1
|
Liu B, Luo L, Shi Z, Ju H, Yu L, Li G, Cui J. Research Progress of Porcine Reproductive and Respiratory Syndrome Virus NSP2 Protein. Viruses 2023; 15:2310. [PMID: 38140551 PMCID: PMC10747760 DOI: 10.3390/v15122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is globally prevalent and seriously harms the economic efficiency of pig farming. Because of its immunosuppression and high incidence of mutant recombination, PRRSV poses a great challenge for disease prevention and control. Nonstructural protein 2 (NSP2) is the most variable functional protein in the PRRSV genome and can generate NSP2N and NSP2TF variants due to programmed ribosomal frameshifts. These variants are broad and complex in function and play key roles in numerous aspects of viral protein maturation, viral particle assembly, regulation of immunity, autophagy, apoptosis, cell cycle and cell morphology. In this paper, we review the structural composition, programmed ribosomal frameshift and biological properties of NSP2 to facilitate basic research on PRRSV and to provide theoretical support for disease prevention and control and therapeutic drug development.
Collapse
Affiliation(s)
- Benjin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Lingzhi Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Ziqi Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Houbin Ju
- Shanghai Animal Disease Prevention and Control Center, Shanghai 201103, China;
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jin Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| |
Collapse
|
2
|
Yi H, Yu Z, Wang Q, Sun Y, Peng J, Cai Y, Ma J, Chen Y, Qin C, Cai M, Ji C, Zhang G, Wang H. Panax Notoginseng Saponins Suppress Type 2 Porcine Reproductive and Respiratory Syndrome Virus Replication in vitro and Enhance the Immune Effect of the Live Vaccine JXA1-R in Piglets. Front Vet Sci 2022; 9:886058. [PMID: 35619609 PMCID: PMC9127999 DOI: 10.3389/fvets.2022.886058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the innate immune response in the host, reducing and delaying neutralizing antibody production against PRRSV infection and promoting viral infection. Here, we aimed to assess the potential of Panax notoginseng saponins (PNS) for improving the immune response exerted upon PRRSV-2-modified live virus (MLV) vaccine administration. Thirty piglets were randomly divided into six groups. Group 1 piglets were injected with medium 0 days post vaccination (dpv). Group 2 piglets were fed PNS 0–28 dpv. Group 3 and group 4 piglets were administered the JXA1-R vaccine 0 dpv. Group 4 piglets were also fed PNS 0–28 dpv. Group 1–4 piglets were challenged intranasally with the PRRSV JXA1 strain 28 dpv. Group 5 piglets were fed with PNS without challenge. Group 6 piglets served as controls. During the experiment, the samples were collected regularly for 49 days. Compared with group 1 piglets, group 3 piglets showed significantly reduced viremia and clinical scores, and significantly increased average daily gain (ADWG). Compared with group 3 piglets, group 4 piglets showed significantly improved neutralizing antibody titers, IFN-α and IFN-β mRNA expression, and significantly decreased viremia and viral load in the lungs and lymph nodes, but did not demonstrate any further improvement in PRRSV-specific antibody titer, rectal temperature, ADWG, or clinical scores. PNS upregulates neutralizing antibodies against PRRSV-2 and enhances the expression of IFN-α and IFN-β, which may reduce PRRSV viremia upon PRRSV-2 MLV vaccine administration. PNS may serve as an effective immunomodulator for boosting the immune defense against PRRSV.
Collapse
Affiliation(s)
- Heyou Yi
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhiqing Yu
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Qiumei Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yankuo Sun
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jie Peng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yu Cai
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jun Ma
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongjie Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Chenxiao Qin
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Mengkai Cai
- Guangdong Meizhou Vocational and Technical College, Meizhou, China
| | - Chihai Ji
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- *Correspondence: Guihong Zhang
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Heng Wang
| |
Collapse
|
3
|
Chen X, Ding X, Zhu L, Zhang G. The identification of a B-cell epitope in bovine viral diarrhea virus (BVDV) core protein based on a mimotope obtained from a phage-displayed peptide library. Int J Biol Macromol 2021; 183:2376-2386. [PMID: 34111485 DOI: 10.1016/j.ijbiomac.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023]
Abstract
Bovine pestivirus A and B, previously known as bovine viral diarrhea virus (BVDV)-1 and 2, respectively, are important pathogens of cattle worldwide, which causes significant economic losses. B-cell epitopes in BVDV glycoprotein E2 and nonstructural protein NS2/3 have been extensively identified. In this study, we screened a 12-mer phage display peptide library using commercial goat anti-BVDV serum, and identified a mimotope "LTPHKHHKHLHA" referred to as P3. With sequence alignment, a putative B-cell epitope "77ESRKKLEKALLA88" termed as P3-BVDV1/2 residing in BVDV core protein was identified. The synthesized peptides of both P3 and P3-BVDV1/2 show strong reactivity with BVDV serum in immune blot assay. Immunization of mice with these individual peptides leads to the production of antibody that cannot neutralize virus infectivity. Thus for the first time we identified a B-cell epitope, "77ESRKKLEKALLA88", in BVDV core protein. Interestingly, the epitope was highly conserved in Pestivirus A, B, C, D, as well as emerging Pestivirus E and I, but highly variable in Pestiviruses H, G, F, and J, as well as unclassified Pestivirus originated from non-ruminant animals. Whether this putative B-cell epitope is implicated in pestivirus pathogenesis or evolution needs further investigations once large numbers of isolates are available in the future.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Cattle
- Cell Surface Display Techniques
- Diarrhea Virus 1, Bovine Viral/genetics
- Diarrhea Virus 1, Bovine Viral/immunology
- Diarrhea Virus 1, Bovine Viral/pathogenicity
- Diarrhea Virus 2, Bovine Viral/genetics
- Diarrhea Virus 2, Bovine Viral/immunology
- Diarrhea Virus 2, Bovine Viral/pathogenicity
- Dogs
- Epitope Mapping
- Epitopes, B-Lymphocyte/administration & dosage
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Female
- Immunization
- Immunogenicity, Vaccine
- Madin Darby Canine Kidney Cells
- Mice, Inbred BALB C
- Mutation
- Peptide Library
- Viral Core Proteins/administration & dosage
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Mice
Collapse
Affiliation(s)
- Xinye Chen
- College of Life Sciences, Hebei University, Baoding 071002, China; College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiuyan Ding
- College of Life Sciences, Hebei University, Baoding 071002, China; College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Liqian Zhu
- College of Life Sciences, Hebei University, Baoding 071002, China; College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
4
|
Li X, Guo Y, Song Y, Sun R, Zhu M, Tan Z, Swaiba UE, Zhang L, Huang J. The glycosyltransferase ST3GAL2 modulates virus proliferation and the inflammation response in porcine reproductive and respiratory syndrome virus infection. Arch Virol 2021; 166:2723-2732. [PMID: 34319453 DOI: 10.1007/s00705-021-05180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
β-galactoside α-2,3-sialyltransferase 2 (ST3GAL2) is a member of the sialyltransferase family that mediates terminal modification of glycoproteins and glycolipids. ST3GAL2 has been found to play a role in obesity, aging, and malignant diseases. In this study, we cloned porcine ST3GAL2 (pST3GAL2) from porcine alveolar macrophages (PAMs), and its role in porcine reproductive and respiratory syndrome virus (PRRSV) infection was investigated by transcriptome analysis. pST3GAL2 was found to be located in the Golgi apparatus, and it was expressed at high levels in PRRSV-infected PAMs. Overexpression of pST3GAL2 resulted in a slight increase in PRRSV proliferation, and the interaction between pST3GAL2 and GP2a of PRRSV was detected by coimmunoprecipitation and confocal microscopy. The expression of pro-inflammatory cytokines (IFN-β, IL-2, IL-6, IL-18, IL-1β and TNF-α) was significantly inhibited in pST3GAL2-overexpressing, PRRSV-infected cells and upregulated in PRRSV-infected pST3GAL2-knockout cells, while the pattern of expression of anti-inflammatory cytokines (IL-4 and IL-10) was diametrically opposite. Our results demonstrate that the regulation of pST3GAL2 plays an important role in PRRSV proliferation and functional alterations in virus-infected cells. These results contribute to our understanding of the role of β-galactoside α-2,3-sialyltransferase 2 in antiviral immunity.
Collapse
Affiliation(s)
- Xiaoyang Li
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yinna Song
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Min Zhu
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zheng Tan
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Umm E Swaiba
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
5
|
Li Y, Ma ML, Lei Q, Wang F, Hong W, Lai DY, Hou H, Xu ZW, Zhang B, Chen H, Yu C, Xue JB, Zheng YX, Wang XN, Jiang HW, Zhang HN, Qi H, Guo SJ, Zhang Y, Lin X, Yao Z, Wu J, Sheng H, Zhang Y, Wei H, Sun Z, Fan X, Tao SC. Linear epitope landscape of the SARS-CoV-2 Spike protein constructed from 1,051 COVID-19 patients. Cell Rep 2021; 34:108915. [PMID: 33761319 PMCID: PMC7953450 DOI: 10.1016/j.celrep.2021.108915] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/03/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
To fully decipher the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein, it is essential to assess which part is highly immunogenic in a systematic way. We generate a linear epitope landscape of the Spike protein by analyzing the serum immunoglobulin G (IgG) response of 1,051 coronavirus disease 2019 (COVID-19) patients with a peptide microarray. We reveal two regions rich in linear epitopes, i.e., C-terminal domain (CTD) and a region close to the S2' cleavage site and fusion peptide. Unexpectedly, we find that the receptor binding domain (RBD) lacks linear epitope. We reveal that the number of responsive peptides is highly variable among patients and correlates with disease severity. Some peptides are moderately associated with severity and clinical outcome. By immunizing mice, we obtain linear-epitope-specific antibodies; however, no significant neutralizing activity against the authentic virus is observed for these antibodies. This landscape will facilitate our understanding of SARS-CoV-2-specific humoral responses and might be useful for vaccine refinement.
Collapse
Affiliation(s)
- Yang Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; College of Life Science, Nankai University, Tianjin 300071, China
| | - Ming-Liang Ma
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Yun Lai
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Hongyan Hou
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Wei Xu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhang
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Caizheng Yu
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Biao Xue
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Xiao Zheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Ning Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - He-Wei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Nan Zhang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Huan Qi
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Juan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yandi Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongjie Yao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoxiang Wu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiming Sheng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|