1
|
Mansour FB, Guermazi W, Chamkha M, Bellassoued K, Salah HB, Harrath AH, Aldahmash W, Rahman MA, Ayadi H. Bioactive Potential of the Sulfated Exopolysaccharides From the Brown Microalga Halamphora sp.: Antioxidant, Antimicrobial, and Antiapoptotic Profiles. ANALYTICAL SCIENCE ADVANCES 2024; 5:e202400030. [PMID: 39479574 PMCID: PMC11519544 DOI: 10.1002/ansa.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 11/02/2024]
Abstract
This study aims to investigate the physicochemical characteristics of the exopolysaccharides (EPS) extracted from the microalgae species Halamphora sp., as well as to evaluate their antioxidant, antibacterial, and anti-apoptotic activities. The crude extracellular polysaccharides from the halophilic diatom Halamphora sp. were found to be extracellular heterosulfated anionic polysaccharides containing carbohydrates (76.33 ± 1.80%), proteins (0.15 ± 0.02%), uronic acids (5.44 ± 0.08%) and sulfate (7.56 ± 0.86%). The lowest protein (0.24%) and lipid (0.15%) contents suggested that EPS was highly pure. Gas chromatography-mass spectrometry analysis revealed that the carbohydrate fraction consisted of xylose, l-galactose, d-galactose, glucose, ribitol, mannose, and inositol with corresponding mole percentages of 40.55, 13.25, 13.00, 9.95, 9.82, 2.90, and 2.28, respectively. In vitro, tests showed a high total antioxidant capacity probably related to l-galactose followed by d-galactose, uronic acid, and ribitol. In addition, extracellular polysaccharides (EPS) demonstrated effective antimicrobial Gram + properties with inhibition zones ranging from 10 to 12 mm. Molecular docking showed an antiapoptotic effect, as the best docking score was generated due to the interaction of xylose and caspase 3 (-6.9 kcal/mol) and l-galactose and caspase 3 (-5 kcal/mol). Overall, the findings of this study suggest the possibility of using the EPS extract of Halamphora sp. as an additive for nutraceutical and cosmetic purposes.
Collapse
Affiliation(s)
- Fatma Ben Mansour
- Department of Life SciencesLaboratory of Marine Biodiversity and EnvironmentFaculty of SciencesUniversity of SfaxSfaxTunisia
| | - Wassim Guermazi
- Department of Life SciencesLaboratory of Marine Biodiversity and EnvironmentFaculty of SciencesUniversity of SfaxSfaxTunisia
| | - Mohamed Chamkha
- Laboratory of Environmental BioprocessesCentre of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Khaled Bellassoued
- Department of Life SciencesAnimal Ecophysiology LaboratoryUniversity of SfaxSfaxTunisia
| | - Hichem Ben Salah
- Department of Life Sciences, Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team)Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia
| | | | - Waleed Aldahmash
- Zoology DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Md Ataur Rahman
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Habib Ayadi
- Department of Life SciencesLaboratory of Marine Biodiversity and EnvironmentFaculty of SciencesUniversity of SfaxSfaxTunisia
| |
Collapse
|
2
|
Pereira DT, García-García P, Korbee N, Vega J, Señoráns FJ, Figueroa FL. Optimizing the Extraction of Bioactive Compounds from Porphyra linearis (Rhodophyta): Evaluating Alkaline and Enzymatic Hydrolysis for Nutraceutical Applications. Mar Drugs 2024; 22:284. [PMID: 38921595 PMCID: PMC11204741 DOI: 10.3390/md22060284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Porphyra sensu lato is one of the most economically significant and widely cultured and consumed algae in the world. Porphyra species present excellent nutraceutic properties due to their bioactive compounds (BACs). This research aimed to find the most efficient aqueous extraction method for BACs by examining alkaline and enzymatic hydrolysis. Alkaline hydrolysis with 2.5% sodium carbonate (SC) and at 80 °C proved optimal for extracting all BACs (phycobiliproteins, soluble proteins, polyphenols, and carbohydrates) except mycosporine-like amino acids (MAAs), which were best extracted with water only, and at 80 °C. Enzymatic hydrolysis, particularly with the 'Miura' enzymatic cocktail (cellulase, xylanase, glycoside hydrolase, and β-glucanase), showed superior results in extracting phycoerythrin (PE), phycocyanin (PC), soluble proteins, and carbohydrates, with increases of approximately 195%, 510%, 890%, and 65%, respectively, compared to the best alkaline hydrolysis extraction (2.5% SC and 80 °C). Phenolic content analysis showed no significant difference between the 'Miura' cocktail and 2.5% SC treatments. Antioxidant activity was higher in samples from alkaline hydrolysis, while extraction of MAAs showed no significant difference between water-only and 'Miura' treatments. The study concludes that enzymatic hydrolysis improves the efficiency of BACs extraction in P. linearis, highlighting its potential for the nutraceutical industry, and especially with respect to MAAs for topical and oral UV-photoprotectors.
Collapse
Affiliation(s)
- Débora Tomazi Pereira
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Paz García-García
- Group of Bioactive Extracts and Healthy Lipids, Faculty of Sciences, Cantoblanco Campus, 28049 Madrid, Spain; (P.G.-G.); (F.J.S.)
| | - Nathalie Korbee
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Julia Vega
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| | - Francisco J. Señoráns
- Group of Bioactive Extracts and Healthy Lipids, Faculty of Sciences, Cantoblanco Campus, 28049 Madrid, Spain; (P.G.-G.); (F.J.S.)
| | - Félix L. Figueroa
- Experimental Center Grice Hutchinson, Institute of Blue Biotechnology and Development (IBYDA), University of Malaga, Lomas de San Julián, 2, 29004 Malaga, Spain; (D.T.P.); (N.K.); (J.V.)
| |
Collapse
|
3
|
Motamedzadeh A, Rahmati-Dehkordi F, Heydari H, Behnam M, Rashidi Noshabad FZ, Tamtaji Z, Taheri AT, Nabavizadeh F, Aschner M, Mirzaei H, Tamtaji OR. Therapeutic potential of Phycocyanin in gastrointestinal cancers and related disorders. Mol Biol Rep 2024; 51:741. [PMID: 38874869 DOI: 10.1007/s11033-024-09675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/β-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoora Heydari
- Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| |
Collapse
|
4
|
Perera RMTD, Herath KHINM, Sanjeewa KKA, Jayawardena TU. Recent Reports on Bioactive Compounds from Marine Cyanobacteria in Relation to Human Health Applications. Life (Basel) 2023; 13:1411. [PMID: 37374193 DOI: 10.3390/life13061411] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The ocean is a valuable natural resource that contains numerous biologically active compounds with various bioactivities. The marine environment comprises unexplored sources that can be utilized to isolate novel compounds with bioactive properties. Marine cyanobacteria are an excellent source of bioactive compounds that have applications in human health, biofuel, cosmetics, and bioremediation. These cyanobacteria exhibit bioactive properties such as anti-inflammatory, anti-cancer, anti-bacterial, anti-parasitic, anti-diabetic, anti-viral, antioxidant, anti-aging, and anti-obesity effects, making them promising candidates for drug development. In recent decades, researchers have focused on isolating novel bioactive compounds from different marine cyanobacteria species for the development of therapeutics for various diseases that affect human health. This review provides an update on recent studies that explore the bioactive properties of marine cyanobacteria, with a particular focus on their potential use in human health applications.
Collapse
Affiliation(s)
- R M T D Perera
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - K H I N M Herath
- Department of Bio-Systems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura 60170, Sri Lanka
| | - K K Asanka Sanjeewa
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| |
Collapse
|
5
|
Guermazi W, Boukhris S, Annabi-Trabelsi N, Rebai T, Sellami-Kamoun A, Aldahmash W, Plavan GI, Harrath AH, Ayadi H. Hyperhalophilic Diatom Extract Protects against Lead-Induced Oxidative Stress in Rats and Human HepG2 and HEK293 Cells. Pharmaceuticals (Basel) 2023; 16:875. [PMID: 37375822 PMCID: PMC10300844 DOI: 10.3390/ph16060875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This work investigated the protective effects of microalga Halamphora sp. extract (HExt), a nutraceutical and pharmacological natural product, on human lead-intoxicated liver and kidney cells in vitro and in vivo in Wistar rats. The human hepatocellular carcinoma cell line HepG2 and the human embryonic kidney cell line HEK293 were used for the in vitro study. The analysis of the fatty acid methyl esters in the extract was performed via GC/MS. The cells were pretreated with HExt at 100 µg mL-1, followed by treatment with different concentrations of lead acetate, ranging from 25 to 200 µM for 24 h. The cultures were incubated (5% CO, 37 °C) for 24 h. Four groups, each containing six rats, were used for the in vivo experiment. The rats were exposed to subchronic treatment with a low dose of lead acetate (5 mg kg-1 b.w. per day). Pretreating HepG2 and HEK293 cells with the extract (100 µg mL-1) significantly (p < 0.05) protected against the cytotoxicity induced by lead exposure. For the in vivo experiment, the biochemical parameters in serum-namely, the level of malondialdehyde (MDA), and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)-were measured in the organ homogenate supernatants. HExt was found to be rich in fatty acids, mainly palmitic and palmitoleic acids (29.464% and 42.066%, respectively). In both the in vitro and in vivo experiments, cotreatment with HExt protected the liver and kidney cell structures and significantly preserved the normal antioxidant and biochemical parameters in rats. This study discovered the possible protective effect of HExt, which could be beneficial for Pb-intoxicated cells.
Collapse
Affiliation(s)
- Wassim Guermazi
- Laboratory of Marine Biodiversity and Environment, Department of Life Sciences, Faculty of Sciences, University of Sfax, Street of Soukra Km 3.5, Sfax CP 3000, Tunisia
| | - Saoussan Boukhris
- Laboratory of Enzyme Engineering and Microbiology, Department of Life Sciences, National Engineering School of Sfax, University of Sfax, Sfax CP 3038, Tunisia
| | - Neila Annabi-Trabelsi
- Laboratory of Marine Biodiversity and Environment, Department of Life Sciences, Faculty of Sciences, University of Sfax, Street of Soukra Km 3.5, Sfax CP 3000, Tunisia
| | - Tarek Rebai
- Laboratory of Histology-Embryology, Faculty of Medicine, Magida Boulila Street, Sfax CP 3028, Tunisia
| | - Alya Sellami-Kamoun
- Laboratory of Enzyme Engineering and Microbiology, Department of Life Sciences, National Engineering School of Sfax, University of Sfax, Sfax CP 3038, Tunisia
| | - Waleed Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Habib Ayadi
- Laboratory of Marine Biodiversity and Environment, Department of Life Sciences, Faculty of Sciences, University of Sfax, Street of Soukra Km 3.5, Sfax CP 3000, Tunisia
| |
Collapse
|
6
|
Ji L, Qiu S, Wang Z, Zhao C, Tang B, Gao Z, Fan J. Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Res Int 2023; 167:112737. [PMID: 37087221 DOI: 10.1016/j.foodres.2023.112737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Phycobiliproteins are light-harvesting complexes found mainly in cyanobacteria and red algae, playing a key role in photosynthesis. They are extensively applied in food, cosmetics, and biomedical industry due to bright color, unique fluorescence characteristics and diverse physiological activities. They have received much attention in the past few decades because of their green and sustainable production, safe application, and functional diversity. This work aimed to provide a comprehensive summary of parameters affecting the whole bioprocess with a special focus on the extraction and purification, which directly determines the application of phycobiliproteins. Food grade phycobiliproteins are easy to prepare, whereas analytical grade phycobiliproteins are extremely complex and costly to produce. Most phycobiliproteins are denatured and inactivated at high temperatures, severely limiting their application. Inspired by recent advances, future perspectives are put forward, including (1) the mutagenesis and screening of algal strains for higher phycobiliprotein productivity, (2) the application of omics and genetic engineering for stronger phycobiliprotein stability, and (3) the utilization of synthetic biology and heterologous expression systems for easier phycobiliprotein isolation. This review will give a reference for exploring more phycobiliproteins for food and health application development.
Collapse
Affiliation(s)
- Liang Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Sheng Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhiheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Chenni Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bo Tang
- Nantong Focusee Biotechnology Company Ltd., Nantong, Jiangsu 226133, PR China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
7
|
Fabrication and characterization of phycocyanin-alginate-pregelatinized corn starch composite gel beads: Effects of carriers on kinetic stability of phycocyanin. Int J Biol Macromol 2022; 218:665-678. [PMID: 35870624 DOI: 10.1016/j.ijbiomac.2022.07.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Composite gel beads using calcium alginate and different concentrations of pregelatinized corn starch (PCS) were produced to encapsulate phycocyanin (PC). Rheological properties of different sodium alginate/PCS/PC mixtures, structural and morphological properties of beads, and kinetic stability of encapsulated PC (upon heating at various time-temperature combinations) were then assessed. Rheological properties of the mixtures exhibited shear thinning behaviors. Aquagram revealed that the PC-containing beads had more water structure with weak‑hydrogen bonds. Morphological images represented less subsidence in the structures of composite gel beads, unlike PCS-free beads. Kinetic study showed that degradation rate constant values of PC encapsulated in composite gel beads (1.08-3.45 × 10-4, 3.38-4.43 × 10-4, and 5.57-15.32 × 10-4 s-1) were lower than those in PCS-free alginate gel beads (4.45 × 10-4, 9.20 × 10-4, and 18.04 × 10-4 s-1) at 40, 50, and 60 °C, respectively. This study suggests that the composite gel beads can improve PC stability.
Collapse
|
8
|
Dagnino-Leone J, Figueroa CP, Castañeda ML, Youlton AD, Vallejos-Almirall A, Agurto-Muñoz A, Pavón Pérez J, Agurto-Muñoz C. Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives. Comput Struct Biotechnol J 2022; 20:1506-1527. [PMID: 35422968 PMCID: PMC8983314 DOI: 10.1016/j.csbj.2022.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
Phycobiliproteins (PBPs) are fluorescent proteins of various colors, including fuchsia, purple-blue and cyan, that allow the capture of light energy in auxiliary photosynthetic complexes called phycobilisomes (PBS). PBPs have several highly preserved structural and physicochemical characteristics. In the PBS context, PBPs function is capture luminous energy in the 450-650 nm range and delivers it to photosystems allowing photosynthesis take place. Besides the energy harvesting function, PBPs also have shown to have multiple biological activities, including antioxidant, antibacterial and antitumours, making them an interesting focus for different biotechnological applications in areas like biomedicine, bioenergy and scientific research. Nowadays, the main sources of PBPs are cyanobacteria and micro and macro algae from the phylum Rhodophyta. Due to the diverse biological activities of PBPs, they have attracted the attention of different industries, such as food, biomedical and cosmetics. This is why a large number of patents related to the production, extraction, purification of PBPs and their application as cosmetics, biopharmaceuticals or diagnostic applications have been generated, looking less ecological impact in the natural prairies of macroalgae and less culture time or higher productivity in cyanobacteria to satisfy the markets and applications that require high amounts of these molecules. In this review, we summarize the main structural characteristics of PBPs, their biosynthesys and biotechnological applications. We also address current trends and future perspectives of the PBPs market.
Collapse
Affiliation(s)
- Jorge Dagnino-Leone
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Cristina Pinto Figueroa
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Mónica Latorre Castañeda
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Andrea Donoso Youlton
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Andrés Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Jessy Pavón Pérez
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Ciencia y Tecnología de los Alimentos (CyTA), Facultad de Farmacia, Universidad de Concepción, Concepción 4030000 Chile
| | - Cristian Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Ciencia y Tecnología de los Alimentos (CyTA), Facultad de Farmacia, Universidad de Concepción, Concepción 4030000 Chile
| |
Collapse
|
9
|
Ashaolu TJ, Samborska K, Lee CC, Tomas M, Capanoglu E, Tarhan Ö, Taze B, Jafari SM. Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications. Int J Biol Macromol 2021; 193:2320-2331. [PMID: 34793814 DOI: 10.1016/j.ijbiomac.2021.11.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023]
Abstract
Phycocyanins (PCYs) are a group of luxuriant bioactive compounds found in blue-green algae with an estimated global market of about US$250 million within this decade. The multifarious markets of PCYs noted by form (e.g. powder or aqueous forms), by grade (e.g. analytical, cosmetic, or food grades), and by application (such as biomedical, diagnostics, beverages, foods, nutraceuticals and pharmaceuticals), show that the importance of PCYs cannot be undermined. In this comprehensive study, an overview on PCY, its structure, and health-promoting features are diligently discussed. Methods of purification including chromatography, ammonium sulfate precipitation and membrane filtration, as well as characterization and measurement of PCYs are described. PCYs could have many applications in food colorants, fluorescent markers, nanotechnology, nutraceutical and pharmaceutical industries. It is concluded that PCYs offer significant potentials, although more investigations regarding its purity and safety are encouraged.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Katarzyna Samborska
- Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Poland
| | - Chi Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303, Istanbul, Turkey
| | - Esra Capanoglu
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Özgür Tarhan
- Food Engineering Department, Faculty of Engineering, Uşak Üniversitesi, 1 Eylül Kampüsü, 64200 Uşak, Turkey
| | - Bengi Taze
- Food Engineering Department, Faculty of Engineering, Uşak Üniversitesi, 1 Eylül Kampüsü, 64200 Uşak, Turkey
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
10
|
Zuorro A, Leal-Jerez AG, Morales-Rivas LK, Mogollón-Londoño SO, Sanchez-Galvis EM, García-Martínez JB, Barajas-Solano AF. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimization. ACS OMEGA 2021; 6:10527-10536. [PMID: 34056207 PMCID: PMC8153776 DOI: 10.1021/acsomega.0c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/11/2021] [Indexed: 05/06/2023]
Abstract
Phycobiliproteins (PBPs) are a group of brilliant pigment proteins found in cyanobacteria and red algae; their synthesis and accumulation depend on several factors such as the type of strain employed, nutrient concentration, light intensity, light regimes, and others. This study evaluates the effect of macronutrients (citrate buffer, NaNO3, K2HPO4, MgSO4, CaCl2, Na2CO3, and EDTA) and the concentration of trace metals in BG-11 media on the accumulation of PBPs in a thermotolerant strain of Oscillatoria sp. The strain was grown in BG-11 media at 28 °C with a light:dark cycle of 12:12 h at 100 μmol m-2 s-1 for 15 days, and the effect of nutrients was evaluated using a Plackett-Burman Design followed by optimization using a response surface methodology. Results from the concentration of trace metals show that it can be reduced up to half-strength in its initial concentration without affecting both biomass and PBPs. Results from the Plackett-Burman Design revealed that only NaNO3, Na2CO3, and K2HPO4 show a significant increase in PBP production. Optimization employed a central Non-Factorial Response Surface Design with three levels and four factors (34) using NaNO3, Na2CO3, K2HPO4, and trace metals as variables, while the other components of BG-11 media (citrate buffer, MgSO4, CaCl2, and EDTA) were used in half of their initial concentration. Results from the optimization show that interaction between Na2CO3 and K2HPO4 highly increased PBPs' concentration, with values of 15.21, 3.95, and 1.89 (% w/w), respectively. These results demonstrate that identifying and adjusting the concentration of critical nutrients can increase the concentration of PBPs up to two times for phycocyanin and allophycocyanin while four times for phycoerythrin. Finally, the reduction in non-key nutrients' concentration will reduce the production costs of colorants at an industrial scale and increase the sustainability of the process.
Collapse
Affiliation(s)
- Antonio Zuorro
- Department
of Chemical Engineering, Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Angela G. Leal-Jerez
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Leidy K. Morales-Rivas
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Sandra O. Mogollón-Londoño
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Edwar M. Sanchez-Galvis
- Grupo
Ambiental de Investigación Aplicada-GAIA, Facultad de Ingeniería,
Universidad de Santander (UDES), Campus Universitario Lagos del Cacique, Cll 70 No 55-210, Bucaramanga 680003, Colombia
| | - Janet B. García-Martínez
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Andrés F. Barajas-Solano
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| |
Collapse
|
11
|
Amarante MCAD, Braga ARC, Sala L, Moraes CC, Kalil SJ. Design strategies for C-phycocyanin purification: Process influence on purity grade. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Development and fabrication of disease resistance protein in recombinant Escherichia coli. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00343-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCyanobacteria and Spirulina produce C-phycocyanin (CPC), a water soluble protein associated pigment, which is extensively used in food and pharmaceutical industries. Other therapeutic proteins might exist in microalgal cells, of which there is limited knowledge. Such proteins/peptides with antibiotic properties are crucial due to the emergence of multi-drug resistant pathogens. In addition, the native expression levels of such disease resistant proteins are low, hindering further investigation. Thus, screening and overexpression of such novel proteins is urgent and important. In this study, a protein which was identified as a putative disease resistance protein (DRP) in the mixture of Spirulina product has been explored for the first time. To improve protein expression, DRP was cloned in the pET system, co-transformed with pRARE plasmid for codon optimization and was significantly overexpressed in E. coli BL21(DE3) under induction with isopropyl-β-d-1-thiogalactopyranoside (IPTG). Furthermore, soluble DRP exhibited intense antimicrobial activity against predominant pathogens, and an inhibition zone of 1.59 to 1.74 cm was obtained for E. coli. At a concentration 4 mg/mL, DRP significantly elevated the growth of L. rhamnosus ZY up to twofold showing probable prebiotic activities. Moreover, DRP showed potential as an effective antioxidant, and the scavenging ability for ROS was in the order of hydroxyl > DPPH > superoxide radicals. A putative disease resistance protein (DRP) has been identified, sequenced, cloned and over-expressed in E. coli as a functional protein. Thus expressed DRP showed potential anti-microbial and antioxidant properties, with promising therapeutic applications.
Collapse
|