1
|
Duan H, Li S, Zhao J, Yang H, Tang H, Qi D, Huang Z, Xu X, Shi L, Müller-Buschbaum P, Zhong Q. Microstructure Evolution of Reactive Polyurethane Films During In Situ Polyaddition and Film-Formation Processes. Macromol Rapid Commun 2024; 45:e2400284. [PMID: 38967216 DOI: 10.1002/marc.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Due to the advantages of low energy consumption, no air and water pollutions, the reactive polyurethane films (RPUFs) are replacing the solvated and waterborne PUFs nowadays, which significantly promotes the green and low-carbon production of PU films. However, the microstructure evolution and in situ film-formation mechanism of RPUFs in solvent-free media are still unclear. Herein, according to time-temperature equivalence principle, the in situ polyaddition and film-formation processes of RPUFs generated by the typical polyaddition of diisocyanate terminated prepolymer (component B) and polyether glycol (component A) are thoroughly investigated at 25 °C. According to the temporal change of viscosity, the RPUFs gradually transfer from liquid to gel and finally to solid state. Further characterizing the molecular weight, hydrogen bonds, crystallinity, gel content, and phase images, the polyaddition and film-formation processes can be divided into three stages as 1) chain extension and microcrystallization; 2) gelation and demicrocrystallization; 3) microphase separation and film-formation. This work promotes the understanding of the microstructure evolution and film-formation mechanism of RPUFs, which can be used as the theoretical guidance for the controllable preparation of high-performance products based on RPUFs.
Collapse
Affiliation(s)
- Huimin Duan
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
- Keqiao Research Institute of Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Shuli Li
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jinbiao Zhao
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Hao Yang
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Heyang Tang
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
- Keqiao Research Institute of Zhejiang Sci-Tech University, Shaoxing, 312000, P. R. China
| | - Zhichao Huang
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xinxin Xu
- Zhejiang Hexin Science and Technology Co., Ltd., Jiaxing, 314003, P. R. China
| | - Lei Shi
- Zhejiang Hexin Science and Technology Co., Ltd., Jiaxing, 314003, P. R. China
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Qi Zhong
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
2
|
Heidarian P, Aziz S, Halley PJ, McNally T, Peijs T, Vandi LJ, Varley RJ. Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate) Self-Reinforced Composites via Solvent-Induced Interfiber Welding of Nanofibers. Biomacromolecules 2024; 25:5039-5047. [PMID: 39041249 DOI: 10.1021/acs.biomac.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In this study, we explore an approach to enhance the mechanical performance of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by utilizing the self-reinforcing effect of β-phase-induced PHBV electrospun nanofiber mats. This involves electrospinning combined with low-temperature postspun vapor solvent interfiber welding. Scanning electron microscopy imaging confirmed fiber alignment, while XRD diffraction revealed the presence of both α and β crystalline phases under optimized electrospinning conditions. The resulting composite exhibited significant improvements in mechanical properties attributed to the formation of more perfectly structured α and β polymorphs and enhanced interfacial adhesion of electrospun nanofibers after vapor solvent treatment. This approach offers entirely recyclable and biodegradable materials, presenting the potential for a new family of sustainable bioplastics.
Collapse
Affiliation(s)
- Pejman Heidarian
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Shazed Aziz
- School of Chemical Engineering, University of Queensland, St Lucia 4072, Australia
| | - Peter J Halley
- School of Chemical Engineering, University of Queensland, St Lucia 4072, Australia
- Centre for Advanced Materials Processing and Manufacturing AMPAM, The University of Queensland, St Lucia 4072, Australia
| | - Tony McNally
- International Institute for Nanocomposite Manufacturing (IINM), University of Warwick, Coventry CV4 74L, U.K
| | - Ton Peijs
- Materials Engineering Centre, WMG, University of Warwick, Coventry CV4 74L, U.K
| | - Luigi-Jules Vandi
- School of Mechanical and Mining Engineering, University of Queensland, St Lucia 4072, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
3
|
Majrashi MAA, Bairwan RD, Mushtaq RY, Khalil HPSA, Badr MY, Alissa M, Abdullah CK, Ali BA, Rizg WY, Hosny KM. Novel enhancement of interfacial interaction and properties in biodegradable polymer composites using green chemically treated spent coffee ground microfiller. Int J Biol Macromol 2024; 266:131333. [PMID: 38574916 DOI: 10.1016/j.ijbiomac.2024.131333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
This study investigates the potential of utilizing green chemically treated spent coffee grounds (SCGs) as micro biofiller reinforcement in Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) biopolymer composites. The aim is to assess the impact of varying SCG concentrations (1 %, 3 %, 5 %, and 7 %) on the functional, thermal, mechanical properties and biodegradability of the resulting composites with a PHBV matrix. The samples were produced through melt compounding using a twin-screw extruder and compression molding. The findings indicate successful dispersion and distribution of SCGs microfiller into PHBV. Chemical treatment of SCG microfiller enhanced the interfacial bonding between the SCG and PHBV, evidenced by higher water contact angles of the biopolymer composites. Field Emission Scanning Electron Microscopy (FE-SEM) confirmed the successful interaction of treated SCG microfiller, contributing to enhanced mechanical characteristics. A two-way ANOVA was conducted for statistical analysis. Mass losses observed after burying the materials in natural soil indicated that the composites degraded faster than the pure PHBV polymer suggesting that both composites are biodegradable, particularly at high levels of spent coffee grounds (SCG). Despite the possibility of agglomeration at higher concentrations, SCG incorporation resulted in improved functional properties, positioning the green biopolymer composite as a promising material for sustainable packaging and diverse applications.
Collapse
Affiliation(s)
- Mohammed Ali A Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Rahul Dev Bairwan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - H P S Abdul Khalil
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Moutaz Y Badr
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - C K Abdullah
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Barakat A Ali
- Department of Laboratory Analysis, Belaro Commercials, Sharjah 60000, United Arab Emirates
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Conceição MDND, Anaya-Mancipe JM, Coelho AWF, Cardoso PHM, Thiré RMDSM. Application of starch-rich mango by-product as filler for the development of an additive manufacturing filament compound. Int J Biol Macromol 2024; 260:129519. [PMID: 38246441 DOI: 10.1016/j.ijbiomac.2024.129519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/22/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
The surge in global polymeric waste underscores the imperative for biodegradable materials to substitute traditional polymers. Crucially, advancements are needed for emerging technologies like Materials Extrusion (ME) in additive manufacturing, where current biodegradable materials exhibit limitations. This work was based on the development of a biodegradable composite filament. The inner of the mango seed (kernel) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were used as raw materials. The properties of PHBV and mango by-product mixture were first evaluated by direct-extrusion printing. Then, the feasibility of manufacturing the filaments was studied. Initially, the kernel seed mango was characterized thermally, chemically, and morphologically by DSC, FTIR, and SEM, respectively. It was observed that the addition of mango by-product contributed to the decrease of PHBV crystallinity, resulting in the reduction of printed parts retraction and increases the Tg, as shown by the DMA. The structure of the native starch was preserved due to non-gelatinization, even after processing steps, as indicated by thermal, chemical, and morphological analyses. Finally, PHBV filaments containing mango by-products were fabricated, and prototypes were manufactured by ME to demonstrate the potential for market acceptance and commercialization of the studied filament.
Collapse
Affiliation(s)
- Marceli do Nascimento da Conceição
- Program of Metallurgical and Materials Engineering - PEMM/COPPE, Universidade Federal do Rio de Janeiro - UFRJ, Cidade Universitária, 21941-599 Rio de Janeiro, RJ, Brazil; Centro de Tecnologia Mineral - CETEM, Rio de Janeiro, RJ, Brazil.
| | - Javier Mauricio Anaya-Mancipe
- Program of Metallurgical and Materials Engineering - PEMM/COPPE, Universidade Federal do Rio de Janeiro - UFRJ, Cidade Universitária, 21941-599 Rio de Janeiro, RJ, Brazil.
| | - Arthur Wilson Fonseca Coelho
- Program of Metallurgical and Materials Engineering - PEMM/COPPE, Universidade Federal do Rio de Janeiro - UFRJ, Cidade Universitária, 21941-599 Rio de Janeiro, RJ, Brazil.
| | - Paulo Henrique Machado Cardoso
- Program of Metallurgical and Materials Engineering - PEMM/COPPE, Universidade Federal do Rio de Janeiro - UFRJ, Cidade Universitária, 21941-599 Rio de Janeiro, RJ, Brazil.
| | - Rossana Mara da Silva Moreira Thiré
- Program of Metallurgical and Materials Engineering - PEMM/COPPE, Universidade Federal do Rio de Janeiro - UFRJ, Cidade Universitária, 21941-599 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Lyshtva P, Voronova V, Barbir J, Leal Filho W, Kröger SD, Witt G, Miksch L, Sabowski R, Gutow L, Frank C, Emmerstorfer-Augustin A, Agustin-Salazar S, Cerruti P, Santagata G, Stagnaro P, D'Arrigo C, Vignolo M, Krång AS, Strömberg E, Lehtinen L, Annunen V. Degradation of a poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) compound in different environments. Heliyon 2024; 10:e24770. [PMID: 38322905 PMCID: PMC10844030 DOI: 10.1016/j.heliyon.2024.e24770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/03/2023] [Accepted: 01/14/2024] [Indexed: 02/08/2024] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising biodegradable bio-based material, which is designed for a vast range of applications, depending on its composite. This study aims to assess the degradability of a PHBV-based compound under different conditions. The research group followed different methodological approaches and assessed visual and mass changes, mechanical and morphological properties, spectroscopic and structural characterisation, along with thermal behaviour. The Ph-Stat (enzymatic degradation) test and total dry solids (TDS)/total volatile solids (TVS) measurements were carried out. Finally, the team experimentally evaluated the amount of methane and carbon dioxide produced, i.e., the degree of biodegradation under aerobic conditions. According to the results, different types of tests have shown differing effects of environmental conditions on material degradation. In conclusion, this paper provides a summary of the investigations regarding the degradation behaviour of the PHBV-based compound under varying environmental factors. The main strengths of the study lie in its multi-faceted approach, combining assessments of PHBV-based compound degradability under different conditions using various analytical tools, such as visual and mass changes, mechanical and morphological properties, spectroscopic and structural characterization, and thermal behavior. These methods collectively contribute to the robustness and reliability of the undertaken work.
Collapse
Affiliation(s)
- Pavlo Lyshtva
- Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Viktoria Voronova
- Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Jelena Barbir
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Walter Leal Filho
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Silja Denise Kröger
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Gesine Witt
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Lukas Miksch
- Alfred Wegener Institute, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Reinhard Sabowski
- Alfred Wegener Institute, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Lars Gutow
- Alfred Wegener Institute, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Carina Frank
- Austrian Centre of Industrial Biotechnology, Krenngasse 37/2, A-8010, Graz, Austria
| | | | - Sarai Agustin-Salazar
- Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Paola Stagnaro
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council, Via De Marini 6, 16149, Genova, Italy
| | - Cristina D'Arrigo
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council, Via De Marini 6, 16149, Genova, Italy
| | - Maurizio Vignolo
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council, Via De Marini 6, 16149, Genova, Italy
| | - Anna-Sara Krång
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28, Stockholm, Sweden
| | - Emma Strömberg
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28, Stockholm, Sweden
| | - Liisa Lehtinen
- Turku University of Applied Sciences, Joukahaisenkatu 3, 20520, Turku, Finland
| | - Ville Annunen
- Turku University of Applied Sciences, Joukahaisenkatu 3, 20520, Turku, Finland
| |
Collapse
|
6
|
Możejko‐Ciesielska J, Moraczewski K, Czaplicki S. Halomonas alkaliantarctica as a platform for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel-derived glycerol. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13225. [PMID: 38146695 PMCID: PMC10866086 DOI: 10.1111/1758-2229.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polyesters produced by a wide range of microorganisms, including extremophiles. These unique microorganisms have gained interest in PHA production due to their ability to utilise low-cost carbon sources under extreme conditions. In this study, Halomonas alkaliantarctica was examined with regards to its potential to produce PHAs using crude glycerol from biodiesel industry as the only carbon source. We found that cell dry mass concentration was not dependent on the applying substrate concentration. Furthermore, our data confirmed that the analysed halophile was capable of metabolising crude glycerol into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer within 24 h of the cultivation without addition of any precursors. Moreover, crude glycerol concentration affects the repeat units content in the purified PHAs copolymers and their thermal properties. Nevertheless, a differential scanning calorimetric and thermogravimetric analysis showed that the analysed biopolyesters have properties suitable for various applications. Overall, this study described a promising approach for the valorisation of crude glycerol as a future strategy of industrial waste management to produce high value microbial biopolymers.
Collapse
Affiliation(s)
- Justyna Możejko‐Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | | | - Sylwester Czaplicki
- Department of Plant Food Chemistry and ProcessingUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
7
|
Biocompatible pectin-functionalised-halloysite loaded poly(vinyl alcohol) nanocomposite films for tissue engineering applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Figueroa-Lopez KJ, Prieto C, Pardo-Figuerez M, Cabedo L, Lagaron JM. Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:823. [PMID: 36903702 PMCID: PMC10004799 DOI: 10.3390/nano13050823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Food quality is mainly affected by oxygen through oxidative reactions and the proliferation of microorganisms, generating changes in its taste, odor, and color. The work presented here describes the generation and further characterization of films with active oxygen scavenging properties made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) loaded with cerium oxide nanoparticles (CeO2NPs) obtained by electrospinning coupled to a subsequent annealing process, which could be used as coating or interlayer in a multilayer concept for food packaging applications. The aim of this work is to explore the capacities of these novel biopolymeric composites in terms of O2 scavenging capacity, as well as antioxidant, antimicrobial, barrier, thermal, and mechanical properties. To obtain such biopapers, different ratios of CeO2NPs were incorporated into a PHBV solution with hexadecyltrimethylammonium bromide (CTAB) as a surfactant. The produced films were analyzed in terms of antioxidant, thermal, antioxidant, antimicrobial, optical, morphological and barrier properties, and oxygen scavenging activity. According to the results, the nanofiller showed some reduction of the thermal stability of the biopolyester but exhibited antimicrobial and antioxidant properties. In terms of passive barrier properties, the CeO2NPs decreased the permeability to water vapor but increased the limonene and oxygen permeability of the biopolymer matrix slightly. Nevertheless, the oxygen scavenging activity of the nanocomposites showed significant results and improved further by incorporating the surfactant CTAB. The PHBV nanocomposite biopapers developed in this study appear as very interesting constituents for the potential design of new active organic recyclable packaging materials.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
9
|
Fang C, Shao T, Ji X, Wang F, Zhang H, Xu J, Miao W, Wang Z. High mechanical property and antibacterial poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/functional enzymatically-synthesized cellulose biodegradable composite. Int J Biol Macromol 2023; 225:776-785. [PMID: 36403771 DOI: 10.1016/j.ijbiomac.2022.11.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Biodegradable materials with antibacterial properties are highly promising. A novel antimicrobial nanocellulose (ECP) was synthesized in one-step by enzyme-catalyzed method to improve the mechanical and antimicrobial properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)]. The biodegradable nanocomposites were prepared by melt blending and the performance analysis results show that the nanocomposites display enhanced mechanical performances and antibacterial activities. Compared with the neat P(HB-co-HV), the P(HB-co-HV) doped with 0.5 wt%-ECP shows the highest mechanical properties with yield strength/elongation at break of 29.3 MPa, 7.63 %, respectively, an increase of 38 %/59 %, and a clear inhibition zone against Staphylococcus aureus (S. aureus) of approximately 3.0 mm. As a heterogeneous nucleation agent, ECP optimizes nucleation, and the interfacial interaction between phenol group and matrix promotes the compatibility and dispersion of ECP, resulting in superior mechanical properties of ECP-based composites. The P(HB-co-HV)/ECP nanocomposites have great potential in biomedical materials especially for the bone defect filling material.
Collapse
Affiliation(s)
- Chenxia Fang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Taoran Shao
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fangfang Wang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Hao Zhang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiayi Xu
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Weijun Miao
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zongbao Wang
- School of Materials Science and Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Ghafari R, Jonoobi M, Naijian F, Ashori A, Mekonnen TH, Taheri AR. Fabrication and characterization of bilayer scaffolds - nanocellulosic cryogels - for skin tissue engineering by co-culturing of fibroblasts and keratinocytes. Int J Biol Macromol 2022; 223:100-107. [PMID: 36347362 DOI: 10.1016/j.ijbiomac.2022.10.281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
This study focuses on developing a microarchitectural bilayer structure for stimulating the two top layers of skin tissue (epidermis and dermis) fabricated using a one-step freeze-drying method. Cellulose nanofibers (CNFs) and poly (vinyl) alcohol (PVA) were used as a biocompatible scaffolding material, and the composition was designed in such a way that it provides physical and biological property attributes. In this work, scaffolding materials with integrated layer structures and well interconnected and open pore structures were obtained. This bilayer structure had porosity with a pore size of 19.72 μm and 90.71 μm for the simulation of the epidermis and dermis, respectively. The production and expression of laminin, collagen IV, and keratin 10 proteins in the bilayer cryogel scaffolds obtained from the immunofluorescence study were 49.7 %, 63.8 %, and 49.3 %, respectively. The extracellular matrix (ECM) was produced in each scaffold layer. The observations confirmed that the porosity and pore size of both N1 and N2 layers were appropriate for the fibroblast and keratinocyte cells, respectively. H&E stained cross-sections of bilayer cryogel scaffolds illustrated epidermal and dermal layers produced by co-culturing keratinocytes and fibroblasts. Based on the results, the bilayer CNF/PVA scaffold can be used in skin tissue engineering applications. However, more experiments and in vivo evaluations are needed to express this conclusion more accurately.
Collapse
Affiliation(s)
- Robab Ghafari
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Mehdi Jonoobi
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran; Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Fatemeh Naijian
- Department of Biorefinery Engineering, Faculty of New Technologies and Energy Engineering, Shahid Beheshti University, Zirab, Mazandaran, Iran
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ahmad Reza Taheri
- Department of Plastic Surgery, Imam Khomeini Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Morphology and crystallization behaviour of polyhydroxyalkanoates-based blends and composites: A review. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Wang X, Shi F, Zhao D, Yan Y. Effect of ZnO-doped magnesium phosphate cements on osteogenic differentiation of mBMSCs in vitro. J Appl Biomater Funct Mater 2022; 20:22808000221136369. [DOI: 10.1177/22808000221136369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The insufficient osteogenesis of magnesium phosphate cements (MPCs) limits its further application. It is significant to develop a bioactive MPC with osteogenic properties. In this work, MPCs were reinforced by zinc oxide nanoparticles (ZnO-NPs). The composition, microstructure, setting time, compressive strength and degradation of ZnO-NPs/MPCs (ZNMPCs) were evaluated. The results showed that the setting times of MPCs were prolonged from 8.2 to 25.3 min (5.0ZNMPC). The exothermic temperatures were reduced from 45.8 ± 0.4℃ (MPCs) to 39.3 ± 0.5℃ (1.0ZNMPC). The compressive strength of ZNMPC composite cement with 1 wt. % ZnO-NPs (1.0ZNMPC) was the highest (42.9 MPa) among all the composite cements. Furthermore, the ZNMPCs were cultured with mouse bone marrow mesenchymal stem cells (mBMSCs). The results yielded that the ZNMPCs exhibited good cytocompatibility with enhanced differentiation, proliferation, and mineralization on mBMSCs, and it also pronouncedly elevated the expressions of genes and proteins involving osteogenesis. These findings suggested that ZNMPCs could drive the differentiation toward osteogenesis and mineralization of mBMSCs, providing a simple way to the MPC with enhanced osteogenesis for further orthopedic applications.
Collapse
Affiliation(s)
- Xiaomei Wang
- Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, College of Life Sciences, China West Normal University, Nanchong, P. R. China
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Feng Shi
- Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, College of Life Sciences, China West Normal University, Nanchong, P. R. China
| | - Dechuan Zhao
- Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, College of Life Sciences, China West Normal University, Nanchong, P. R. China
| | - Yonggang Yan
- College of Physics, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Dalgic AD, Koman E, Karatas A, Tezcaner A, Keskin D. Natural origin bilayer pullulan-PHBV scaffold for wound healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112554. [DOI: 10.1016/j.msec.2021.112554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 01/14/2023]
|
14
|
Chen L, Mao R, Zhang L, Xu J, Li D, Bao J, Wang Z. Dramatic toughness improvement of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) by supercritical carbon dioxide–assisted annealing. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lina Chen
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Rongshui Mao
- Haitian Plastics Machinery Group Co., Ltd. Ningbo China
| | - Li Zhang
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Jinke Xu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Delong Li
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Jinbiao Bao
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Zongbao Wang
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo China
| |
Collapse
|
15
|
Melendez-Rodriguez B, Torres-Giner S, Zavagna L, Sammon C, Cabedo L, Prieto C, Lagaron JM. Development and Characterization of Electrospun Fiber-Based Poly(ethylene- co-vinyl Alcohol) Films of Application Interest as High-Gas-Barrier Interlayers in Food Packaging. Polymers (Basel) 2021; 13:2061. [PMID: 34201828 PMCID: PMC8271863 DOI: 10.3390/polym13132061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022] Open
Abstract
In the present study, poly(ethylene-co-vinyl alcohol) with 44 mol % ethylene content (EVOH44) was managed to be processed, for the first time, by electrospinning assisted by the coaxial technology of solvent jacket. In addition to this, different suspensions of cellulose nanocrystals (CNCs), with contents ranging from 0.1 to 1.0 wt %, were also electrospun to obtain hybrid bio-/non-bio nanocomposites. The resultant fiber mats were thereafter optimally annealed to promote interfiber coalescence at 145 °C, below the EVOH44 melting point, leading to continuous transparent fiber-based films. The morphological analysis revealed the successful distribution of CNCs into EVOH44 up to contents of 0.5 wt %. The incorporation of CNCs into the ethylene-vinyl alcohol copolymer caused a decrease in the crystallization and melting temperatures (TC and Tm) of about 12 and 7 °C, respectively, and also crystallinity. However, the incorporation of CNCs led to enhanced thermal stability of the copolymer matrix for a nanofiller content of 1.0 wt %. Furthermore, the incorporation of 0.1 and 0.5 wt % CNCs produced increases in the tensile modulus (E) of ca. 38% and 28%, respectively, but also yielded a reduction in the elongation at break and toughness. The oxygen barrier of the hybrid nanocomposite fiber-based films decreased with increasing the CNCs content, but they were seen to remain high barrier, especially in the low relative humidity (RH) regime, i.e., at 20% RH, showing permeability values lower than 0.6 × 10-20 m3·m·m-2·Pa-1·s-1. In general terms, an optimal balance in physical properties was found for the hybrid copolymer composite with a CNC loading of 0.1 wt %. On the overall, the present study demonstrates the potential of annealed electrospun fiber-based high-barrier polymers, with or without CNCs, to develop novel barrier interlayers to be used as food packaging constituents.
Collapse
Affiliation(s)
- Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (L.Z.); (C.P.)
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (L.Z.); (C.P.)
| | - Lorenzo Zavagna
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (L.Z.); (C.P.)
| | - Chris Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), School of Technology and Experimental Sciences, Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain;
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (L.Z.); (C.P.)
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benllonch 7, 46980 Valencia, Spain; (B.M.-R.); (S.T.-G.); (L.Z.); (C.P.)
| |
Collapse
|
16
|
Jasmani L, Rusli R, Khadiran T, Jalil R, Adnan S. Application of Nanotechnology in Wood-Based Products Industry: A Review. NANOSCALE RESEARCH LETTERS 2020; 15:207. [PMID: 33146807 PMCID: PMC7642047 DOI: 10.1186/s11671-020-03438-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/21/2020] [Indexed: 05/05/2023]
Abstract
Wood-based industry is one of the main drivers of economic growth in Malaysia. Forest being the source of various lignocellulosic materials has many untapped potentials that could be exploited to produce sustainable and biodegradable nanosized material that possesses very interesting features for use in wood-based industry itself or across many different application fields. Wood-based products sector could also utilise various readily available nanomaterials to enhance the performance of existing products or to create new value added products from the forest. This review highlights recent developments in nanotechnology application in the wood-based products industry.
Collapse
Affiliation(s)
- Latifah Jasmani
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Rafeadah Rusli
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Rafidah Jalil
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Sharmiza Adnan
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| |
Collapse
|
17
|
Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Varghese SA, Pulikkalparambil H, Rangappa SM, Siengchin S, Parameswaranpillai J. Novel biodegradable polymer films based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Ceiba pentandra natural fibers for packaging applications. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100538] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Functionalized cellulose nanocrystals as the performance regulators of poly(β-hydroxybutyrate-co-valerate) biocomposites. Carbohydr Polym 2020; 242:116399. [DOI: 10.1016/j.carbpol.2020.116399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 01/16/2023]
|
20
|
de Oliveira TV, de Freitas PAV, Pola CC, da Silva JOR, Diaz LDA, Ferreira SO, Soares NDF. Development and optimization of antimicrobial active films produced with a reinforced and compatibilized biodegradable polymers. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2019.100459] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Li F, Abdalkarim SYH, Yu HY, Zhu J, Zhou Y, Guan Y. Bifunctional Reinforcement of Green Biopolymer Packaging Nanocomposites with Natural Cellulose Nanocrystal–Rosin Hybrids. ACS APPLIED BIO MATERIALS 2020; 3:1944-1954. [DOI: 10.1021/acsabm.9b01100] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fang Li
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Jiaying Zhu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Ying Zhou
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Ying Guan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| |
Collapse
|
22
|
Paula ACC, Carvalho PH, Martins TMM, Boeloni JN, Cunha PS, Novikoff S, Correlo VM, Reis RL, Goes AM. Improved vascularisation but inefficient in vivo bone regeneration of adipose stem cells and poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds in xeno-free conditions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110301. [PMID: 31761156 DOI: 10.1016/j.msec.2019.110301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 01/26/2023]
Abstract
Bone defects are a common clinical situation. However, bone regeneration remains a challenge and faces the limitation of poor engraftment due to deficient vascularisation. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) and human adipose stem cells (hASC) are promising for vascularisation and bone regeneration. Therefore, we sought to investigate the bone regenerative capacity of hASCs cultured in allogeneic human serum (aHS) and PHB-HV scaffolds in a nude mouse model of the critical-sized calvarial defect. We evaluated bone healing for three treatment groups: empty (control), PHB-HV and PHB-HV + hASCs. The pre-implant analysis showed that hASCs colonised the PHB-HV scaffolds maintaining cell viability before implantation. Histological analysis revealed that PHB-HV scaffolds were tolerated in vivo; they integrated with adjacent tissue eliciting a response like a foreign body reaction, and tiny primary bone was observed only in the PHB-HV group. Also, the μ-CT analysis revealed only approximately 10% of new bone in the bone defect area in both the PHB-HV and PHB-HV + hASCs groups. The expression of BGLAP and its protein (osteocalcin) by PHB-HV + hASCs group and native bone was similar while the other bone markers RUNX2, ALPL and COL1A1 were upregulated, but this expression remained significantly lower compared to the native bone. Nevertheless, the PHB-HV group showed neovascularisation at 12 weeks post-implantation while PHB-HV + hASCs group also exhibited higher VEGFA expression as well as a higher number of vessels at 4 weeks post-implantation, and, consequently, earlier neovascularisation. This neovascularisation must be due to scaffold architecture, improved by hASCs, that survived for the long term in vivo in the PHB-HV + hASCs group. These results demonstrated that hASCs cultured in aHS combined with PHB-HV scaffolds were ineffective to promote bone regeneration, although the construct of hASCs + PHB-HV in xeno-free conditions improved scaffold vascularisation representing a strategy potentially promising for other tissue engineering applications.
Collapse
Affiliation(s)
- Ana C C Paula
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, MG, Brazil; Department of Pharmaceutical Sciences, School of Pharmacy, Federal University of Juiz de Fora, R. José Lourenço Kelmer- s/n, Juiz de Fora, 36036-900, MG, Brazil.
| | - Pablo H Carvalho
- Department of Clinical and Surgery, College of Veterinary Medicine, Federal University of Minas Gerais, Av. Presidente Antônio Carlos- 6627, Belo Horizonte, 31270-901, MG, Brazil
| | - Thaís M M Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos- 6627, Belo Horizonte, 31270-901, MG, Brazil
| | - Jankerle N Boeloni
- Department of Veterinary Medicine, Federal University of Espírito Santo, Alto Universitário, Alegre, 29500-000, ES, Brazil
| | - Pricila S Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, MG, Brazil
| | - Silviene Novikoff
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, MG, Brazil; Transplants Immunobiology Laboratory, Department of Immunology, University of São Paulo, Brazil
| | - Vitor M Correlo
- 3B´s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial de Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - Associate Laboratory, PT Government Associate Laboratory, Campus de Gualtar, 4710-057, Braga, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B´s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial de Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - Associate Laboratory, PT Government Associate Laboratory, Campus de Gualtar, 4710-057, Braga, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Alfredo M Goes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, MG, Brazil; Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos- 6627, Belo Horizonte, 31270-901, MG, Brazil
| |
Collapse
|