1
|
Jing Y, Wang K, Pi T, Chen Z, Liu T, Liu X, Ye H, Xu X, Zhao Y. Crucial role of low molecular weight chondroitin sulfate from hybrid sturgeon cartilage in osteoarthritis improvement: Focusing on apoptosis, systemic inflammation, and intestinal flora. Int J Biol Macromol 2025; 298:139850. [PMID: 39814287 DOI: 10.1016/j.ijbiomac.2025.139850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Low molecular weight chondroitin sulfate (CS) has gained considerable attention for its superior bioactivity compared to native CS. In this study, the mechanisms of low molecular weight chondroitin sulfate from hybrid sturgeon cartilage (LMSCS), prepared using the H2O2/Vc system, on the remission of osteoarthritis (OA) were investigated both in in vitro and in vivo. A Caco-2/SW1353 co-culture cell model and a monosodium iodoacetate (MIA)-induced OA mouse model were used to validate its inhibited apoptosis, anti-inflammatory effects, and intestinal flora modulation. LMSCS was found to effectively alleviate inflammation, decrease chondrocyte apoptosis, and reduce MMP-13 levels by inhibiting the activation of NF-κB and MAPK signaling pathways. Notably, in vivo experiments, LMSCS exhibited significant anti-inflammatory effects compared to SCS. This trend, however, was not observed in vitro, which could be largely attributed to LMSCS' ability to regulate intestinal flora. Compared to SCS, LMSCS enhanced the abundance of beneficial bacteria, particularly, the Prevotellaceae_NK3B31_group and Akkermansia, and increased the levels of short-chain fatty acids such as butyrate and propionate. The effectiveness of LMSCS in mitigating inflammatory responses in vivo is thus largely due to its intestinal flora modulation, providing for its development and application.
Collapse
Affiliation(s)
- Yinghuan Jing
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Kangyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Tianxiang Pi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Sanye Oceanographic Instinstion, Ocean University of China, Sanya 572000, China
| | - Zefan Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Tianhong Liu
- Marine science research Institute of Shandong province, Qingdao 266104, China
| | - Xinyu Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hangyu Ye
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Sanye Oceanographic Instinstion, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
2
|
Vijayakumar S, González-Sánchez ZI, Amanullah M, Sonamuthu J, Rajkumar M, Divya M, Durán-Lara EF, Li M. Shark chondroitin sulfate gold nanoparticles: A biocompatible apoptotic agent for osteosarcoma. Int J Biol Macromol 2024; 290:138793. [PMID: 39689798 DOI: 10.1016/j.ijbiomac.2024.138793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Osteosarcoma is a highly aggressive tumor that originates in the bone and often infiltrates nearby bone cells. It is the most prevalent type of primary bone cancer among the various bone malignancies. Traditional cancer treatment methods such as surgery, chemotherapy, immunotherapy, and radiotherapy have had restricted success. However, the integration of nanotechnology into cancer research has led to notable progress. One promising area is the use of marine-derived polysaccharide-based nano formulations for treating various human diseases, including cancer. This study presents a straightforward method for synthesizing biocompatible gold nanoparticles (AuNPs), utilizing sodium borohydride as a reducing agent and a cost-effective, water-soluble chondroitin sulfate (CS) derived from shark cartilage as a stabilizing agent. The synthesized CS-Au NPs appeared purple and were mainly spherical, with 40.768 nm of average size. Cytotoxicity assays (MTT) indicated that CS-Au NPs significantly reduced the viability of human osteosarcoma cells (MG63) at 100 μg/mL, while it showed no cytotoxic effects on mouse embryonic fibroblast cells (NIH3T3) at the same concentration. The observed toxicity of the CS-Au NPs was linked to a rise in the production of reactive oxygen species (ROS) within damaged mitochondria. ROS generation and changes in mitochondrial membrane potential were detected in MG63 cells treated with CS-Au NPs. Furthermore, apoptotic analysis through ethidium bromide dual staining and flow cytometry demonstrated that CS-Au NPs at higher concentrations significantly increased the amount of apoptotic cells, as demonstrated by acridine orange/ethidium bromide staining. Flow cytometry also confirmed that CS-Au NPs activated the apoptotic pathway in MG63 cells.
Collapse
Affiliation(s)
- Sekar Vijayakumar
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| | - Zaira I González-Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic; Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Mohammed Amanullah
- Department of clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Jegatheeswaran Sonamuthu
- Advanced Laboratory of Bio-nanomaterials, BioMe Live Analytical Centre, Kannappa Tower, College Road, Karaikudi 630 003, Tamilnadu, India
| | - Mangaiyarkarasi Rajkumar
- Advanced Laboratory of Bio-nanomaterials, BioMe Live Analytical Centre, Kannappa Tower, College Road, Karaikudi 630 003, Tamilnadu, India
| | - Mani Divya
- Advanced Laboratory of Bio-nanomaterials, BioMe Live Analytical Centre, Kannappa Tower, College Road, Karaikudi 630 003, Tamilnadu, India
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| |
Collapse
|
3
|
Han Y, Kim DH, Pack SP. Marine-Derived Bioactive Ingredients in Functional Foods for Aging: Nutritional and Therapeutic Perspectives. Mar Drugs 2024; 22:496. [PMID: 39590776 PMCID: PMC11595256 DOI: 10.3390/md22110496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Aging is closely linked to various health challenges, including cardiovascular disease, metabolic disorders, and neurodegenerative conditions. This study emphasizes the critical role of bioactive compounds derived from marine sources, such as antioxidants, omega-3 fatty acids, vitamins, minerals, and polysaccharides, in addressing oxidative stress, inflammation, and metabolic disorders closely related to aging. Incorporating these materials into functional foods not only provides essential nutrients but also delivers therapeutic effects, thereby promoting healthy aging and mitigating age-related diseases. The growth of the global anti-aging market, particularly in North America, Europe, and Asia, underscores the significance of this study. This review systematically analyzes the current research, identifying key bioactive compounds, their mechanisms of action, and their potential health benefits, thus highlighting the broad applicability of marine-derived bioactive compounds to enhancing healthy aging and improving the quality of life of aging populations.
Collapse
Affiliation(s)
- Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| |
Collapse
|
4
|
Miao K, Zhou Y, He X, Xu Y, Zhang X, Zhao H, Zhou X, Gu Q, Yang H, Liu X, Huang L, Shi Q. Microenvironment-responsive bilayer hydrogel microspheres with gelatin-shell for osteoarthritis treatment. Int J Biol Macromol 2024; 261:129862. [PMID: 38309409 DOI: 10.1016/j.ijbiomac.2024.129862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Osteoarthritis is a long-term degenerative condition of the joints that is characterized by the breakdown of cartilage and inflammation of the synovial membrane. The presence of an inflammatory microenvironment and the degradation of the extracellular matrix produced by chondrocytes leads to the aggravation of cartilage injury, hindering the treatment of osteoarthritis. A promising approach to address this issue is to apply a combined strategy that is sensitive to the specific conditions in osteoarthritic joints and possesses properties that can reduce inflammation and promote cartilage healing. Here, inspired by the structure of chocolate-covered peanuts, we developed an injectable, environment-responsive bilayer hydrogel microsphere using microfluidics technology. The microsphere applied chondroitin sulfate methacryloyl (ChsMA) as its core and was coated with a methacryloyl gelatin (GelMA) shell that was loaded with celecoxib (CLX) liposomes (ChsMA+CLX@Lipo@GelMA). CLX was released from the liposomes when the GelMA shell rapidly degraded in response to the osteoarthritic microenvironment and suppressed the generation of inflammatory agents, demonstrating a beneficial impact of the outer shell in reducing inflammation. While the inner methacryloyl microsphere core degraded, chondroitin sulfate was released to promote chondrocyte anabolism and facilitate cartilage repair. Thus, the synthesized bilayer hydrogel microspheres hold great potential for treating osteoarthritis.
Collapse
Affiliation(s)
- Kaisong Miao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215031, China; Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yun Zhou
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215031, China
| | - Xu He
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215031, China
| | - Yong Xu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215031, China
| | - Xiongjinfu Zhang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215031, China
| | - Huan Zhao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215031, China
| | - Xichao Zhou
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215031, China
| | - Qiaoli Gu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215031, China
| | - Huilin Yang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215031, China
| | - Xingzhi Liu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, Jiangsu 215123, PR China.
| | - Lixin Huang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215031, China.
| | - Qin Shi
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215031, China.
| |
Collapse
|
5
|
Lei T, Tong Z, Zhai X, Zhao Y, Zhu H, Wang L, Wen Z, Song B. Chondroitin Sulfate Improves Mechanical Properties of Gelatin Hydrogel for Cartilage Regeneration in Rats. Adv Biol (Weinh) 2023; 7:e2300249. [PMID: 37635149 DOI: 10.1002/adbi.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Cartilage injury is a common disease in daily life. Especially in aging populations, the incidence of osteoarthritis is increasing. However, due to the poor regeneration ability of cartilage, most cartilage injuries cannot be effectively repaired. Even cartilage tissue engineering still faces many problems such as complex composition and poor integration of scaffolds and host tissues. In this study, chondroitin sulfate, one of the main components of extracellular matrix (ECM), is chosen as the main natural component of the material, which can protect cartilage in a variety of ways. Moreover, the results show that the addition of chondroitin sulfate improves the mechanical properties of gelatin methacrylate (GelMA) hydrogel, making it able to effectively bear mechanical loads in vivo. Further, chondroitin sulfate is modified to obtain the oxidized chondroitin sulfate (OCS) containing aldehyde groups via sodium periodate. This special group improves the interface integration and adhesion ability of the hydrogel to host cartilage tissue through schiff base reactions. In summary, GelMA/OCS hydrogel is a promising candidate for cartilage regeneration with good biocompatibility, mechanical properties, tissue integration ability, and excellent cartilage repair ability.
Collapse
Affiliation(s)
- Tao Lei
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Zhicheng Tong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Xinrang Zhai
- School of Chemistry and Chemical Engineering, Nanjing University of Science&Technology, Nanjing, 210094, China
| | - Yushuang Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science&Technology, Nanjing, 210094, China
| | - Huangrong Zhu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Lu Wang
- Department of Pathology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Zhengfa Wen
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| | - Binghua Song
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 32200, China
| |
Collapse
|
6
|
Han J, Deng H, Li Y, Qiao L, Jia H, Zhang L, Wang L, Qu C. Nano-elemental selenium particle developed via supramolecular self-assembly of chondroitin sulfate A and Na 2SeO 3 to repair cartilage lesions. Carbohydr Polym 2023; 316:121047. [PMID: 37321739 DOI: 10.1016/j.carbpol.2023.121047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Cartilage repair is a significant clinical issue due to its restricted ability to regenerate and self-heal after cartilage lesions or degenerative disease. Herein, a nano-elemental selenium particle (chondroitin sulfate A‑selenium nanoparticle, CSA-SeNP) is developed by the supramolecular self-assembly of Na2SeO3 and negatively charged chondroitin sulfate A (CSA) via electrostatic interactions or hydrogen bonds followed by in-situ reducing of l-ascorbic acid for cartilage lesions repair. The constructed micelle exhibits a hydrodynamic particle size of 171.50 ± 2.40 nm and an exceptionally high selenium loading capacity (9.05 ± 0.03 %) and can promote chondrocyte proliferation, increase cartilage thickness, and improve the ultrastructure of chondrocytes and organelles. It mainly enhances the sulfation modification of chondroitin sulfate by up-regulating the expression of chondroitin sulfate 4-O sulfotransferase-1, -2, -3, which in turn promotes the expression of aggrecan to repair articular and epiphyseal-plate cartilage lesions. The micelles combine the bio-activity of CSA with selenium nanoparticles (SeNPs), which are less toxic than Na2SeO3, and low doses of CSA-SeNP are even superior to inorganic selenium in repairing cartilage lesions in rats. Thus, the developed CSA-SeNP is anticipated to be a promising selenium supplementation preparation in clinical application to address the difficulty of healing cartilage lesions with outstanding repair effects.
Collapse
Affiliation(s)
- Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Hongrui Jia
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
| | - Linghang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Chengjuan Qu
- Department of Odontology, Umeå University, Umeå, Sweden.
| |
Collapse
|
7
|
Chen B, Fang L, Lin L, Lv Y, Huang Z, Lin X, Wang X. Aerobic exercise combined with glucosamine hydrochloride capsules inhibited the apoptosis of chondrocytes in rabbit knee osteoarthritis by affecting TRPV5 expression. Gene X 2022; 830:146465. [PMID: 35427733 DOI: 10.1016/j.gene.2022.146465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 01/07/2022] [Accepted: 03/31/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of aerobic exercise combined with glucosamine (OTL) on the apoptosis of chondrocytes of rabbit knee osteoarthritis (KOA) by affecting the expression of TRPV5. METHODS After the KOA white rabbit model was established, aerobic training and OTL treatment were performed, then the model joints were evaluated by Mankin, HE staining was used to observe the pathological changes of articular cartilage, TUNEL and immunohistochemistry were used to detect chondrocyte apoptosis. Knee chondrocytes were isolated and identified by Alcian Blue and type II collagen fiber staining. The cells were treated with iodoacetic acid (MIA) to simulate osteoarthritis in vitro, and then the effect of TRPV5 on apoptosis was detected by flow cytometry, in addition, apoptosis-related proteins and TRPV5 were detected by western blotting and qRT-PCR. RESULTS Both aerobic exercise and OTL treatment could significantly reduce the Mankin score of KOA model, and could effectively inhibit chondrocyte apoptosis in the KOA model, and inhibit the expression of caspase 3 and caspase 9 in the KOA model. TRPV5 expression was significantly increased in the model, while both aerobic exercise and OTL could reverse its expression. The low-expression of TRPV5 significantly reversed the role of MIA in promoting apoptosis and apoptosis-related proteins of knee chondrocytes, while overexpressing TRPV5 promoted MIA-induced apoptosis and apoptosis-related proteins. CONCLUSION Aerobic exercise combined with glucosamine hydrochloride capsules inhibited the apoptosis of chondrocytes in rabbit KOA by affecting the expression of TRPV5.
Collapse
Affiliation(s)
- Bojian Chen
- Department of Orthopaedics, Guangdong Provincial Hospital of Traditional Chinese Medicine, Yuexiu District, Guangzhou, Guangdong 510120, China.
| | - Lei Fang
- Joint and sports injuries, Guangzhou Tianhe District Chinese Medicine Hospital, Tianhe District, Guangzhou, Guangdong 510260, China
| | - Liangzhuo Lin
- Department of Orthopaedics, Yangjiang Hospital of Traditional Chinese Medicine, Jiangcheng District, Yangjiang city, Guangdong Province 529500, China
| | - Yang Lv
- Department of Orthopaedics, Guangdong Provincial Hospital of Traditional Chinese Medicine, Yuexiu District, Guangzhou, Guangdong 510120, China
| | - Zexin Huang
- Department of Orthopaedics, Guangdong Provincial Hospital of Traditional Chinese Medicine, Yuexiu District, Guangzhou, Guangdong 510120, China
| | - Xiaodong Lin
- Department of Orthopaedics, GuangDong Second Traditional Chinese Medicine Hospital, Yuexiu District, Guangzhou, Guangdong 510095, China
| | - Xin Wang
- Department of Orthopaedics, Guangdong Provincial Hospital of Traditional Chinese Medicine, Yuexiu District, Guangzhou, Guangdong 510120, China
| |
Collapse
|
8
|
The Role of Mitochondrial Metabolism, AMPK-SIRT Mediated Pathway, LncRNA and MicroRNA in Osteoarthritis. Biomedicines 2022; 10:biomedicines10071477. [PMID: 35884782 PMCID: PMC9312479 DOI: 10.3390/biomedicines10071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease characterized by degeneration of articular cartilage and causes severe joint pain, physical disability, and impaired quality of life. Recently, it was found that mitochondria not only act as a powerhouse of cells that provide energy for cellular metabolism, but are also involved in crucial pathways responsible for maintaining chondrocyte physiology. Therefore, a growing amount of evidence emphasizes that impairment of mitochondrial function is associated with OA pathogenesis; however, the exact mechanism is not well known. Moreover, the AMP-activated protein kinase (AMPK)–Sirtuin (SIRT) signaling pathway, long non-coding RNA (lncRNA), and microRNA (miRNA) are important for regulating the physiological and pathological processes of chondrocytes, indicating that these may be targets for OA treatment. In this review, we first focus on the importance of mitochondria metabolic dysregulation related to OA. Then, we show recent evidence on the AMPK-SIRT mediated pathway associated with OA pathogenesis and potential treatment options. Finally, we discuss current research into the effects of lncRNA and miRNA on OA progression or inhibition.
Collapse
|
9
|
Shionoya K, Suzuki T, Takada M, Sato K, Onishi S, Dohmae N, Nishino K, Wada T, Linhardt RJ, Toida T, Higashi K. Comprehensive analysis of chondroitin sulfate and aggrecan in the head cartilage of bony fishes: Identification of proteoglycans in the head cartilage of sturgeon. Int J Biol Macromol 2022; 208:333-342. [PMID: 35339495 DOI: 10.1016/j.ijbiomac.2022.03.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 01/14/2023]
Abstract
Cartilage in the head of sturgeon or salmon has been gaining attention as a rich source of functional chondroitin sulfate (CS) or proteoglycans. Although the cartilage was found in the heads of other bony fishes, the structure of CS and its core protein, especially aggrecan, was not fully investigated. In this study, comprehensive analysis of CS and aggrecan in the head cartilage of 10 bony fishes including sturgeon and salmon was performed. The 4-O-sulfation to 6-O-sulfation ratio (4S/6S ratio; S: sulfate residue) of CS in Perciformes was ≧1.0, while the 4S/6S ratios of CS from sturgeons and salmon were less than 0.5. Dot blotting and proteomic analysis revealed that aggrecan was a major core protein in head cartilage of all bony fishes. These results suggest that the head cartilage of bony fishes is a promising source for the preparation of CS or proteoglycans as a health food ingredient.
Collapse
Affiliation(s)
- Kento Shionoya
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takehiro Suzuki
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mako Takada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazuki Sato
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shoichi Onishi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Naoshi Dohmae
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Koichiro Nishino
- Graduate School of Medicine and Veterinary Medicine/Faculty of Agriculture, Center for Animal Disease Control (CADIC), University of Miyazaki 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Takeshi Wada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street Troy, NY 12180, USA
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kyohei Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
10
|
Oral administration of hydrolysates of cartilage extract in the prevention of osteoarthritis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
11
|
Mishra S, Ganguli M. Functions of, and replenishment strategies for, chondroitin sulfate in the human body. Drug Discov Today 2021; 26:1185-1199. [PMID: 33549530 DOI: 10.1016/j.drudis.2021.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Chondroitin sulfate (CS) belongs to a class of molecules called glycosaminoglycans (GAGs). These are long, linear chains of polysaccharides comprising alternating amino sugars and hexuronic acid. Similar to other GAGs, CS is important in a multitude of biological activities. Alteration of CS levels has been implicated in several pathological conditions, including osteoarthritis (OA) and other inflammatory diseases, as well as physiological conditions, such as aging. Therefore, devising replenishment strategies for this molecule is an important area of research. In this review, we discuss the nature of CS, its function in different organs, and its implications in health and disease. We also describe different methods for the exogenous administration of CS.
Collapse
Affiliation(s)
- Sarita Mishra
- CSIR - Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR - Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Mao X, Fu P, Wang L, Xiang C. Mitochondria: Potential Targets for Osteoarthritis. Front Med (Lausanne) 2020; 7:581402. [PMID: 33324661 PMCID: PMC7726420 DOI: 10.3389/fmed.2020.581402] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a common and disabling joint disorder that is mainly characterized by cartilage degeneration and narrow joint spaces. The role of mitochondrial dysfunction in promoting the development of OA has gained much attention. Targeting endogenous molecules to improve mitochondrial function is a potential treatment for OA. Moreover, research on exogenous drugs to improve mitochondrial function in OA based on endogenous molecular targets has been accomplished. In addition, stem cells and exosomes have been deeply researched in the context of cartilage regeneration, and these factors both reverse mitochondrial dysfunctions. Thus, we hypothesize that biomedical approaches will be applied to the treatment of OA. Furthermore, we have summarized the global status of mitochondria and osteoarthritis research in the past two decades, which will contribute to the research field and the development of novel treatment strategies for OA.
Collapse
Affiliation(s)
- Xingjia Mao
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Panfeng Fu
- Department of Respiratory and Critical Care, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, The School of Medicine of Zhejiang University, Hangzhou, China
| | - Chuan Xiang
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Xu Y, Chen F. Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activities of Nesfatin-1: A Review. J Inflamm Res 2020; 13:607-617. [PMID: 33061526 PMCID: PMC7532075 DOI: 10.2147/jir.s273446] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Nesfatin-1, a newly identified energy-regulating peptide, is widely expressed in the central and peripheral tissues, and has a variety of physiological activities. A large number of recent studies have shown that nesfatin-1 exhibits antioxidant, anti-inflammatory, and anti-apoptotic properties and is involved in the occurrence and progression of various diseases. This review summarizes current data focusing on the therapeutic effects of nesfatin-1 under different pathophysiological conditions and the mechanisms underlying its antioxidant, anti-inflammatory, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People's Republic of China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People's Republic of China
| |
Collapse
|
14
|
Wang T, Zhang S, Ren S, Zhang X, Yang F, Chen Y, Wang B. Structural characterization and proliferation activity of chondroitin sulfate from the sturgeon, Acipenser schrenckii. Int J Biol Macromol 2020; 164:3005-3011. [PMID: 32810535 DOI: 10.1016/j.ijbiomac.2020.08.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023]
Abstract
The cartilages of marine fish, such as sharks and sturgeon, are important resources of the bioactive chondroitin sulfate (CS). To explore glycosaminoglycans from marine fish, polysaccharides from the cartilage of the sturgeon, Acipenser schrenckii, were extracted. Using enzyme-assisted extraction and anion-exchange chromatography, an uronic acid-containing polysaccharide, YG-1, was isolated. YG-1 is composed of GlcN, GlcUA, GalN, and Gal, in the ratio of 1.4: 3.4: 3.7: 1.0, and its molecular weight was determined to be 3.0 × 105 Da. YG-1 was confirmed to be chondroitin 4-sulfate (CS) composed of →4GlcAβ1→3GalNAc4Sβ1→ and minor →4GlcAβ1→3GalNAcβ1→, which was confirmed using IR spectroscopy, disaccharide composition analysis, and NMR. Bioactivity studies, including MTT assay and scratch-wound assays revealed that CS from Acipenser schrenckii had significant proliferation activity. The proliferation activity of the polysaccharide, YG-1, was related to Fibroblast growth factor 2 (FGF2). GalNAc 4S of YG-1 could be the binding sites of FGF2 and FGFR.
Collapse
Affiliation(s)
- Teng Wang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Shilin Zhang
- School of Food Science and Pharmaceutical Engineering, Najing Normal University, 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shouyan Ren
- Department of Otorhinolaryngology, Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Qingdao 216000, People's Republic of China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Najing Normal University, 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Fan Yang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Yin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| | - Bin Wang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| |
Collapse
|
15
|
Zhang X, Li Q, Sun Y, Chen L, Wang J, Liang L. Chondroitin sulfate from sturgeon bone protects rat chondrocytes from hydrogen peroxide-induced damage by maintaining cellular homeostasis through enhanced autophagy. Int J Biol Macromol 2020; 164:2761-2768. [PMID: 32763392 DOI: 10.1016/j.ijbiomac.2020.07.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 01/22/2023]
Abstract
We previously reported that treatment with chondroitin sulfate from sturgeon bone (CSSB) promoted anti-apoptotic activity in hydrogen peroxide (H2O2)-treated chondrocytes and had a protective effect on mitochondria. It is known that cells can repair damaged mitochondria through autophagy, thus inhibiting the development of apoptosis. Therefore, it is reasonable to speculate that CSSB treatment may inhibit chondrocyte apoptosis via regulation of autophagy. We observed the mitochondrial morphology of chondrocytes treated with different doses of CSSB, and confirmed that CSSB did not affect cell activity or cause damage to mitochondria. When compared with H2O2 treatment alone, CSSB treatment increased the clearance and repair of damaged mitochondria and promoted fusion of damaged mitochondria and lysosomes. CSSB treatment also increased the number of autolysosomes. However, these events could be blocked in chondrocytes pretreated with the autophagy inhibitor chloroquine, resulting in a decreased level of autophagy and increased apoptosis. These results suggest that CSSB treatment helps maintain intracellular homeostasis and prevent injury in chondrocytes treated with H2O2 by increasing autophagy.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Pain, Qilu Hospital of Shandong University, Jinan 250101, China; Department of anesthesiology, The Second Hospital of Shandong University, Jinan 250101, China
| | - Qingsong Li
- Department of anesthesiology, The Second Hospital of Shandong University, Jinan 250101, China
| | - Yingjiao Sun
- Department of Pain, Qilu Hospital of Shandong University, Jinan 250101, China
| | - Lei Chen
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China
| | - Jianfeng Wang
- Department of Pain, Qilu Hospital of Shandong University, Jinan 250101, China.
| | - Lishuang Liang
- Department of Pain, Qilu Hospital of Shandong University, Jinan 250101, China.
| |
Collapse
|
16
|
Huoxuezhitong capsule ameliorates MIA-induced osteoarthritis of rats through suppressing PI3K/ Akt/ NF-κB pathway. Biomed Pharmacother 2020; 129:110471. [PMID: 32768958 DOI: 10.1016/j.biopha.2020.110471] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
Huoxuezhitong capsule (HXZT, activating blood circulation and relieving pain capsule), has been applied for osteoarthritis since 1974. It consists of Angelica sinensis (Oliv.) Diels, Panax notoginseng (Burkill) F. H. Chen ex C. H., Boswellia sacra, Borneol, Eupolyphaga sinensis Walker, Pyritum. However, the direct effects of HXZT on osteoarthritis and the underlying mechanisms were poorly understood. In this study, we aimed to explore the analgesia effect of HXZT on MIA-induced osteoarthritis rat and the underlying mechanisms. The analgesia and anti-inflammatory effect of HXZT on osteoarthritis in vivo were tested by the arthritis model rats induced by monosodium iodoacetate (MIA).. Mechanistic studies confirmed that HXZT could inhibit the activation of NF-κB and down-regulate the mRNA expression of related inflammatory factors in LPS-induced RAW264.7 and ATDC5 cells. Furtherly, in LPS-induced RAW264.7 cells, HXZT could suppress NF-κB via inhibiting PI3K/Akt pathway. Taken together, HXZT capsule could ameliorate MIA-induced osteoarthritis of rats through suppressing PI3K/ Akt/ NF-κB pathway.
Collapse
|
17
|
Efficient expression of chondroitinase ABC I for specific disaccharides detection of chondroitin sulfate. Int J Biol Macromol 2020; 143:41-48. [DOI: 10.1016/j.ijbiomac.2019.11.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
|
18
|
Yang J, Shen M, Wen H, Luo Y, Huang R, Rong L, Xie J. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydr Polym 2019; 230:115650. [PMID: 31887904 DOI: 10.1016/j.carbpol.2019.115650] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Chondroitin sulfate (CS) is a naturally derived bioactive macromolecule and the major component of extracellular matrix (ECM), which widely distributed in various organisms and has attracted much attention due to their significant bioactivities. It is regarded as a favorable biomaterial that has been applied extensively in field of drug delivery and tissue engineering due to its property of non-poisonous, biodegradation, biocompatible and as a major component of ECM. The present article reviews the structure and bioactivities of CS, from the preparation to structure analysis, and emphatically focuses on the biomaterial exertion in delivery system and tissue engineering. At the same time, the present application status and prospect of CS are analyzed and the biomaterial exertion of CS in delivery system and various tissue engineering are also comparatively discussed in view of biomaterial development.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yu Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Rong Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|