1
|
Merijs-Meri R, Zicans J, Ivanova T, Mezule L, Ivanickins A, Bockovs I, Bitenieks J, Berzina R, Lebedeva A. Melt-Processed Polybutylene-Succinate Biocomposites with Chitosan: Development and Characterization of Rheological, Thermal, Mechanical and Antimicrobial Properties. Polymers (Basel) 2024; 16:2808. [PMID: 39408518 PMCID: PMC11478647 DOI: 10.3390/polym16192808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The current research is devoted to the development and characterization of green antimicrobial polymer biocomposites for food packaging applications. The biocomposites were developed by melt compounding on the basis of two different succinate polymer matrices with varying chain stiffness-polybutylene succinate (PBS) or its copolymer with 20 mol.% of polybutylene adipate (PBSA). Fungi chitosan oligosaccharide (C98) and crustacean chitosan (C95) were used as antimicrobial additives. The rheological properties of the developed biocomposites were determined to clear out the most suitable temperature for melt processing. In addition, mechanical, thermal, barrier and antimicrobial properties of the developed biocomposites were determined. The results of the investigation revealed that PBSA composites with 7 wt% and 10 wt% of the C98 additive were more suitable for the development of green packaging films because of their higher ultimate elongation values, better damping properties as well as their superior anti-microbial behavior. However, due to the lower thermal stability of the C98 additive as well as PBSA, the melt processing temperatures of the composites desirably should not exceed 120 °C. Additionally, by considering decreased moisture vapor barrier properties, it is recommended to perform further modifications of the PBSA-C98 composites through an addition of a nanoclay additive due to its excellent barrier properties and thermal stability.
Collapse
Affiliation(s)
- Remo Merijs-Meri
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Janis Zicans
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Tatjana Ivanova
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Linda Mezule
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (L.M.); (A.I.)
| | - Aleksandrs Ivanickins
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (L.M.); (A.I.)
| | - Ivan Bockovs
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Juris Bitenieks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Rita Berzina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Alina Lebedeva
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| |
Collapse
|
2
|
Sango T, Koubaa A, Ragoubi M, Yemele MCN, Leblanc N. Activities of cellulose acetate and microcrystalline cellulose on the thermal and morphomechanical performances of a biobased hybrid composite made polybutylene succinate. Int J Biol Macromol 2023; 253:126918. [PMID: 37717876 DOI: 10.1016/j.ijbiomac.2023.126918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Microcrystalline cellulose (MCC-30 wt%) was extruded with a blend of polybutylene succinate (PBS) and cellulose acetate (CADS=2.5-20 wt%) to produce two grades of binary (PBS/CA, PBS/MCC) and ternary (PBS/CA/MCC) specimens by injection into a mold previously thermostated at 22 °C and 78 °C. The structure-property relationships of neat PBS (n-PBS) and PBS-based blends were investigated by Fourier transform infrared (FTIR) spectroscopy, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, scanning electron microscopy (SEM), rheology, differential scanning calorimetry (DSC), thermogravimetry, and mechanical (tensile, bending) tests. FTIR/DRIFT outcomes revealed physical interactions between the ingredients through hydrogen bonds. Rheology and SEM evidenced the presence of entanglements and micro-voids absent in n-PBS. Non-isothermal DSC showed that 22 °C-molded formulations displayed crystalline degrees higher than 78 °C-specimens, except for PBS/MCC. DSC-isothermal analysis showed a hindrance effect of CA on PBS/CA crystallinity and a nucleating impact of MCC on PBS/MCC. Tensile and bending moduli increased for both material grades while the elongation at break decreased. Entanglements and micro-voids had detrimental effects on stress levels because the maximum tensile strength decreased when each or both biofillers were added to PBS. These structural configurations were beneficial for bending strengths since all blends' stiffness relatively increased regardless of material grade.
Collapse
Affiliation(s)
- Thomas Sango
- Research Forest Institute (Institut de recherche sur les forêts-IRF), University of Québec in Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda J9X 5E4, QC, Canada; UniLaSalle, Unité de recherche Transformations & Agro-Ressources, VAM2IN (EA 7519 UniLaSalle-Université d'Artois), Mont Saint Aignan, France
| | - Ahmed Koubaa
- Research Forest Institute (Institut de recherche sur les forêts-IRF), University of Québec in Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda J9X 5E4, QC, Canada.
| | - Mohamed Ragoubi
- UniLaSalle, Unité de recherche Transformations & Agro-Ressources, VAM2IN (EA 7519 UniLaSalle-Université d'Artois), Mont Saint Aignan, France
| | - Martin-Claude Ngueho Yemele
- Société de Développement de la Baie-James, Direction du développement économique, 462, 3e Rue, Bureau 10, Chibougamau G8P 1N7, QC, Canada
| | - Nathalie Leblanc
- UniLaSalle, Unité de recherche Transformations & Agro-Ressources, VAM2IN (EA 7519 UniLaSalle-Université d'Artois), Mont Saint Aignan, France
| |
Collapse
|
3
|
Ding Y, Ma H, Liu X, Qin S, Liu J, Qu G, Bai Y, Zhao L. Improvement of the mechanical and shape memory properties in polylactide/polyethylene glycol blends by reactive graphene oxide. Int J Biol Macromol 2023; 253:127346. [PMID: 37832621 DOI: 10.1016/j.ijbiomac.2023.127346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The widespread application of biodegradable polylactide (PLA) is hindered by its brittleness. Polyethylene glycol (PEG) is commonly utilized as a plasticizer because of its favorable compatibility with PLA. However, the incorporation of PEG considerably diminishes the tensile strength of PLA. To address this issue, reactive isocyanate-modified graphene oxide (mGO) was synthesized and used as an enhancer in PLA/PEG blends. By virtue of the reaction between the isocyanate group in mGO and the terminal hydroxyl groups of PLA and PEG, graphene-based polyurethane (PU) in-situ formed and enhanced the interface between GO and the matrix. Consequently, the PLA/PEG/mGO composites exhibit simultaneously improved tensile and impact strengths, achieving an increase of 20.6% and 29.4%, respectively, compared to PLA/PEG blends. Moreover, the in situ formed PU reduces the relaxation time of the molecule motion and improved the entanglement density, thereby improving the shape-memory recovery rate and final recovery degree of the composites. This work provides a facile method to simultaneously improve the dispersion of GO and enhance its interface with polymer, thereby supplying well comprehensive properties of PLA and extending the applications of biodegradable polymers.
Collapse
Affiliation(s)
- Yu Ding
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Haotian Ma
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xin Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shengxue Qin
- College of mechanical and electronic engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jie Liu
- College of mechanical and electronic engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Guanhang Qu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yaozong Bai
- Sinoma lithium Battery Separator Co. Ltd, Zaozhuang 277599, China
| | - Lifen Zhao
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
4
|
Bernardes GP, Andrade MP, Poletto M, Luiz NR, Santana RMC, Forte MMDC. Evaluation of Thermal Decomposition Kinetics of Poly (Lactic Acid)/Ethylene Elastomer (EE) Blends. Polymers (Basel) 2023; 15:4324. [PMID: 37960004 PMCID: PMC10648464 DOI: 10.3390/polym15214324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The influences of ethylene-based elastomer (EE) and the compatibilizer agent ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA) on the thermal degradation of PLA/EE blends were evaluated by the thermal degradation kinetics and thermodynamic parameters using thermogravimetry. The presence of EE and EBAGMA synergistically improved the PLA thermal stability. The temperature of 10% of mass loss (T10%) of PLA was around 365 °C, while in the compatibilized PLA/EE blend, this property increased to 370 °C. The PLA average activation energy (Ea¯) reduced in the PLA/EE blend (from 96 kJ/mol to 78 kJ/mol), while the presence of EBAGMA in the PLA/EE blend increased the Ea¯ due to a better blend compatibilization. The solid-state thermal degradation of the PLA and PLA/EE blends was classified as a D-type degradation mechanism. In general, the addition of EE increased the thermodynamic parameters when compared to PLA and the compatibilized blend due to the increase in the collision rate between the components over the thermal decomposition.
Collapse
Affiliation(s)
- Giordano P. Bernardes
- Department of Mechatronic Engineering, Atlantic Technological University (ATU) Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Matheus P. Andrade
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), University of Caxias Do Sul (UCS), Caxias Do Sul 95070-560, Brazil;
| | - Matheus Poletto
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), University of Caxias Do Sul (UCS), Caxias Do Sul 95070-560, Brazil;
| | - Nathália R. Luiz
- Laboratory of Polymeric Materials (LAPOL), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.R.L.); (R.M.C.S.); (M.M.d.C.F.)
| | - Ruth M. C. Santana
- Laboratory of Polymeric Materials (LAPOL), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.R.L.); (R.M.C.S.); (M.M.d.C.F.)
| | - Maria M. de C. Forte
- Laboratory of Polymeric Materials (LAPOL), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.R.L.); (R.M.C.S.); (M.M.d.C.F.)
| |
Collapse
|
5
|
Suwanniroj A, Suppakarn N. Water Hyacinth Fiber as a Bio-Based Carbon Source for Intumescent Flame-Retardant Poly (Butylene Succinate) Composites. Polymers (Basel) 2023; 15:4211. [PMID: 37959891 PMCID: PMC10647722 DOI: 10.3390/polym15214211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, flame-retardant poly (butylene succinate) (PBS) composites were developed utilizing a bio-based intumescent flame retardant (IFR) system. Water hyacinth fiber (WHF) was used as a bio-based carbon source, while ammonium polyphosphate (APP) served as both an acid source and a blowing agent. Effects of WHF:APP weight ratio and total IFR content on the thermal stability and flammability of WHF/APP/PBS composites were investigated. The results demonstrated that the 15WHF/30APP/PBS composite with a WHF to APP ratio of 1:2 and a total IFR content of 45 wt% had a maximum limiting oxygen index (LOI) value of 28.8% and acquired good flame retardancy, with a UL-94 V-0 rating without polymer-melt dripping. Additionally, its peak heat release rate (pHRR) and total heat release (THR) were, respectively, 53% and 42% lower than those of the neat PBS. Char residue analysis revealed that the optimal WHF:APP ratio and total IFR content promoted the formation of a high graphitized intumescent char with a continuous and dense structure. In comparison to the neat PBS, the tensile modulus of the 15WHF/30APP/PBS composite increased by 163%. Findings suggested the possibility of employing WHF, a natural fiber, as an alternative carbon source for intumescent flame-retardant PBS composites.
Collapse
Affiliation(s)
- Anothai Suwanniroj
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nitinat Suppakarn
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
6
|
Chen L, Liu Z, Shi J, Wang C, Ding L, Ding X, Teng G, Wu J, Zhang J. Preparation and antibacterial properties of chitosan/polyvinyl alcohol nanofibrous mats using different organic acids as solvents. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Chang FL, Hu B, Huang WT, Chen L, Yin XC, Cao XW, He GJ. Improvement of rheology and mechanical properties of PLA/PBS blends by in-situ UV-induced reactive extrusion. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, Vahabi H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Wang K, Huang YQ, Cheng XH, Yeh JT. Micro foaming performance of scCO 2-aid glutaraldehyde/hexametaphosphate/thermoplastic starch foams modified by alkali treatment and montmorillonite nano-platelets. CELLULAR POLYMERS 2022. [DOI: 10.1177/02624893211073539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The micro foaming performance, moisture resistance and dynamic viscosity of scCO2-aid glutaraldehyde/hexametaphosphate/thermoplastic tapioca starch (GA/SHMP/TOS) foams were considerably improved by proper NaOH treatment. The expansion ratio, resilience rate, dynamic viscosity values of these NaOH modified foams improved to a maximum, as the time for NaOH treatment approached a proper value. The dynamic viscosity, expansion ratio and resilience rate of the scCO2-aid GA/SHMP/TOS foams modified using 110 atm scCO2-pressure, the proper alkali treatment time, SHMP loading and varying montmorillonite (MMT) loadings improved further, as their MMT loadings approached a proper value of 2.5 part per hundred parts of tapioca starch (PHTOS). Relatively large dynamic viscosity (7.1x104 Pa·s), extremely large expansion ratio (∼75), cell density (1.1x109 cells/cm3) and/or resilience rate (∼80%) were acquired for the scCO2-aid GA/SHMP/TOS/MMT foam modified using the proper alkali treatment time and MMT loading. Thermal analyses results showed that crystallization onset temperatures and crystallization rates of scCO2-aid GA/SHMP/TOS/MMT foams modified using the proper alkali treatment time and varying MMT loadings improved to a highest value by adding 2.5 PHTOS of MMT nano-platelets. Possible reasons accounting for the considerably improved micro foaming performance of scCO2-aid GA/SHMP/TOS/MMT foams modified using the proper alkali treatment time and MMT loading are proposed in this study.
Collapse
Affiliation(s)
- Ke Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Ya-qiong Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Xiao-han Cheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Jen-taut Yeh
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
| |
Collapse
|
10
|
Zhao X, Li J, Liu J, Zhou W, Peng S. Recent progress of preparation of branched poly(lactic acid) and its application in the modification of polylactic acid materials. Int J Biol Macromol 2021; 193:874-892. [PMID: 34728305 DOI: 10.1016/j.ijbiomac.2021.10.154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023]
Abstract
Poly (lactic acid) (PLA) with branched structure has abundant terminal groups, high melt strength, good rheological properties, and excellent processability; it is a new research and application direction of PLA materials. This study mainly summarizes the molecular structure design, preparation methods, basic properties of branched PLA, and its application in modified PLA materials. The structure and properties of branched PLA prepared by ring-opening polymerization of monomer, functional group polycondensation, and chain extender in the processing process were introduced. The research progress of in situ formation of branched PLA by initiators, multifunctional monomers/additives through dynamic vulcanization, and irradiation induction was described. The effect of branched PLA on the structure and properties of linear PLA materials was analyzed. The role of branched PLA in improving the crystallization behavior, phase morphology, foaming properties, and mechanical properties of linear PLA materials was discussed. At the same time, its research progress in biomedicine and tissue engineering was analyzed. Branched PLA has excellent compatibility with PLA, which has important research value in regulating the structure and properties of PLA materials.
Collapse
Affiliation(s)
- Xipo Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China.
| | - Juncheng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
| | - Jinchao Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
| | - Weiyi Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
| | - Shaoxian Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
11
|
Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Poly(butylene succinate) (PBS) has good impact strength and high elongation at break. It is used to toughen biodegradable poly(lactic acid) (PLA) materials because it can considerably improve the toughness of PLA without changing the biodegradability of the materials. Therefore, this approach has become a hotspot in the field of biodegradable materials. A review of the physical and chemical modification methods that are applied to improve the performance of PLA/PBS blends based on recent studies is presented in this article. The improvement effect of PLA/PBS blends and the addition of some common fillers on the physical properties and crystallization properties of blends in the physical modification method are summarized briefly. The compatibilizing effects of nanofillers and compatibilizing agents necessary to improve the compatibility and toughness of PLA/PBS blends are described in detail. The chemical modification method involving the addition of reactive polymers and low-molecular-weight compounds to form cross-linked/branched structures at the phase interface during in situ reactions was introduced clearly. The addition of reactive compatibilizing components is an effective strategy to improve the compatibility between PLA and PBS components and further improve the mechanical properties and processing properties of the materials. It has high research value and wide application prospects in the modification of PLA. In addition, the degradation performance of PLA/PBS blends and the methods to improve the degradation performance were briefly summarized, and the development direction of PLA/PBS blends biodegradation performance research was prospected.
Collapse
|
12
|
Xu H, Yu Y, Li Y. Crystallization, rheological and mechanical properties of poly(butylene succinate)/poly(propylene carbonate)/poly(vinyl acetate) ternary blends. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Xu J, Chen Y, Tian Y, Yang Z, Zhao Z, Du W, Zhang X. Effect of ionic liquid 1-buyl-3-methylimidazolium halide on the structure and tensile property of PBS/corn starch blends. Int J Biol Macromol 2021; 172:170-177. [PMID: 33450339 DOI: 10.1016/j.ijbiomac.2021.01.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/08/2023]
Abstract
As a promising biodegradable resin, poly (butylene succinate) (PBS) is often blended with starch to reduce the cost. In this paper, 1-buyl-3-methylimidazolium halide pre-plasticized corn starch (CS) was blended with PBS to prepare PBS/corn starch blend material modified by ionic liquid (PBS/CS-IL). Ionic liquid (IL) acted as plasticizer and compatibilizer, and the effects of 1-butyl-3-methylimidazolium halide with different halogen anion on PBS/Starch blends were explored. The effects of IL on the structure and tensile property of PBS/Starch blends were evaluated by FTIR, SEM, DSC, TGA and XRD, respectively. Test results showed that the addition of IL significantly reduced the crystallinity of PBS/Starch blends, and the size of starch particles in the PBS matrix was also effectively reduced. IL also acted as a compatibilizer of starch and PBS, and induced the morphology of the blends to change from "sea-island" structure to homogeneous phase. The results of the tensile test showed that compared with the PBS/Starch blend without IL, the elongation at break of PBS/CS-IL increased from 22% to 93%. This study provided a simple and feasible method for the preparation of low-cost PBS bio-composite materials, and provided theoretical support for future industrial production.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yanfei Chen
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yuanfang Tian
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Zhaojie Yang
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Zhixin Zhao
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Wenhao Du
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xi Zhang
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
14
|
|
15
|
Joraid AA, Okasha RM, Al-Maghrabi MA, Afifi TH, Agatemor C, Abd-El-Aziz AS. Thermal Degradation Behavior of a New Family of Organometallic Dendrimer. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01444-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|