1
|
Kharkhota М, Kharchuk М, Kharchuk А, Grabova G, Noskov Y, Linnik R, Makeiev А, Avdieieva L. Physico-chemical properties of Priestia endophytica UCM B-5715 fluorescent pigments. Biochem Biophys Res Commun 2024; 741:151040. [PMID: 39580957 DOI: 10.1016/j.bbrc.2024.151040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
The endophytic bacterium Priestia endophytica (Bacillus endophyticus) UCM B-5715 (= DSM 13796) has been found to produce a distinctive pink pigment exhibiting vibrant yellow fluorescence. Investigation of the pigment extract revealed the presence of 2 non-polar fluorescent-colored compounds, with molecular masses of 376 (14.12 %) and 410 (82.02 %) a.m.u. FTIR spectroscopy indicated the characteristic signatures of heliomycin and chlorxanthomycin IR spectra, respectively. The chlorxathomycin nature of the main compound was confirmed by H1 NMR spectroscopy. Light, luminescence, transmission electron microscopy, and IR and H1 NMR spectroscopy established a high probability of a close association between the colored fluorescent compounds and poly-β-hydroxybutyrate granules. Bioinformatics analysis utilizing the antiSMASH 6.0 tool unveiled key gene sequences encoding the type II polyketide synthase complex and halogenase, involved in the biosynthesis of heliomycin and chlorxanthomycin.
Collapse
Affiliation(s)
- М Kharkhota
- D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| | - М Kharchuk
- D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| | - А Kharchuk
- D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine.
| | - G Grabova
- D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| | - Yu Noskov
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry (IBOPC) of the NASU, Kyiv, Ukraine
| | - R Linnik
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - А Makeiev
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - L Avdieieva
- D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| |
Collapse
|
2
|
Bhat GS, Deekshitha BK, Thivaharan V, Divyashree MS. Physicochemical cell disruption of Bacillus sp. for recovery of polyhydroxyalkanoates: future bioplastic for sustainability. 3 Biotech 2024; 14:59. [PMID: 38314316 PMCID: PMC10837410 DOI: 10.1007/s13205-024-03913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/01/2024] [Indexed: 02/06/2024] Open
Abstract
Polyhydroxybutyrate (PHB) is known for wide applications, biocompatibility, and degradability; however, it cannot be commercialized due to conventional recovery using solvents. The present study employed mechanical cell-disruption methods, such as Pestle and mortar, sonication, and glass bead vortexing, for solvent-free extraction of PHA from Bacillus sp. Different time intervals were set for grinding (5, 10, 15 min), sonicating (1, 3 and 5 min), and vortexing (2, 5 and 8 g glass beads with 5, 10 and 15 min each) hence studying their effect on cell lysis to release PHA. Tris buffer containing phenylmethyl sulfonyl fluoride (PMSF) (20 mM Tris-HCl, pH 8.0, 1 mM PMSF) was employed as a lysis buffer to study its action over Bacillus cells. Its presence was checked with the above methods in cell lysis. Sonicating cells for 5 min in the presence of lysis buffer achieved a maximum PHA yield of 45%. Cell lysis using lysis buffer yielded 35% PHA when vortexing with 5 g glass beads for 15 min. Grinding cells for 15 min showed a maximum yield of 34% but lacked a lysis buffer. The overall results indicated that the action of lysis buffer and physical extraction methods improved PHA yield by %. Therefore, the study sought to evaluate the feasibility of applying laboratory methods for cell disruption. These methods can showcase possible opportunities in large-scale applications. The polymer yield results were compared with standard sodium hypochlorite extraction. Confirmation of obtained polymers as polyhydroxy butyrate (PHB) was made through FTIR and 1HNMR characterization.
Collapse
Affiliation(s)
- G. Sohani Bhat
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | - B. K. Deekshitha
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | - V. Thivaharan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | - M. S. Divyashree
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| |
Collapse
|
3
|
Ebu SM, Adem MA, Dekebo A, Olani A. Isolation and Identification of Endophytic Bacterial Isolates from the Leaves, Roots, and Stems Parts of Artemisia annua, Moringa oleifera, and Ocimum lamiifolium Plants. Curr Microbiol 2023; 80:405. [PMID: 37930451 DOI: 10.1007/s00284-023-03513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Medicinal plants are known to harbor diverse species of endophytic bacteria which are known for secretion of beneficial secondary metabolites, like enzymes and antimicrobial compounds. The present study aimed to isolate, characterize, and identify the endophytic bacteria isolates from Artemisia annua, Moringa oleifera, and Ocimum lamiifolium plants. Certain endophytic bacterial isolates were screened. Phosphate and Zinc solubilization were performed for newly obtained isolates. The 16S rRNA gene sequencing was performed for RPAAI-8 isolate. Data were analyzed. Our study showed that endophytic bacterial isolates were recognized to be Bacillus cereus, B. subtilis, Citrobacter freundii, Enterobacter asburiae, E. cloacae, E. kobei, E. ludwigii, Enterococcus faecium, and Pseudomonas monteilli. From among these differentiated endophytic bacterial isolates, Enterobacter species are the most frequently obtained isolates. These bacterial isolates were shown 99.77% sequence similarity to Enterobacter ludwigii EN-119T (JTLO01000001) using 16S rRNA gene sequencing. This isolate was designated as Enterobacter sp. RPAAI-8. This isolate was able to employ selected cheap and cost-effective agro wastes as a carbon source. This cheap agro waste utilization by these Enterobacter species could be the first report. In conclusion, the present isolates are found to be employed for plant growth promotion and solubilizing insoluble phosphate and zinc. Before this time, most of the recent isolates were not identified from these medicinal plants. The ethyl acetate extract of the isolates also showed inhibitory activity against selected test pathogens.
Collapse
Affiliation(s)
- Seid Mohammed Ebu
- Department of Applied Biology, Adama Science and Technology University, Adama, Oromia, Ethiopia.
| | - Muktar Ahmed Adem
- Department of Applied Biology, Adama Science and Technology University, Adama, Oromia, Ethiopia
| | - Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Oromia, Ethiopia
| | - Ababe Olani
- Istitute of Biotechnology, Sebeta, Oromia, Ethiopia
| |
Collapse
|
4
|
Jung HJ, Kim SH, Shin N, Oh SJ, Hwang JH, Kim HJ, Kim YH, Bhatia SK, Jeon JM, Yoon JJ, Yang YH. Polyhydroxybutyrate (PHB) production from sugar cane molasses and tap water without sterilization using novel strain, Priestia sp. YH4. Int J Biol Macromol 2023; 250:126152. [PMID: 37558031 DOI: 10.1016/j.ijbiomac.2023.126152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
The production cost of biodegradable polymer like polyhydroxybutyrate (PHB) is still higher than that of petroleum-based plastics. A potential solution for reducing its production cost is using a cheap carbon source and avoiding a process of sterilization. In this study, a novel PHB-producing microbial strain, Priestia sp. YH4 was screened from the marine environment using sugarcane molasses as the carbon source without sterilization. Culture conditions, such as carbon, NaCl, temperature, pH, inoculum size, and cultivation time, were optimized for obtaining the highest PHB production by YH4 resulting in 5.94 g/L of dry cell weight (DCW) and 61.7 % of PHB content in the 5 mL culture. In addition, it showed similar PHB production between the cultures with or without sterilization in Marine Broth media. When cultured using only tap water, sugarcane molasses, and NaCl in a 5 L fermenter, 24.8 g/L DCW was produced at 41 h yielding 13.9 g/L PHB. Finally, DSC (Differential Scanning Calorimetry) and GPC (Gel Permeation Chromatography) were used to analyze thermal properties and molecular weights resulting in Tm = 167.2 °C, Tc = 67.3 °C, Mw = 2.85 × 105, Mn = 1.05 × 105, and PDI = 2.7, respectively. Therefore, we showed the feasibility of more economical process for PHB production by finding novel strain, utilizing molasses with minimal media components and avoiding sterilization.
Collapse
Affiliation(s)
- Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suk-Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yi-Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Zhuikova Y, Zhuikov V, Varlamov V. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review. Polymers (Basel) 2022; 14:5549. [PMID: 36559916 PMCID: PMC9782520 DOI: 10.3390/polym14245549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
One of the important directions in the development of modern medical devices is the search and creation of new materials, both synthetic and natural, which can be more effective in their properties than previously used materials. Traditional materials such as metals, ceramics, and synthetic polymers used in medicine have certain drawbacks, such as insufficient biocompatibility and the emergence of an immune response from the body. Natural biopolymers have found applications in various fields of biology and medicine because they demonstrate a wide range of biological activity, biodegradability, and accessibility. This review first described the properties of the two most promising biopolymers belonging to the classes of polyhydroxyalkanoates and polysaccharides-polyhydroxybutyrate and chitosan. However, homopolymers also have some disadvantages, overcome which becomes possible by creating polymer composites. The article presents the existing methods of creating a composite of two polymers: copolymerization, electrospinning, and different ways of mixing, with a description of the properties of the resulting compositions. The development of polymer composites is a promising field of material sciences, which allows, based on the combination of existing substances, to develop of materials with significantly improved properties or to modify of the properties of each of their constituent components.
Collapse
Affiliation(s)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, Moscow 119071, Russia
| | | |
Collapse
|
6
|
Kankonkar HT, Khandeparker RS. Microplastics a Novel Substratum for Polyhydroxyalkanoate (PHA)-Producing Bacteria in Aquatic Environments. Curr Microbiol 2022; 79:258. [PMID: 35852610 PMCID: PMC9295092 DOI: 10.1007/s00284-022-02929-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022]
Abstract
Polyhydroxyalkanoates (PHA) being biological polymers have attracted great attention. PHA have similar properties to that of synthetic plastic and are biodegradable. To discourage plastic pollution in the environment alternative solutions to the plastic pollution has to be readily available. High cost in production of PHA limits the production of these polymers at industrial scale. Bacteria are screened for PHA from diverse niches to meet the current requirements of cheap PHA production at industrial level. The microbial biofilm formed on the surface of microplastic could be a potential source in providing bacteria of economic importance. This paper is an attempt to search microplastic niche for potential PHA producers. PHA production variation was observed with different parameters such as type of carbon source, nitrogen source concentration and also time of incubation. Bacillus sp. CM27 showed maximum PHA yield up to 32.1% among other isolates at 48 h with 2% glucose as carbon source. Optimization of media leads to increase in PHA yield (37.69%) of CDW in Bacillus sp. CM27. Amino acid sequence of Bacillus sp.CM27 showed the presence of PhaC box with sequence, G-Y-C-M-G-G having cysteine in the middle of the box. The extracted polymer was confirmed by FTIR spectroscopy.
Collapse
Affiliation(s)
- Harshada T Kankonkar
- Microbial Ecology Laboratory, Biological Oceanography Division, CSIR-National Institute of Oceanography, Raj Bhavan Road, Dona Paula, Goa, 403004, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakhee S Khandeparker
- Microbial Ecology Laboratory, Biological Oceanography Division, CSIR-National Institute of Oceanography, Raj Bhavan Road, Dona Paula, Goa, 403004, India.
| |
Collapse
|
7
|
Abstract
Large-scale worldwide production of plastics requires the use of large quantities of fossil fuels, leading to a negative impact on the environment. If the production of plastic continues to increase at the current rate, the industry will account for one fifth of global oil use by 2050. Bioplastics currently represent less than one percent of total plastic produced, but they are expected to increase in the coming years, due to rising demand. The usage of bioplastics would allow the dependence on fossil fuels to be reduced and could represent an opportunity to add some interesting functionalities to the materials. Moreover, the plastics derived from bio-based resources are more carbon-neutral and their manufacture generates a lower amount of greenhouse gasses. The substitution of conventional plastic with renewable plastic will therefore promote a more sustainable economy, society, and environment. Consequently, more and more studies have been focusing on the production of interesting bio-based building blocks for bioplastics. However, a coherent review of the contribution of fermentation technology to a more sustainable plastic production is yet to be carried out. Here, we present the recent advancement in bioplastic production and describe the possible integration of bio-based monomers as renewable precursors. Representative examples of both published and commercial fermentation processes are discussed.
Collapse
|
8
|
Vega-Vidaurri JA, Hernández-Rosas F, Ríos-Corripio MA, Loeza-Corte JM, Rojas-López M, Hernández-Martínez R. Coproduction of polyhydroxyalkanoates and exopolysaccharide by submerged fermentation using autochthonous bacterial strains. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Khoo KS, Ho LY, Lim HR, Leong HY, Chew KW. Plastic waste associated with the COVID-19 pandemic: Crisis or opportunity? JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126108. [PMID: 34020352 PMCID: PMC9759681 DOI: 10.1016/j.jhazmat.2021.126108] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 05/12/2023]
Abstract
Coronavirus Diseases 2019 (COVID-19) pandemic has a huge impact on the plastic waste management in many countries due to the sudden surge of medical waste which has led to a global waste management crisis. Improper management of plastic waste may lead to various negative impacts on the environment, animals, and human health. However, adopting proper waste management and the right technologies, looking in a different perception of the current crisis would be an opportunity. About 40% of the plastic waste ended up in landfill, 25% incinerated, 16% recycled and the remaining 19% are leaked into the environment. The increase of plastic wastes and demand of plastic markets serve as a good economic indicator for investor and government initiative to invest in technologies that converts plastic waste into value-added product such as fuel and construction materials. This will close the loop of the life cycle of plastic waste by achieving a sustainable circular economy. This review paper will provide insight of the state of plastic waste before and during the COVID-19 pandemic. The treatment pathway of plastic waste such as sterilisation technology, incineration, and alternative technologies available in converting plastic waste into value-added product were reviewed.
Collapse
Affiliation(s)
- Kuan Shiong Khoo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Lih Yiing Ho
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hui Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| |
Collapse
|
10
|
What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria? Polymers (Basel) 2021; 13:polym13111731. [PMID: 34073198 PMCID: PMC8199472 DOI: 10.3390/polym13111731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/05/2023] Open
Abstract
The rising global consumption and industrialization has resulted in increased food processing demand. Food industry generates a tremendous amount of waste which causes serious environmental issues. These problems have forced us to create strategies that will help to reduce the volume of waste and the contamination to the environment. Waste from food industries has great potential as substrates for value-added bioproducts. Among them, polyhydroxyalkanaotes (PHAs) have received considerable attention in recent years due to their comparable characteristics to common plastics. These biodegradable polyesters are produced by microorganisms during fermentation processes utilizing various carbon sources. Scale-up of PHA production is limited due to the cost of the carbon source metabolized by the microorganisms. Therefore, there is a growing need for the development of novel microbial processes using inexpensive carbon sources. Such substrates could be waste generated by the food industry and food service. The use of industrial waste streams for PHAs biosynthesis could transform PHA production into cheaper and more environmentally friendly bioprocess. This review collates in detail recent developments in the biosynthesis of various types of PHAs produced using waste derived from agrofood industries. Challenges associated with this production bioprocess were described, and new ways to overcome them were proposed.
Collapse
|
11
|
Saratale RG, Cho SK, Saratale GD, Ghodake GS, Bharagava RN, Kim DS, Nair S, Shin HS. Efficient bioconversion of sugarcane bagasse into polyhydroxybutyrate (PHB) by Lysinibacillus sp. and its characterization. BIORESOURCE TECHNOLOGY 2021; 324:124673. [PMID: 33445010 DOI: 10.1016/j.biortech.2021.124673] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
In this study, Lysinibacillus sp. RGS was evaluated to synthesize polyhydroxybutyrate (PHB) from a broad range of pure carbon sources and residual sugars of chemically pretreated sugarcane bagasse (SCB) hydrolysates. Effects of supplementation of nutrients and various experimental variables to enhance PHB accumulation were investigated. Results of optimized parameters were identified as 48 h, 37 °C, pH 7; inoculums concentration (2.5% v/v) and shaking condition (100 rpm). Growth kinetics and bioprocess parameters of Lysinibacillus sp. using SCB hydrolysates with corn steep liquor (2%) accounted for the maximum cell growth (8.65 g/L) and PHA accumulation (61.5%) with PHB titer of (5.31 g/L) under optimal conditions. The produced biopolymer was studied by Fourier Transform Infrared (FTIR) spectroscopy and the results revealed the obtained to be PHB. Thus Lysinibaciluus sp. exhibits high potential in industrial scale manufacture of PHB using SCB as an inexpensive substrate.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ram Naresh Bharagava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025 (U.P.), India
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Supriya Nair
- Department of Research and Development, SRL Limited, Prime Square, S.V. Road, Goregaon (W), Mumbai 400062, Maharashtra State, India
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| |
Collapse
|
12
|
Biosynthesis of Polyhydroxyalkanoates (PHAs) by the Valorization of Biomass and Synthetic Waste. Molecules 2020; 25:molecules25235539. [PMID: 33255864 PMCID: PMC7728366 DOI: 10.3390/molecules25235539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Synthetic pollutants are a looming threat to the entire ecosystem, including wildlife, the environment, and human health. Polyhydroxyalkanoates (PHAs) are natural biodegradable microbial polymers with a promising potential to replace synthetic plastics. This research is focused on devising a sustainable approach to produce PHAs by a new microbial strain using untreated synthetic plastics and lignocellulosic biomass. For experiments, 47 soil samples and 18 effluent samples were collected from various areas of Punjab, Pakistan. The samples were primarily screened for PHA detection on agar medium containing Nile blue A stain. The PHA positive bacterial isolates showed prominent orange-yellow fluorescence on irradiation with UV light. They were further screened for PHA estimation by submerged fermentation in the culture broth. Bacterial isolate 16a produced maximum PHA and was identified by 16S rRNA sequencing. It was identified as Stenotrophomonas maltophilia HA-16 (MN240936), reported first time for PHA production. Basic fermentation parameters, such as incubation time, temperature, and pH were optimized for PHA production. Wood chips, cardboard cutouts, plastic bottle cutouts, shredded polystyrene cups, and plastic bags were optimized as alternative sustainable carbon sources for the production of PHAs. A vital finding of this study was the yield obtained by using plastic bags, i.e., 68.24 ± 0.27%. The effective use of plastic and lignocellulosic waste in the cultivation medium for the microbial production of PHA by a novel bacterial strain is discussed in the current study.
Collapse
|
13
|
Optimization of the culture conditions for production of Polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp. BNPI-92 strain, isolated from plastic waste dumping yard. Int J Biol Macromol 2020; 156:1064-1080. [DOI: 10.1016/j.ijbiomac.2019.11.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 11/20/2022]
|
14
|
|
15
|
Zhao L, Cheng Y, Yin Z, Chen D, Bao M, Lu J. Insights into the effect of different levels of crude oil on hydrolyzed polyacrylamide biotransformation in aerobic and anoxic biosystems: Bioresource production, enzymatic activity, and microbial function. BIORESOURCE TECHNOLOGY 2019; 293:122023. [PMID: 31472407 DOI: 10.1016/j.biortech.2019.122023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
The differences of crude oil recovery ratio resulted in different levels of crude oil in actual hydrolyzed polyacrylamide (HPAM)-containing wastewater. The effect of crude oil on HPAM biotransformation was explored from bioresource production, enzymatic activity and microbial function. In aerobic biosystems, the highest polyhydroxyalkanoate (PHA) yield (19.6%-40.2%) and dehydrogenase (DH) activity (4.06-8.32 mg·g-1 VSS) occurred in the 48th hour, and increased with crude oil concentration (0-400 mg·L-1). In anoxic biosystems, the highest PHA yield (24.5%-50.5%) and DH activity (3.24-6.69 mg·g-1 VSS) occurred in the 72nd hour, and increased with crude oil concentration. The higher substrate removal (38.5%-65.7%) occurred in aerobic biosystems, while the higher PHA accumulation occurred in anoxic biosystems. PHA yield, DH activity and HPAM removal were related. Microbial function related to HPAM biodegradation and PHA synthesis was discussed. The main function of Pseudomonas and Bacillus in aerobic biosystems was to degrade HPAM, and in anoxic biosystems was to synthesize PHA.
Collapse
Affiliation(s)
- Lanmei Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuan Cheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zichao Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dafan Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|