiomac.2022.12.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Collagen, with low antigenicity and excellent cell adhesion, is a biomaterial mainly used for regenerating bone, cartilage, and skin, owing to its biocompatibility and biodegradability. Results from a previous study confirmed that a scaffold mixed with duck feet-derived collagen (DC) and Poly(lactic-co-glycolic acid) (PLGA) reduced inflammatory reaction and increased bone regeneration. To develop an optimal bone substitute we included hydroxyapatite (HAp), a key osteoconductive material, in a DC and PLGA mixture. We fabricated 0, 10, 20, 40, 60, and 80 wt% DC/PLGA/HAp scaffolds and studied their potential for bone tissue engineering. Characteristic analysis of the scaffold and seeding of rabbit bone marrow mesenchymal stem cells (rBMSCs) on the scaffold were conducted to investigate cell proliferation, osteogenic differentiation, and bone formation. We confirmed that increasing DC concentration not only improved the compressive strength of the DC/PLGA/HAp scaffold but also cell proliferation and osteogenic differentiation. It was found through comparison with previous studies that including HAp in the scaffold also promotes osteogenic differentiation. Our study thus shows through in vivo results that the 80 wt% DC/PLGA/HAp scaffold promotes bone mineralization and collagen deposition while reducing the inflammatory response. Hence, 80 wt% DC/PLGA/HAp has excellent potential as a biomaterial for bone regeneration applications.
Collapse
Affiliation(s)
- Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Dae Hoon Lee
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Sun-Jung Yoon
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Department of Orthopedic Surgery, Jeonbuk National University Medical School, 20 Gunjiro, Deokjin-gu, Jeonju-si, Jeollabuk-do 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University, 20 Gunjiro, Deokjin-gu, Jeonju-si, Jeollabuk-do 54907, Republic of Korea.
| |
Collapse
|
5
|
Baawad A, Jacho D, Hamil T, Yildirim-Ayan E, Kim DS. Polysaccharide-Based Composite Scaffolds for Osteochondral and Enthesis Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:123-140. [PMID: 36181352 DOI: 10.1089/ten.teb.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are frequently injured with limited healing capacity. At the soft-hard tissue interface, enthesis is prone to get damaged and its regeneration in osteochondral defects is essential for complete healing. The current clinical techniques used in suturing procedures to reattach tendons to bones need much improvement for the generation of the native interface tissue, that is, enthesis, for patients to regain their full functions. Recently, inspired by the composite native tissue, much effort has been made to fabricate composite scaffolds for enthesis tissue regeneration. This review first focuses on the studies that used composite scaffolds for the regeneration of enthesis. Then, the use of polysaccharides for osteochondral tissue engineering is reviewed and their potential for enthesis regeneration is presented based on their supporting effects on osteogenesis and chondrogenesis. Gellan gum (GG) is selected and reviewed as a promising polysaccharide due to its unique osteogenic and chondrogenic activities that help avoid the inherent weakness of dissimilar materials in composite scaffolds. In addition, original preliminary results showed that GG supports collagen type I production and upregulation of osteogenic marker genes. Impact Statement Enthesis regeneration is essential for complete and functional healing of tendon and ligament tissues. Current suturing techniques to reattach the tendon/ligament to bones have high failure rates. This review highlights the studies on biomimetic scaffolds aimed to regenerate enthesis. In addition, the potential of using polysaccharides to regenerate enthesis is discussed based on their ability to regenerate osteochondral tissues. Gellan gum is presented as a promising biopolymer that can be modified to simultaneously support bone and cartilage regeneration by providing structural continuity for the scaffold.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Diego Jacho
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Taijah Hamil
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
6
|
Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022; 10:1051678. [PMID: 36518978 PMCID: PMC9742444 DOI: 10.3389/fchem.2022.1051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Over the past few decades, various bioactive material-based scaffolds were investigated and researchers across the globe are actively involved in establishing a potential state-of-the-art for bone tissue engineering applications, wherein several disciplines like clinical medicine, materials science, and biotechnology are involved. The present review article's main aim is to focus on repairing and restoring bone tissue defects by enhancing the bioactivity of fabricated bone tissue scaffolds and providing a suitable microenvironment for the bone cells to fasten the healing process. It deals with the various surface modification strategies and smart composite materials development that are involved in the treatment of bone tissue defects. Orthopaedic researchers and clinicians constantly focus on developing strategies that can naturally imitate not only the bone tissue architecture but also its functional properties to modulate cellular behaviour to facilitate bridging, callus formation and osteogenesis at critical bone defects. This review summarizes the currently available polymeric composite matrices and the methods to improve their bioactivity for bone tissue regeneration effectively.
Collapse
Affiliation(s)
- Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Soumya Katiyar
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Darshna
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Aditya Anand
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | | |
Collapse
|
7
|
Chen M, Tan H, Xu W, Wang Z, Zhang J, Li S, Zhou T, Li J, Niu X. A Self-Healing, Magnetic and Injectable Biopolymer Hydrogel Generated by Dual Cross-Linking for Drug Delivery and Bone Repair. Acta Biomater 2022; 153:159-177. [PMID: 36152907 DOI: 10.1016/j.actbio.2022.09.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
Injectable hydrogels based on various functional biocompatible materials have made rapid progress in the field of bone repair. In this study, a self-healing and injectable polysaccharide-based hydrogel was prepared for bone tissue engineering. The hydrogel was made of carboxymethyl chitosan (CMCS) and calcium pre-cross-linked oxidized gellan gum (OGG) cross-linked by the Schiff-base reaction. Meanwhile, magnetic hydroxyapatite/gelatin microspheres (MHGMs) were prepared by the emulsion cross-linking method. The antibacterial drugs, tetracycline hydrochloride (TH) and silver sulfadiazine (AgSD), were embedded into the MHGMs. To improve the mechanical and biological properties of the hydrogels, composite hydrogels were prepared by compounding hydroxyapatite (HAp) and drug-embedded MHGMs. The physical, chemical, mechanical and rheological properties of the composite hydrogels were characterized, as well as in vitro antibacterial tests and biocompatibility assays, respectively. Our results showed that the composite hydrogel with 6% (w/v) HAp and 10 mg/mL MHGMs exhibited good magnetic responsiveness, self-healing and injectability. Compared with the pure hydrogel, the composite hydrogel showed a 38.8% reduction in gelation time (196 to 120 s), a 65.6% decrease in swelling rate (39.4 to 13.6), a 51.9% increase in mass residual after degradation (79.5 to 120.8%), and a 143.7% increase in maximum compressive stress (53.6 to 130.6 KPa). In addition, this composite hydrogel showed good drug retardation properties and antibacterial effects against both S. aureus and E. coli. CCK-8 assay showed that composite hydrogel maintained high cell viability (> 87%) and rapid cell proliferation after 3 days, indicating that this smart hydrogel is expected to be an alternative scaffold for drug delivery and bone regeneration. STATEMENT OF SIGNIFICANCE: Biopolymer hydrogels have been considered as the promising materials for the treatment of tissue engineering and drug delivery. Injectable hydrogels with and self-healing properties and responsiveness to external stimuli have been extensively investigated as cell scaffolds and bone defects, due to their diversity and prolonged lifetime. Magnetism has also been involved in biomedical applications and played significant roles in targeted drug delivery and anti-cancer therapy. We speculate that development of dual cross-linked hydrogels basing biopolymers with multi-functionalities, such as injectable, self-healing, magnetic and anti-bacterial properties, would greatly broaden the application for bone tissue regeneration and drug delivery.
Collapse
Affiliation(s)
- Mengying Chen
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Huaping Tan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China.
| | - Weijie Xu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Zijia Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Jinglei Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Shengke Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Tianle Zhou
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Jianliang Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 409 Room, 338 Building, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Xiaohong Niu
- Department of Luoli, Nanjing Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210014, China
| |
Collapse
|
8
|
Baawad A, Dhameri S, Park J, Murphy K, Kim DS. Rheological properties and decomposition rates of Gellan gum/hyaluronic acid/β-tricalcium phosphate mixtures. Int J Biol Macromol 2022; 211:15-25. [PMID: 35537591 DOI: 10.1016/j.ijbiomac.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022]
Abstract
The effects of β-tricalcium phosphate (TCP) on the mixture of low acyl gellan gum (LA-GAGR) and hyaluronic acid (HA) were investigated for the rheological properties and decomposition rates. All the tested mixture samples exhibited shear-thinning and typical viscoelastic behaviors. The sample made with 1.0% TCP and 0.30% LA-GAGR had the highest viscosity and loss and storage moduli and displayed gel-like behavior with the highest swelling capacity. The same mixture also exhibited the lowest average cumulative decomposition rate. High concentrations of LA-GAGR and TCP increased the degree of cross-linking of the polysaccharides, and as a result, the mixture was more elastic and less fluidic and decomposed slower. The samples prepared by gradual mixing of LA-GAGR and TCP decomposed slower than the sample prepared by sudden mixing, which indicates the well-dispersed TCP enhanced cross-linking of the polymers. This study demonstrates the possible applicability of natural polysaccharide-based shear-thinning gels for biomedical applications.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Sulaiman Dhameri
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Joshua Park
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Kelsey Murphy
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
9
|
A Review of Gum Hydrocolloid Polyelectrolyte Complexes (PEC) for Biomedical Applications: Their Properties and Drug Delivery Studies. Processes (Basel) 2021. [DOI: 10.3390/pr9101796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The utilization of natural gum polysaccharides as the vehicle for drug delivery systems and other biomedical applications has increased in recent decades. Their biocompatibility, biodegradability, and price are much cheaper than other materials. It is also renewable and available in massive amounts, which are the main reasons for its use in pharmaceutical applications. Gum can be easily functionalized with other natural polymers to enhance their applications. Various aspects of the utilization of natural gums in the forms of polyelectrolyte complexes (PECs) for drug delivery systems are discussed in this review. The application of different mathematical models were used to represent the drug release mechanisms from PECs; these models include a zero-order equation, first-order equation, Higuchi, simplified Higuchi, Korsmeyer–Peppas, and Peppas–Sahlin.
Collapse
|
10
|
Bonferoni MC, Caramella C, Catenacci L, Conti B, Dorati R, Ferrari F, Genta I, Modena T, Perteghella S, Rossi S, Sandri G, Sorrenti M, Torre ML, Tripodo G. Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics 2021; 13:pharmaceutics13091341. [PMID: 34575417 PMCID: PMC8471088 DOI: 10.3390/pharmaceutics13091341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.
Collapse
Affiliation(s)
| | | | | | - Bice Conti
- Correspondence: (M.C.B.); (B.C.); (F.F.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tan B, Tang Q, Zhong Y, Wei Y, He L, Wu Y, Wu J, Liao J. Biomaterial-based strategies for maxillofacial tumour therapy and bone defect regeneration. Int J Oral Sci 2021; 13:9. [PMID: 33727527 PMCID: PMC7966790 DOI: 10.1038/s41368-021-00113-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/13/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Issues caused by maxillofacial tumours involve not only dealing with tumours but also repairing jaw bone defects. In traditional tumour therapy, the systemic toxicity of chemotherapeutic drugs, invasive surgical resection, intractable tumour recurrence, and metastasis are major threats to the patients' lives in the clinic. Fortunately, biomaterial-based intervention can improve the efficiency of tumour treatment and decrease the possibility of recurrence and metastasis, suggesting new promising antitumour therapies. In addition, maxillofacial bone tissue defects caused by tumours and their treatment can negatively affect the physiological and psychological health of patients, and investment in treatment can result in a multitude of burdens to society. Biomaterials are promising options because they have good biocompatibility and bioactive properties for stimulation of bone regeneration. More interestingly, an integrated material regimen that combines tumour therapy with bone repair is a promising treatment option. Herein, we summarized traditional and biomaterial-mediated maxillofacial tumour treatments and analysed biomaterials for bone defect repair. Furthermore, we proposed a promising and superior design of dual-functional biomaterials for simultaneous tumour therapy and bone regeneration to provide a new strategy for managing maxillofacial tumours and improve the quality of life of patients in the future.
Collapse
Affiliation(s)
- Bowen Tan
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Tang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongjin Zhong
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yali Wei
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linfeng He
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanting Wu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiabao Wu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Prosapio V, T. Norton I, Lopez-Quiroga E. Freeze-Dried Gellan Gum Gels as Vitamin Delivery Systems: Modelling the Effect of pH on Drying Kinetics and Vitamin Release Mechanisms. Foods 2020; 9:E329. [PMID: 32168985 PMCID: PMC7143107 DOI: 10.3390/foods9030329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 12/02/2022] Open
Abstract
Freeze-dried gellan gum gels present great potential as delivery systems for biocompounds, such as vitamins, in food products. Here, we investigate the effect of modifying the gel pH-prior to the encapsulation process-on drying and release kinetics, and on delivery mechanisms from the substrate. Gellan gum gels were prepared at pH 5.2, 4 and 2.5 and loaded with riboflavin before being freeze-dried. Release tests were then carried out at ambient temperature in water. Five drying kinetics models were fitted to freeze-drying experimental curves using regression analysis. The goodness-of-fit was evaluated according to (i) the root mean squared error (ii), adjusted R-square (iii), Akaike information criterion (iv) and Bayesian information criterion. The Wang and Singh model provided the most accurate descriptions for drying at acidified pH (i.e., pH 4 and pH 2.5), while the Page model described better freeze-drying at pH 5.2 (gellan gum's natural pH). The effect of pH on the vitamin release mechanism was also determined using the Korsmeyer-Peppas model, with samples at pH 5.2 showing a typical Fickian behaviour, while acidified samples at pH 4 combined both Fickian and relaxation mechanisms. Overall, these results establish the basis for identifying the optimal conditions for biocompound delivery using freeze-dried gellan gels.
Collapse
Affiliation(s)
- Valentina Prosapio
- School of Chemical and Engineering, University of Birmingham, Birmingham B15 2TT, UK; (I.T.N.); (E.L.-Q.)
| | | | | |
Collapse
|
13
|
Florea DA, Albuleț D, Grumezescu AM, Andronescu E. Surface modification – A step forward to overcome the current challenges in orthopedic industry and to obtain an improved osseointegration and antimicrobial properties. MATERIALS CHEMISTRY AND PHYSICS 2020; 243:122579. [DOI: 10.1016/j.matchemphys.2019.122579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Thiolated bone and tendon tissue particles covalently bound in hydrogels for in vivo calvarial bone regeneration. Acta Biomater 2020; 104:66-75. [PMID: 31904561 DOI: 10.1016/j.actbio.2019.12.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 12/25/2022]
Abstract
Bone regeneration of large cranial defects, potentially including traumatic brain injury (TBI) treatment, presents a major problem with non-crosslinking, clinically available products due to material migration outside the defect. Commercial products such as bone cements are permanent and thus not conducive to bone regeneration, and typical commercial bioactive materials for bone regeneration do not crosslink. Our previous work demonstrated that non-crosslinking materials may be prone to material migration following surgical placement, and the current study attempted to address these problems by introducing a new hydrogel system where tissue particles are themselves the crosslinker. Specifically, a pentenoate-modified hyaluronic acid (PHA) polymer was covalently linked to thiolated tissue particles of demineralized bone matrix (TDBM) or devitalized tendon (TDVT), thereby forming an interconnected hydrogel matrix for calvarial bone regeneration. All hydrogel precursor solutions exhibited sufficient yield stress for surgical placement and an adequate compressive modulus post-crosslinking. Critical-size calvarial defects were filled with a 4% PHA hydrogel containing 10 or 20% TDBM or TDVT, with the clinical product DBXⓇ being employed as the standard of care control for the in vivo study. At 12 weeks, micro-computed tomography analysis demonstrated similar bone regeneration among the experimental groups, TDBM and TDVT, and the standard of care control DBXⓇ. The group with 10% TDBM was therefore identified as an attractive material for potential calvarial defect repair, as it additionally exhibited a sufficient initial recovery after shearing (i.e., > 80% recovery). Future studies will focus on applying a hydrogel in a rat model for treatment of TBI. STATEMENT OF SIGNIFICANCE: Non-crosslinking materials may be prone to material migration from a calvarial bone defect following surgical placement, which is problematic for materials intended for bone regeneration. Unfortunately, typical crosslinking materials such as bone cements are permanent and thus not conducive to bone regeneration, and typical bioactive materials for bone regeneration such as tissue matrix are not crosslinked in commercial products. The current study addressed these problems by introducing a new biomaterial where tissue particles are themselves the crosslinker in a hydrogel system. The current study successfully demonstrated a new material based on pentenoate-modified hyaluronic acid with thiolated demineralized bone matrix that is capable of rapid crosslinking, with desirable paste-like rheology of the precursor material for surgical placement, and with bone regeneration comparable to a commercially available standard-of-care product. Such a material may hold promise for a single-surgery treatment of severe traumatic brain injury (TBI) following hemicraniectomy.
Collapse
|
15
|
Kim JW, Park JH, Muthukumar T, Shin EY, Shin ME, Song JE, Khang G. Accelerating bone defects healing in calvarial defect model using 3D cultured bone marrow-derived mesenchymal stem cells on demineralized bone particle scaffold. J Tissue Eng Regen Med 2020; 14:563-574. [PMID: 32061025 DOI: 10.1002/term.3020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/10/2022]
Abstract
Bone defects are usually difficult to be regenerated due to pathological states or the size of the injury. Researchers are focusing on tissue engineering approaches in order to drive the regenerative events, using stem cells to regenerate bone. The purpose of this study is to evaluate the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) on biologically derived Gallus gallus domesticus-derived demineralized bone particle (GDD) sponge. The sponges were prepared by freeze-drying method using 1, 2, and 3 wt% GDD and cross-linked with glutaraldehyde. The GDD sponge was characterized using scanning electron microscopy, compressive strength, porosity, and Fourier transform infrared. The potential bioactivity of the sponge was evaluated by osteogenic differentiation of BMSCs using 3(4, dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and quantifying alkaline phosphatase (ALP) activity. in vivo experiments were evaluated through a micro-computerized tomography (μ-CT) and histological assays. The analysis confirmed that an increase in the concentration of the GDD in the sponge leads to a higher bone formation and deposition in rat calvarial defects. Histological assay results were in line with μ-CT. The results reported in this study demonstrated the potential application of GDD sponges as osteoinductor in bone tissue engineering in pathological or nonunion bone defects.
Collapse
Affiliation(s)
- Jin Woo Kim
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Jong Ho Park
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Thangavelu Muthukumar
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Eun Yeong Shin
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Myeong Eun Shin
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| |
Collapse
|
16
|
Natural Sources and Applications of Demineralized Bone Matrix in the Field of Bone and Cartilage Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:3-14. [DOI: 10.1007/978-981-15-3258-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Muthukumar T, Song JE, Khang G. Biological Role of Gellan Gum in Improving Scaffold Drug Delivery, Cell Adhesion Properties for Tissue Engineering Applications. Molecules 2019; 24:E4514. [PMID: 31835526 PMCID: PMC6943741 DOI: 10.3390/molecules24244514] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, gellan gum (GG) has attracted substantial research interest in several fields including biomedical and clinical applications. The GG has highly versatile properties like easy bio-fabrication, tunable mechanical, cell adhesion, biocompatibility, biodegradability, drug delivery, and is easy to functionalize. These properties have put forth GG as a promising material in tissue engineering and regenerative medicine fields. Nevertheless, GG alone has poor mechanical strength, stability, and a high gelling temperature in physiological conditions. However, GG physiochemical properties can be enhanced by blending them with other polymers like chitosan, agar, sodium alginate, starch, cellulose, pullulan, polyvinyl chloride, xanthan gum, and other nanomaterials, like gold, silver, or composites. In this review article, we discuss the comprehensive overview and different strategies for the preparation of GG based biomaterial, hydrogels, and scaffolds for drug delivery, wound healing, antimicrobial activity, and cell adhesion. In addition, we have given special attention to tissue engineering applications of GG, which can be combined with another natural, synthetic polymers and nanoparticles, and other composites materials. Overall, this review article clearly presents a summary of the recent advances in research studies on GG for different biomedical applications.
Collapse
Affiliation(s)
| | | | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Korea; (T.M.); (J.E.S.)
| |
Collapse
|