1
|
Tang L, Xie S, Wang D, Wei Y, Ji X, Wang Y, Zhao N, Mou Z, Li B, Sun WR, Wang PY, Basmadji NP, Pedraz JL, Vairo C, Lafuente EG, Ramalingam M, Xiao X, Wang R. Astragalus polysaccharide/carboxymethyl chitosan/sodium alginate based electroconductive hydrogels for diabetic wound healing and muscle function assessment. Carbohydr Polym 2025; 350:123058. [PMID: 39647958 DOI: 10.1016/j.carbpol.2024.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Natural polysaccharides with excellent biocompatibility are considered ideal materials for repairing diabetic foot ulcer. However, diabetic foot ulcer is often accompanied by decreased muscle function, even resulting in muscle atrophy. During wound repair, monitoring muscle function at the wound site in real time can identify the decreased muscle strength timely, which is crucial for precise wound rehabilitation. Nevertheless, the majority of hydrogels are primarily utilized for wound healing and lack the capability for electromyography monitoring. Here, we designed a multinetwork hydrogel composed of astragalus polysaccharide, chitosan, and sodium alginate and internally embedded conductive PPy-PDA-MnO2 nanoparticles (P-NPs) loaded with resveratrol (Res) for wound repair and muscle function assessment. The intrinsic hypoglycemic and anti-inflammatory properties of astragalus polysaccharides, combined with the antioxidative and proangiogenic functions of Res, synergistically facilitate wound healing. The multinetwork structure affords the hydrogel excellent mechanical properties. Furthermore, the addition of conductive NPs not only improves the mechanical performance of the hydrogel but also confers electrical conductivity. The conductive hydrogel acts as an epidermal electrode which can be utilized for monitoring of electromyography signals. This novel approach for treating diabetic wounds ultimately achieves improved wound repair and muscle function assessment, carrying out a monitoring-guided safe and accurate wound repair.
Collapse
Affiliation(s)
- Letian Tang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Danyang Wang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Yiying Wei
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Xiaopu Ji
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Yicheng Wang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zonglei Mou
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Baoping Li
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China
| | - Wan Ru Sun
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ping Yu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Nicola Paccione Basmadji
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Claudia Vairo
- Biosasun S.A., Ctra. Allo-Arroniz Km1, Navarra 31263, Spain
| | | | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Xiaofei Xiao
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China; Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China.
| |
Collapse
|
2
|
Yang P, Zhou Q, Zhang Y, Jia M, Li R, Qu Q, Li Z, Feng M, Tian Y, Ren W, Peng X, Shi X. Exploring the Prebiotic Potential of Fermented Astragalus Polysaccharides on Gut Microbiota Regulation In Vitro. Curr Microbiol 2024; 82:52. [PMID: 39709319 DOI: 10.1007/s00284-024-04035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Astragalus polysaccharides (APS) are known for their prebiotic properties, and fermentation by probiotics is a promising strategy to enhance the prebiotic activity of polysaccharides. In this study, Lactobacillus rhamnosus was used to ferment APS, and response surface methodology was applied to optimize the fermentation parameters. The optimal conditions were determined as follows: 10.28% APS addition, 5.83% inoculum, 35.6 h of fermentation time, and a temperature of 34.6 °C. Additionally, the effects of Fermented Astragalus polysaccharides (FAPS) on human gut microbiota were investigated through in vitro anaerobic incubation. Fecal samples were obtained from 6 healthy volunteers, which were then individually incubated with FAPS. Results demonstrated that FAPS significantly regulated microbial composition and diversity, increasing the abundance of beneficial gut bacteria such as Lactobacillus, E. faecalis, and Brautobacterium, while inhibiting harmful species such as Shigella, Romboutsia, and Clostridium_sensu_stricto_1. Furthermore, FAPS enhanced the production of short-chain fatty acids (SCFAs), which are increasingly recognized to play a role in intestinal homeostasis. These findings suggested that FAPS offers several advantages in terms of increasing beneficial metabolites and regulating gut microbial composition. This study provides valuable insights for expanding the use of plant-derived polysaccharides in the food industry and for developing functional dietary supplements.
Collapse
Affiliation(s)
- Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Qing Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Yingying Zhang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Mingyue Jia
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Runshuang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Zhixun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Minfang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Yuting Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Weishuo Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, Beijing, 102488, China.
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science andTechnology Commission, Beijing, 100029, China.
| |
Collapse
|
3
|
Xue H, Tang Y, Zha M, Xie K, Tan J. The structure-function relationships and interaction between polysaccharides and intestinal microbiota: A review. Int J Biol Macromol 2024; 291:139063. [PMID: 39710020 DOI: 10.1016/j.ijbiomac.2024.139063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The gut microbiota, as a complex ecosystem, can affect many physiological aspects of the host's diet, disease development, drug metabolism, and immune system regulation. Polysaccharides have various biological activities including antioxidant, anti-tumor, and regulating gut microbiota, etc. Polysaccharides cannot be degraded by human digestive enzymes. However, the interaction between gut microbiota and polysaccharides can lead to the degradation and utilization of polysaccharides. Disordered intestinal flora leads to diseases such as diabetes, hyperlipidemia, tumors, and diarrhea. Notably, polysaccharides can regulate the gut microbiota, promote the proliferation of probiotics and the SCFAs production, and thus improve the related-diseases and maintain body health. The relationship between polysaccharides and gut microbiota is gradually becoming clear. Nevertheless, the structure-function relationships between polysaccharides and gut microbiota still need further exploration. Hence, this paper systematically reviews the structure-function relationships between polysaccharides and gut microbiota from four aspects including molecular weight, glycosidic bonds, monosaccharide composition, and advanced structure. Moreover, this review outlines the effect of polysaccharides on gut microbiota metabolism and improves diseases by regulating gut microbiota. Furthermore, this article introduces the impact of gut microbiota on polysaccharide metabolism. The findings can provide the scientific basis for in-depth research on body health and reasonable diet.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yingqi Tang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Min Zha
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
4
|
Wang XY, Chen AQ, Huang J, Luo JH, Zou Q. A review on structure, bioactivity, mechanism, structure-activity relationship and application of anti-breast cancer polysaccharides. Int J Biol Macromol 2024; 282:137043. [PMID: 39476909 DOI: 10.1016/j.ijbiomac.2024.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer (BC) is one of the most common female malignant tumors. BC treatment depends on the use of chemotherapeutic drugs, causing various adverse effects. Increasing evidence has shown that natural polysaccharides (NPs) are potential adjuvants or substitutes for anti-BC drugs. However, the information regarding anti-BC NPs remains scattered. Thus, the recent progress in the structure, bioactivity, mechanism and application of anti-BC NPs is comprehensively summarized in this review. Moreover, the structure-activity relationship is discussed. Additionally, the prospects for future work are proposed. Recent studies have shown that anti-BC NPs have diverse structural features, which are affected by the extraction and purification methods. NPs show anti-BC activities in cell and animal experiments as well as in clinical researches, and enhance anti-BC effects of chemotherapeutic drugs in cell and animal experiments. The anti-BC mechanisms of NPs include anti-proliferation, inducing apoptosis, anti-metastasis and anti-invasion, immunoenhancement, gut microbiota regulation and others. The anti-BC activities of NPs are influenced by molecular weight, monosaccharide composition, functional groups, glycosidic bond types, backbone and side chains. NPs-based nanoparticles, nanocarriers, drug delivery systems, nanocomposites and other materials can also be used in anti-BC. This review provides theoretical bases for future research and functional application of NPs in anti-BC.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jing Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
5
|
Liang X, Zhou J, Wang M, Wang J, Song H, Xu Y, Li Y. Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence 2024; 15:2435373. [PMID: 39601191 PMCID: PMC11622597 DOI: 10.1080/21505594.2024.2435373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
Vaccines are an effective approach to confer immunity against infectious diseases. Modern subunit vaccines offer more precise target and safe protection compared to traditional whole-pathogen vaccines. However, subunit vaccines require adjuvants to stimulate the immune system due to the less immunogenicity. Adjuvants strengthen immunogenicity by enhancing, modulating, and prolonging the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new vaccine adjuvants with the characteristics of safety, efficacy, and cost-effectiveness. Notably, some natural polysaccharides have been approved as adjuvants in human vaccines, owing to their intrinsic immunomodulation, low toxicity, and high safety. Natural polysaccharides are mainly derived from plants, bacteria, and yeast. Partly owing to the difficulty of obtaining them, synthetic polysaccharides emerged in clinical trials. The immune mechanisms of both natural and synthetic polysaccharides remain incompletely understood, hindering the rational development of polysaccharide adjuvants. This comprehensive review primarily focused on several promising polysaccharide adjuvants, discussing their recent applications in vaccines and highlighting their immune-modulatory effects. Furthermore, the future perspectives of polysaccharides offer insightful guidance to adjuvant development and application.
Collapse
Affiliation(s)
- Xinlong Liang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiaying Zhou
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Mengmeng Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yigang Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yuan Li
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Research and Development Department, Zhejiang Huijia Biotechnology Co. Ltd ., Huzhou, People’s Republic of China
| |
Collapse
|
6
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
7
|
Chengzhi W, Yifan L, Xiaoqing Z, Peimin L, Dongdong L. Research progress of natural products targeting tumor-associated macrophages in antitumor immunity: A review. Medicine (Baltimore) 2024; 103:e40576. [PMID: 39560523 PMCID: PMC11575998 DOI: 10.1097/md.0000000000040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
As an important innate immune cell in the body, macrophages have a strong ability to phagocytic tumor cells and maintain the innate immune response. Tumor-associated macrophages play a more prominent role in regulating tumor immunity and are currently an important target of antitumor immunity. As a new type of antitumor therapy, tumor immunotherapy has great potential, combined chemotherapy, targeting and other therapeutic means can significantly enhance the antitumor therapy effect. At present, a number of natural products have been proved to have significant immunomodulatory and antitumor effects, and have become a hot field of antitumor immunity research. Studies have found that a variety of natural products, such as polysaccharides, flavonoids, saponins, lactones, and alkaloids, can induce the polarization of M1 macrophages, inhibit the polarization of M2 macrophages, and regulate the expression of immune-related cytokines by targeting specific signaling pathways to enhance the killing effect of macrophages on tumor cells and improve the tumor immune microenvironment, and finally better play the antitumor immune function. In this paper, by summarizing the research results of the specific mechanism of natural products targeting tumor-associated macrophages to exert antitumor immunity in recent years, we discussed the aspects of natural products targeting tumor-associated macrophages to enhance antitumor immunity, in order to provide a new research idea for tumor immunotherapy and further improve the effectiveness of clinical antitumor therapy.
Collapse
Affiliation(s)
- Wang Chengzhi
- Henan University of Chinese Medicine, Zhengzhou, China
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liu Yifan
- Henan University of Chinese Medicine, Zhengzhou, China
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhang Xiaoqing
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liu Peimin
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Li Dongdong
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Liu M, Li F, Feng S, Guo J, Yu J, Zou S, Gao X, Wei Y. Evaluation of Anticancer and Immunomodulatory Effects of Microwave-Extracted Polysaccharide from Ruditapes philippinarum. Foods 2024; 13:3552. [PMID: 39593969 PMCID: PMC11593841 DOI: 10.3390/foods13223552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
In recent years, research on active polysaccharides has progressed significantly, particularly regarding their anticancer and immunomodulatory properties. Among these, clam polysaccharides, a type of marine-derived polysaccharide, exhibit notable biological activities, including both anticancer effects and immune modulation. The aims of this study are to investigate the anticancer and immunomodulatory effects of microwave-extracted clam polysaccharide (MCP) in vitro. Cell experiments demonstrated that MCP significantly inhibited both colony formation and migration of HT-29 cells. Furthermore, treatment with MCP led to the downregulation of Bcl-2 gene expression, a reduction in mitochondrial membrane potential, activation of cytochrome C gene and caspase-3 gene, and, finally, the induction of apoptosis in HT-29 cells, implying the involvement of the mitochondrial pathway. Additionally, MCP was found to prompt a phenotypic shift in macrophages from M2 to M1 subtype and from M0 to M1 subtype. MCP also decreased reactive oxygen species (ROS) levels within the cancer cells, thereby augmenting anticancer efficacy through a dual mechanism of immune activation and antioxidant enhancement. These findings suggest that MCPs present significant potential as natural antitumor agents and immunomodulators, especially in the development of functional foods or drugs.
Collapse
Affiliation(s)
- Mengyue Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (F.L.); (X.G.); (Y.W.)
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (F.L.); (X.G.); (Y.W.)
| | - Shuang Feng
- Qingdao Yihai Industry Holdings Co., Ltd., Qingdao 266105, China; (S.F.); (J.G.); (S.Z.)
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266105, China
| | - Jiamin Guo
- Qingdao Yihai Industry Holdings Co., Ltd., Qingdao 266105, China; (S.F.); (J.G.); (S.Z.)
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266105, China
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (F.L.); (X.G.); (Y.W.)
| | - Shengcan Zou
- Qingdao Yihai Industry Holdings Co., Ltd., Qingdao 266105, China; (S.F.); (J.G.); (S.Z.)
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266105, China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (F.L.); (X.G.); (Y.W.)
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (F.L.); (X.G.); (Y.W.)
| |
Collapse
|
9
|
Peng Y, Zhu J, Li Y, Yue X, Peng Y. Almond polysaccharides inhibit DSS-induced inflammatory response in ulcerative colitis mice through NF-κB pathway. Int J Biol Macromol 2024; 281:136206. [PMID: 39362427 DOI: 10.1016/j.ijbiomac.2024.136206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Ulcerative colitis (UC), a type of inflammatory bowel disease (IBD), is a chronic recurrent inflammatory disease of the colon. Our previous findings demonstrated that almond polysaccharide (AP-1) exhibits significant anti-inflammatory activity in vitro. Therefore, this study aimed to explore the ameliorative effect of AP-1 on dextrose sodium sulfate (DSS)-induced UC mice and to elucidate its possible mechanism of action. By observing changes in body weight, fecal viscosity, stool blood, disease activity index, and colon length, we found that AP-1 attenuated inflammation. It inhibited TNF-α, IL-1β, and IL-6 while boosting anti-inflammatory IL-10 levels. Histomorphologically, AP-1 protected against DSS-induced colonic tissue damage by reducing inflammatory cell infiltration and mucosal injury. It also lowered myeloperoxidase (MPO) and NO while increasing total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) in colonic tissues. Moreover, using the Western blot technique, AP-1 was shown to inhibit the phosphorylation of p65 and IκB-α proteins in the NF-κB/iNOS/COX2 signaling pathway and down-regulate the expression of inflammation-associated proteins COX2 and iNOS, thus slowing down and ameliorating inflammatory processes. Therefore, the safe and effective beneficial effects of AP-1 make it a promising therapeutic strategy for relieving IBD, especially UC.
Collapse
Affiliation(s)
- Yanqi Peng
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang 110034, China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiayi Zhu
- College of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Yingshuo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yanyu Peng
- Department of Histology and Embryology, Shenyang Medical College, Shenyang 110034, China; Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, China.
| |
Collapse
|
10
|
Zheng S, Qi W, Xue T, Zao X, Xie J, Zhang P, Li X, Ye Y, Liu A. Chinese medicine in the treatment of chronic hepatitis B: The mechanisms of signal pathway regulation. Heliyon 2024; 10:e39176. [PMID: 39640799 PMCID: PMC11620126 DOI: 10.1016/j.heliyon.2024.e39176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic hepatitis B (CHB) is a chronic inflammatory disease of the liver caused by infection with the hepatitis B virus (HBV), which in later stages can lead to the development of end-stage liver diseases such as cirrhosis and hepatocellular carcinoma in severe cases, jeopardizing long-term quality of life, with a poor prognosis, and placing a serious financial burden on many families around the world. The pathogenesis of the disease is complex and closely related to the immune function of the body, which has not yet been fully elucidated. The development of chronic hepatitis B is closely related to the involvement of various signaling pathways, such as JAK/STAT, PI3K/Akt, Toll-like receptor, NF-κB and MAPK signaling pathways. A large number of studies have shown that Chinese medicine has obvious advantages in anti-hepatitis B virus, and it can effectively treat the disease by modulating relevant signaling pathways, strengthening immune resistance and defense, and inhibiting inflammatory responses, and certain research progress has been made, but there is still a lack of a comprehensive review on the modulation of relevant signaling pathways in Chinese medicine for the treatment of CHB. Therefore, this article systematically combed and elaborated the relevant literature on the modulation of relevant signaling pathways by traditional Chinese medicine in recent years, with a view to providing new ideas for the treatment of CHB and further drug development.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, 050000, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Jinchi Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aimin Liu
- Shangzhuang Township Community Health Service Center, Beijing, 100094, China
| |
Collapse
|
11
|
Hu R, Li J, Huang Q, Zhong X, Sun J, Yi J, Peng L, Liu X, Yang Y, Yang W, Wang Y, Ma W, Feng W, Xu Y, Zhou X. Qizhu anticancer prescription enhances immunosurveillance of liver cancer cells by regulating p21-dependent secretory phenotypes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118400. [PMID: 38823657 DOI: 10.1016/j.jep.2024.118400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, largely due to the limitations of available therapeutic strategies. The traditional Chinese medicine Qizhu Anticancer Prescription (QZACP) can improve the quality of life and prolong the survival time of patients with HCC. However, the precise mechanisms underlying the anti-cancer properties of QZACP remain unclear. PURPOSE This study examined the anti-hepatocarcinogenic properties of QZACP, with a specific focus on its influence on the p21-activated secretory phenotype (PASP)-mediated immune surveillance, to elucidate the underlying molecular pathways involved in HCC. MATERIALS AND METHODS Cell proliferation was measured using the Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, and clonogenic assays. The cell cycle was evaluated using flow cytometry, and senescence was identified by staining with senescence-associated beta-galactosidase (SA-β-gal). A primary liver cancer model produced by diethylnitrosamine was established in C57 BL/6 mice to assess the tumor-inhibitory effect of QZACP. The liver's pathological characteristics were examined using hematoxylin and eosin staining. PASP screening was performed using GeneCards, DisGeNet, Online Mendelian Inheritance in Man, and The Cancer Genome Atlas databases. Western blot analysis, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and Transwell migration assays were performed. RESULTS Serum containing QZACP enhanced p21 expression, triggered cell cycle arrest, accelerated cell senescence, and suppressed cell proliferation in Huh7 and MHCC-97H liver cancer cells. QZACP reduced the quantity and dimensions of liver tumor nodules and enhanced p21 protein expression, SA-β-Gal staining in tumor lesions, and cytotoxic CD8+ T cell infiltration. Bioinformatic analyses indicated that PASP factors, including hepatocyte growth factor, decorin (DCN), dermatopontin, C-X-C motif chemokine ligand 14 (CXCL14), and Wnt family member 2 (WNT2), play an important role in the development of HCC. In addition, these factors are associated with the presence of natural killer cells and CD8+ T cells within tumors. Western blotting and ELISA confirmed that QZACP increased DCN, CXCL14, and WNT2 levels in tumor tissues and peripheral blood. CONCLUSIONS QZACP's suppression of HCC progression may involve cell senescence mediated via p21 upregulation, DCN, CXCL14, and WNT2 secretion, and reversal of the immunosuppressive microenvironment. This study provides insights that can be used in the development of new treatment strategies for HCC.
Collapse
Affiliation(s)
- Rui Hu
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Jing Li
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Qi Huang
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Xin Zhong
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jialing Sun
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Jinyu Yi
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Lanfen Peng
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Xinning Liu
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Yuan Yang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Wenmin Yang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yan Wang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Wenfeng Ma
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Wenxing Feng
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Youhua Xu
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China
| | - Xiaozhou Zhou
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
12
|
Tang Z, Tian X. Astragalus membranaceus: A Traditional Chinese Medicine with Multifaceted Impacts on Breast Cancer Treatment. Biomolecules 2024; 14:1339. [PMID: 39456271 PMCID: PMC11506204 DOI: 10.3390/biom14101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, remains a critical area of focus for researchers striving to refine therapeutic approaches. As an important component of traditional Chinese medicine, Astragalus membranaceus (AM) has demonstrated potential for multifaceted impacts on breast cancer treatment through various mechanisms. To guide clinical practice and further explore the under-researched field of AM in breast cancer treatment, this paper mainly reviews the regulatory roles of AM-derived compounds and extracts on breast cancer cell proliferation, migration, invasion, and chemoresistance. Furthermore, this study delves into the synergistic effects observed when AM is co-administered with chemotherapeutic agents, including the enhancement of chemosensitivity, mitigation of toxic side effects, and reversal of drug resistance. This review indicates that AM holds promise not only as a therapy in breast cancer treatment but also paves the way for innovative integrated treatment approaches that combine the benefits of traditional medicine with modern pharmaceuticals. Nevertheless, future research endeavors are also urged to elucidate the in vivo pharmacological effects and underlying mechanisms of AM to inform more effective clinical treatment strategies.
Collapse
Affiliation(s)
- Zhong Tang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Oncology of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410012, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
13
|
Che Y, Li L, Kong M, Geng Y, Wang D, Li B, Deng L, Chen G, Wang J. Dietary supplementation of Astragalus flavonoids regulates intestinal immunology and the gut microbiota to improve growth performance and intestinal health in weaned piglets. Front Immunol 2024; 15:1459342. [PMID: 39416777 PMCID: PMC11479930 DOI: 10.3389/fimmu.2024.1459342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Astragali Radix (AS) is a widely used herb in traditional Chinese medicine, with calycosin as its main isoflavonoid. Our previous study discovered that calycosin triggers host defense peptide (HDP) production in IPEC-J2 cells. The aim of this study is to investigate the alleviation effects of AS total flavone and AS calycosin on growth performance, intestinal immunity, and microflora in weaned piglets. Sixty-four piglets were assigned randomly to 4 treatment groups, (1) CON: the basal diet, (2) P-CON: the basal diet plus antibiotics (1 g/kg), (3) AS-TF: the basal diet plus AS total flavone at 60 mg/day per piglet, (4) AS-CA: the basal diet plus AS calycosin at 30 mg/day per piglet. Each treatment consists of 4 replicates with 4 piglets per replicate. Results showed that treatment with AS-TF and AS-CA enhanced average daily growth and average daily feed intake compared to the CON group (P < 0.01), while AS-CA significantly reduced the diarrhea rate (P < 0.05). Both AS-TF and AS-CA significantly increased serum immunoglobulin (Ig) A and IgG levels, with AS-CA further boosting intestinal mucosal secretory IgA levels (P < 0.05). Histological analysis revealed improvements in the morphology of the jejunum and ileum and goblet cell count by AS-TF and AS-CA (P < 0.05). Supplementation of AS-TF and AS-CA promoted the expression of several intestinal HDPs (P < 0.05), and the effect of AS-CA was better than that of AS-TF. In addition, the AS-TF and AS-CA regulated jejunal microbial diversity and composition, with certain differential bacteria genera were showing high correlation with serum cytokines and immunoglobulin levels, suggesting that the intestinal flora affected by AS-TF and AS-CA may contribute to host immunity. Overall, AS CA and AS TF all improved growth performance and health, likely by enhancing nutrition digestibility, serum and intestinal immunity, and intestinal microbial composition. They showed the similar beneficial effect, indicating AS CA appears to be a major compound contributing to the effects of AS TF. This study demonstrated the positive effect of AS flavonoids on weaned piglets and provided a scientific reference for the efficient use of AS products.
Collapse
Affiliation(s)
- Yuyan Che
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mengjie Kong
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yiwen Geng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bin Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lufang Deng
- Department of Technology, Feed Branch of Beijing Sanyuan Breeding Technology Co., Ltd, Beijing, China
| | - Guoshun Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
14
|
Liu H, Qiu L, Li H, Tang Y, Wang F, Song Y, Pan Y, Li R, Yan X. A 3D-printed acinar-mimetic silk fibroin-collagen-astragalus polysaccharide scaffold for tissue reconstruction and functional repair of damaged parotid glands. Int J Biol Macromol 2024; 277:134427. [PMID: 39097050 DOI: 10.1016/j.ijbiomac.2024.134427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Salivary glands are the principal organs responsible for secreting saliva in the oral cavity. Tumors, trauma, inflammation, and other factors can cause functional or structural damage to the glands, leading to reduced saliva secretion. In this study, we innovatively prepared a acinar-mimetic silk fibroin-collagen-astragalus polysaccharide (SCA) scaffold using low-temperature three-dimensional (3D) printing and freeze-drying techniques. We evaluated the material properties and cell compatibility of the scaffold in vitro and implanted it into the damaged parotid glands (PG) of rats to assess its efficacy in tissue reconstruction and functional repair. The results demonstrated that the SCA scaffold featured a porous structure resembling natural acini, providing an environment conducive to cell growth and orderly aggregation. It exhibited excellent porosity, water absorption, mechanical properties, and biocompatibility, fulfilling the requirements for tissue engineering scaffolds. In vitro, the scaffold facilitated adhesion, proliferation, orderly polarization, and spherical aggregation of PG cells. In vivo, the SCA scaffold effectively recruited GECs locally, forming gland-like acinar structures that matured gradually, promoting the regeneration of damaged PGs. The SCA scaffold developed in this study supports tissue reconstruction and functional repair of damaged PGs, making it a promising implant material for salivary gland regeneration.
Collapse
Affiliation(s)
- Han Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Lin Qiu
- Central Laboratory, Peking University School and Hospital of Stomatology, China
| | - Haoyuan Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yanli Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Fang Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yangyang Song
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yiwei Pan
- Eye Hospital China Academy of Chinese Medicine Sciences, China
| | - Ruixin Li
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, China.
| | - Xing Yan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China.
| |
Collapse
|
15
|
Zheng Y, Chen Y, Zhao J, Wu M, Bao L, Zhao D, Bai S, Di D, Shi Y. The Protection of Astragalus Polysaccharide in BALB/C Mice during Brucella melitensis M5 Infection. Immunol Invest 2024; 53:1102-1112. [PMID: 39206848 DOI: 10.1080/08820139.2024.2380718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Brucellosis is an important zoonosis worldwide, affecting humans and animals. There are no specific medicines available to treat brucellosis. Astragalus polysaccharide (APS) is derived from Astragalus membranaceus and exhibits impressive bioactivity, including anti-aging, anti-tumor, and immunomodulatory functions. METHODS Mice were intraperitoneally inoculated with Brucella melitensis M5 and then treated with APS intraperitoneally injection daily for 7 d. RESULTS Compared to the M5-infected group, the lower bacteria loads in the APS-treated groups were proved, especially at the acute stage of infection. APS treatment relieved splenomegaly, excess expressions of several pro-inflammatory cytokines (including CXCL1, IFN-γ, IL-1β, IL-2, IL-12p70, and TNF-α). The raised level of IL-4 was observed in APS-treated mice. APS contributed to raising the ratio of M1 macrophage and reducing the ratio of M2 macrophage in the blood. DISCUSSION The present study provides some evidence on the potential application of APS in controlling and treating brucellosis and should be further explored.
Collapse
Affiliation(s)
- Yuanqiang Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yajing Chen
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jianlong Zhao
- ABSL-3 laboratory, Jinyu Baoling Bio-Pharmaceutical Co. Ltd., Hohhot, Inner Mongolia, China
| | - Meihua Wu
- ABSL-3 laboratory, Jinyu Baoling Bio-Pharmaceutical Co. Ltd., Hohhot, Inner Mongolia, China
| | - Ligao Bao
- ABSL-3 laboratory, Jinyu Baoling Bio-Pharmaceutical Co. Ltd., Hohhot, Inner Mongolia, China
| | - Dantong Zhao
- ABSL-3 laboratory, Jinyu Baoling Bio-Pharmaceutical Co. Ltd., Hohhot, Inner Mongolia, China
| | - Shuang Bai
- Department of Dermatology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Dongdong Di
- ABSL-3 laboratory, Jinyu Baoling Bio-Pharmaceutical Co. Ltd., Hohhot, Inner Mongolia, China
| | - Yanchun Shi
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
16
|
Wei J, Dai Y, Zhang N, Wang Z, Tian X, Yan T, Jin X, Jiang S. Natural plant-derived polysaccharides targeting macrophage polarization: a promising strategy for cancer immunotherapy. Front Immunol 2024; 15:1408377. [PMID: 39351237 PMCID: PMC11439661 DOI: 10.3389/fimmu.2024.1408377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Tumor associated macrophages (TAMs) are the predominant innate immune cells in the tumor microenvironment (TME). Cytokines induce the differentiation of macrophages into distinct types of TAMs, primarily characterized by two phenotypes: M1-polarized and M2-polarized. Cancer growth is suppressed by M1-polarized macrophages and promoted by M2-polarized macrophages. The regulation of macrophage M1 polarization has emerged as a promising strategy for cancer immunotherapy. Polysaccharides are important bioactive substances found in numerous plants, manifesting a wide range of noteworthy biological actions, such as immunomodulation, anti-tumor effects, antioxidant capabilities, and antiviral functions. In recent years, there has been a significant increase in interest regarding the immunomodulatory and anti-tumor properties of polysaccharides derived from plants. The regulatory impact of polysaccharides on the immune system is mainly associated with the natural immune response, especially with the regulation of macrophages. This review provides a thorough analysis of the regulatory effects and mechanisms of plant polysaccharides on TAMs. Additionally, an analysis of potential opportunities for clinical translation of plant polysaccharides as immune adjuvants is presented. These insights have greatly advanced the research of plant polysaccharides for immunotherapy in tumor-related applications.
Collapse
Affiliation(s)
- Jingyang Wei
- Second college of clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanpeng Dai
- Institute of Chinese Medicine Processing, Shandong Academy of Chinese Medicine, Jinan, China
| | - Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining No.1 People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohan Jin
- Center for Post-Doctoral Studies, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining, China
| | - Shulong Jiang
- Second college of clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining, China
| |
Collapse
|
17
|
Yuan Y, Xiang X, Jiang X, Liu Y, Zhang M, Lu L, Zhang X, Liu X, Tan Q, Zhang J. Ginkgo Biloba Bioactive Phytochemicals against Age-Related Diseases: Evidence from a Stepwise, High-Throughput Research Platform. Antioxidants (Basel) 2024; 13:1104. [PMID: 39334763 PMCID: PMC11429439 DOI: 10.3390/antiox13091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The seeds of ginkgo biloba L (GB) have been widely used worldwide. This study investigated the bioefficacies of whole GB seed powder (WGP) retaining the full nutrients of ginkgo against aging, atherosclerosis, and fatigue. The experimental results indicated that WGP lowered brain monoamine oxidase and serum malondialdehyde levels, enhanced thymus/spleen indexes, and improved learning ability, and delayed aging in senescent mice. WGP regulated lipid levels and prevented atherosclerosis by reducing triglycerides, lowering low-density lipoprotein cholesterol, increasing high-density lipoprotein cholesterol, and decreasing the atherosclerosis index. WGP improved exercise performance by reducing blood lactate accumulation and extending exhaustive swimming and climbing times, improved energy storage by increasing muscle/liver glycogen levels, and relieved physical fatigue. Network pharmacology analysis revealed 270 potential targets of WGP that play roles in cellular pathways related to inflammation inhibition, metabolism regulation, and anti-cellular senescence, etc. Protein-protein interaction analysis identified 10 hub genes, including FOS, ESR1, MAPK8, and SP1 targets. Molecular docking and molecular dynamics simulations showed that the bioactive compounds of WGP bound well to the targets. This study suggests that WGP exerts prominent health-promoting effects through multiple components, targets, and pathways.
Collapse
Affiliation(s)
- Yuming Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Xiaoyan Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Xuejun Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Yingju Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Ming Zhang
- Department of Thoracic Surgery, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China;
| | - Luyang Lu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China;
| | - Xinping Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Xinyi Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| | - Qunyou Tan
- Department of Thoracic Surgery, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China;
| | - Jingqing Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (X.X.); (X.J.); (Y.L.); (X.Z.); (X.L.)
| |
Collapse
|
18
|
Tan P, Wei X, Huang H, Wang F, Wang Z, Xie J, Wang L, Liu D, Hu Z. Application of omics technologies in studies on antitumor effects of Traditional Chinese Medicine. Chin Med 2024; 19:123. [PMID: 39252074 PMCID: PMC11385818 DOI: 10.1186/s13020-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Traditional Chinese medicine (TCM) is considered to be one of the most comprehensive and influential form of traditional medicine. It plays an important role in clinical treatment and adjuvant therapy for cancer. However, the complex composition of TCM presents challenges to the comprehensive and systematic understanding of its antitumor mechanisms, which hinders further development of TCM with antitumor effects. Omics technologies can immensely help in elucidating the mechanism of action of drugs. They utilize high-throughput sequencing and detection techniques to provide deeper insights into biological systems, revealing the intricate mechanisms through which TCM combats tumors. Multi-omics approaches can be used to elucidate the interrelationships among different omics layers by integrating data from various omics disciplines. By analyzing a large amount of data, these approaches further unravel the complex network of mechanisms underlying the antitumor effects of TCM and explain the mutual regulations across different molecular levels. In this study, we presented a comprehensive overview of the recent progress in single-omics and multi-omics research focused on elucidating the mechanisms underlying the antitumor effects of TCM. We discussed the significance of omics technologies in advancing research on the antitumor properties of TCM and also provided novel research perspectives and methodologies for further advancing this research field.
Collapse
Affiliation(s)
- Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
19
|
Zhou Q, Gao S, Yu X, Zhang L, Zhang Z, Fu Y, Liu W, Mu Y, Zhang H, Liu P, Chen J. Total astragalus saponins attenuate primary sclerosing cholangitis in mice by upregulation of TGR5. Phytother Res 2024; 38:4502-4518. [PMID: 39032102 DOI: 10.1002/ptr.8297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Total astragalus saponins (TAS) are the main active components of astragali radix, and have potent anti-hepatic fibrosis effect. However, the therapeutic efficacy of TAS and their potential mechanisms in the treatment of primary sclerosing cholangitis (PSC) remain unclear. In this study, two mouse models of PSC, including 3,5-Diethoxycarbonyl-1,4-Dihydro-2,4,6-Collidine (DDC)-induced PSC and Mdr2-/- spontaneous PSC, and the Tgr5-/- mice were used to investigate the therapeutic effect and mechanisms of TAS. Treatment with TAS, particularly with a dose of 56 mg/kg, significantly ameliorated the PSC-related liver injury, cholestasis, collagen deposition, ductular reaction (DR), and fibrosis in the DDC-induced and Mdr2-/-spontaneous PSC mice. Furthermore, treatment with TAS significantly mitigated the PSC-related inflammatory responses in vivo and HIBEpiC cells by inhibiting the expression of TNF-α, IL-6, and IL-1β. Mechanistically, treatment with TAS rescued the PSC-decreased hepatic TGR5 expression to attenuate the NF-κB p65 phosphorylation. Notably, the therapeutic efficacy of TAS on PSC in DDC-induced mice was abrogated in Tgr5-/- mice, suggesting the anti-PSC effect of TAS may depend on enhancing TGR5 expression. In conclusion, TAS ameliorated DR, inflammation and liver fibrosis in both models of PSC mice by rescuing TGR5 expression. Our findings may aid in the design of new therapeutic strategies for the treatment of PSC.
Collapse
Affiliation(s)
- Qun Zhou
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Siqi Gao
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Xiaohan Yu
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Linzhang Zhang
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Zheng Zhang
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadong Fu
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Zhang Y, Kang Q, He L, Chan KI, Gu H, Xue W, Zhong Z, Tan W. Exploring the immunometabolic potential of Danggui Buxue Decoction for the treatment of IBD-related colorectal cancer. Chin Med 2024; 19:117. [PMID: 39210410 PMCID: PMC11360867 DOI: 10.1186/s13020-024-00978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Danggui Buxue (DGBX) decoction is a classical prescription composed of Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), used to enrich blood, and nourish Qi in Chinese medicine, with the potential to recover energy and stimulate metabolism. Chronic inflammation is a risk factor in the development of inflammatory bowel disease (IBD)-related colorectal cancer (CRC). More importantly, AR and ASR have anti-inflammatory and anti-cancer activities, as well as prefiguring a potential effect on inflammation-cancer transformation. We, therefore, aimed to review the immunometabolism potential of DGBX decoction and its components in this malignant transformation, to provide a helpful complement to manage the risk of IBD-CRC. The present study investigates the multifaceted roles of DGBX decoction and its entire components AR and ASR, including anti-inflammation effects, anti-cancer properties, immune regulation, and metabolic regulation. This assessment is informed by a synthesis of scholarly literature, with more than two hundred articles retrieved from PubMed, Web of Science, and Scopus databases within the past two decades. The search strategy employed utilized keywords such as "Danggui Buxue", "Astragali Radix", "Angelicae Sinensis Radix", "Inflammation", and "Metabolism", alongside the related synonyms, with a particular emphasis on high-quality research and studies yielding significant findings. The potential of DGBX decoction in modulating immunometabolism holds promise for the treatment of IBD-related CRC. It is particularly relevant given the heterogeneity of CRC and the growing trend towards personalized medicine, but the precise and detailed mechanism necessitate further in vivo validation and extensive clinical studies to substantiate the immunometabolic modulation and delineate the pathways involved.
Collapse
Affiliation(s)
- Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China
| | - Hui Gu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Xue
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Li Z, Liu J, Cui H, Qi W, Tong Y, Wang T. Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer. Cancer Manag Res 2024; 16:909-919. [PMID: 39081698 PMCID: PMC11287463 DOI: 10.2147/cmar.s466633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024] Open
Abstract
The rising global morbidity and mortality rates of non-small cell lung cancer (NSCLC) underscore the urgent need for more effective treatments. Current therapeutic modalities-including surgery, radiotherapy, chemotherapy, and targeted therapy-face several limitations. Recently, Astragalus membranaceus, a traditional Chinese medicine (TCM), has captured significant attention due to its broad pharmacological properties, such as immune regulation, anti-inflammatory effects, and the modulation of reactive oxygen species (ROS) and enzyme activities. This review delivers a comprehensive summary of the most recent advancements and ongoing applications of Astragalus membranaceus in NSCLC treatment, underlining its potential for integration into existing treatment protocols. It also highlights essential areas for future research, including the elucidation of its molecular mechanisms, optimization of dosage and administration, and evaluation of its efficacy and safety alongside standard therapies, all of which could potentially improve therapeutic outcomes for NSCLC patients.
Collapse
Affiliation(s)
- Zhenyu Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Jimin Liu
- Department of Respiratory, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Haishan Cui
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Wenlong Qi
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Yangyang Tong
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| |
Collapse
|
22
|
Lee IY, Wang TC, Kuo YJ, Shih WT, Yang PR, Hsu CM, Lin YS, Kuo RS, Wu CY. Astragalus Polysaccharides and Metformin May Have Synergistic Effects on the Apoptosis and Ferroptosis of Lung Adenocarcinoma A549 Cells. Curr Issues Mol Biol 2024; 46:7782-7794. [PMID: 39194678 DOI: 10.3390/cimb46080461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Astragalus polysaccharides (APSs), the compounds extracted from the common herb Astragalus membranaceus, have been extensively studied for their antitumor properties. In this study, we investigated the effect of APS on lung adenocarcinoma A549 cells. The effects of APS and the anti-diabetic drug metformin on apoptosis and ferroptosis were compared. Furthermore, the combination treatment of APS and metformin was also investigated. We found that APS not only reduced the growth of lung cancer cells but also had a synergistic effect with metformin on A549 cells. The study results showed that it may be promising to use APS and metformin as a combination therapy for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Chung Wang
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yu-Jen Kuo
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Rung Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Cancer Center, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Ren-Shyang Kuo
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
23
|
Su H, He L, Yu X, Wang Y, Yang L, Wang X, Yao X, Luo P, Zhang Z. Structural characterization and mechanisms of macrophage immunomodulatory activity of a novel polysaccharide with a galactose backbone from the processed Polygonati Rhizoma. J Pharm Anal 2024; 14:100974. [PMID: 39185336 PMCID: PMC11342111 DOI: 10.1016/j.jpha.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 08/27/2024] Open
Abstract
A purified polysaccharide with a galactose backbone (SPR-1, Mw 3,622 Da) was isolated from processed Polygonati Rhizoma with black beans (PRWB) and characterized its chemical properties. The backbone of SPR-1 consisted of [(4)-β-D-Galp-(1]9 → 4,6)-β-D-Galp-(1 → 4)-α-D-GalpA-(1 → 4)-α-D-GalpA-(1 → 4)-α-D-Glcp-(1 → 4,6)-α-D-Glcp-(1 → 4)-α/β-D-Glcp, with a branch chain of R1: β-D-Galp-(1 → 3)-β-D-Galp-(1→ connected to the →4,6)-β-D-Galp-(1→ via O-6, and a branch chain of R2: α-D-Glcp-(1 → 6)-α-D-Glcp-(1→ connected to the →4,6)-α-D-Glcp-(1→ via O-6. Immunomodulatory assays showed that the SPR-1 significantly activated macrophages, and increased secretion of NO and cytokines (i.e., IL-1β and TNF-α), as well as promoted the phagocytic activities of cells. Furthermore, isothermal titration calorimetry (ITC) analysis and molecular docking results indicated high-affinity binding between SPR-1 and MD2 with the equilibrium dissociation constant (K D) of 18.8 μM. It was suggested that SPR-1 activated the immune response through Toll-like receptor 4 (TLR4) signaling and downstream responses. Our research demonstrated that the SPR-1 has a promising candidate from PRWB for the TLR4 agonist to induce immune response, and also provided an easily accessible way that can be used for PR deep processing.
Collapse
Affiliation(s)
- Hongna Su
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lili He
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xina Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yue Wang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| | - Li Yang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaorui Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, 999078, China
| | - Pei Luo
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Zhifeng Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| |
Collapse
|
24
|
Fan X, Li K, Qin X, Li Z, Du Y. Structural Characterization and Screening for Anti-inflammatory Activity of Polysaccharides with Different Molecular Weights from Astragali Radix. Chem Biodivers 2024; 21:e202400262. [PMID: 38705857 DOI: 10.1002/cbdv.202400262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Astragali Radix polysaccharides (APSs) exhibit a broad spectrum of biological activity, which is mainly related to immune regulation. At present, most available studies focus on total APSs or a certain component of APSs. However, systematic structural study and screening for the anti-inflammatory activity of polysaccharides with different molecular weights (MW) have yet to be conducted. In this study, lipopolysaccharide (LPS)-induced RAW264.7 macrophages were used as a model to investigate the anti-inflammatory activity of APSs and its fractions. The results revealed that fraction APS-I had better anti-inflammatory effects than APS-II. After APS-I was hydrolyzed by trifluoroacetic acid (TFA), the resulting degradation products oligosaccharides were fully methylated. These derivatized oligosaccharides were further analyzed by MALDI-TOF-MS and UPLC-Q-Exactive-MS/MS. The results showed that APS-I was a hetero-polysaccharide with a molecular weight of about 2.0×106 Da, mainly consisting of glucose (46.8 %) and galactose (34.4 %). The degree of polymerization of Astragali Radix oligosaccharides (APOS) was 2-16. APOS were identified as 1,4-glucooligosaccharides and 1,4-galactooligosaccharides. The findings of this study lay the foundation for further elucidation of structure-function relationships of APSs and provide guidance for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xinhui Fan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Engineering Research Center of Glycoconjugates of Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Wang W, Zhang K, Dai L, Hou A, Meng P, Ma J. Investigating the protective effects of Astragalus polysaccharides on cyclophosphamide-induced bone marrow suppression in mice and bone mesenchymal stem cells. Mol Immunol 2024; 171:93-104. [PMID: 38805892 DOI: 10.1016/j.molimm.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND This study determines the role and mechanism of APS in cyclophosphamide-induced myelosuppression in mice and bone mesenchymal stem cells (BMSCs) cell model. METHODS Cy-induced myelosuppression mice and BMSCs cell model were established. Fifty C57BL/6 mice (weighing 20 ± 2 g) were randomly divided into five groups. Femur and tibia samples, bone marrow samples, and blood samples were collected 3 days after the last injection of Cy. Histopathology changes and cell apoptosis were detected. Cell viability, apoptosis, cycle distribution, reactive oxygen species activity, osteogenesis ability, and protein levels were detected. γ-H2AX and senescence-associated β-galactosidase activity expression was detected by immunofluorescence. Cy-induced senescence and Wnt/β-catenin related protein levels were detected using western blotting. RESULTS The results showed that APS effectively induced Cy-induced histological injury and cell apoptosis rate. After treated with APS, ROS and ALP levels were significantly increased. In BMSCs, cell viability, apoptosis, and cell cycle distribution were also influenced by APS treatment. Compared with the control group, cell viability was significantly increased, the cell apoptosis rate was decreased while the number of cells remained in the G0-G1 phase was increased. Meanwhile, ROS levels were significantly increased in APS group. Cell senescence and Wnt/β-catenin related protein (γ-H2AX, SA-β-gal, p21, p16, p-β-catenin/ β-catenin, c-Myc, and AXIN2) levels were also altered both in vivo and in vitro. Interestingly, the effects of APS were reversed by BML-284. CONCLUSION Our results indicate that APS protected Cy-induced myelosuppression through the Wnt/β-catenin pathway and APS is a potential therapeutic drug for Cy-induced myelosuppression.
Collapse
Affiliation(s)
- Wen Wang
- The Third Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Kangle Zhang
- The Third Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Lingling Dai
- The Forth Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Aihua Hou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Peng Meng
- The Forth Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Jipeng Ma
- The Forth Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China.
| |
Collapse
|
26
|
Ning B, Ge T, Zhao QQ, Feng LS, Wu YQ, Chen H, Lian K, Zhao MJ. Research status of pathogenesis of anxiety or depression after percutaneous coronary intervention and Traditional Chinese Medicine intervention. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118017. [PMID: 38462028 DOI: 10.1016/j.jep.2024.118017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Anxiety or depression after percutaneous coronary intervention (PCI) is a common clinical disease. Currently, conventional pharmacotherapy primarily involves the administration of anxiolytic or antidepressant medications in conjunction with anticoagulants, antiplatelet agents, and other cardiovascular drugs. However, challenges such as drug dependence, adverse reactions and related concerns persist in the treatment of this disease. Numerous pertinent studies have demonstrated that Traditional Chinese Medicine (TCM) exhibits significant therapeutic efficacy and distinctive advantages in managing post-PCI anxiety or depression. AIM OF THIS REVIEW This review attempted to summarize the characteristics of TCM for treating anxiety or depression after PCI, including single Chinese herbs, Chinese medicine monomers, compound TCM prescriptions, TCM patented drugs, and other TCM-related treatment methods, focusing on the analysis of the relevant mechanism of TCM treatment of this disease. METHODS By searching the literature on treating anxiety or depression after PCI with TCM in PubMed, Web of Science, CNKI, and other relevant databases, this review focuses on the latest research progress of TCM treatment of this disease. RESULTS In the treatment of anxiety or depression after PCI, TCM exerts significant pharmacological effects such as anti-inflammatory, antioxidant, anti-anxiety or anti-depression, cardiovascular and cerebrovascular protection, and neuroprotection, mainly by regulating the levels of related inflammatory factors, oxidative stress markers, neurotransmitter levels, and related signaling pathways. TCM has a good clinical effect in treating anxiety or depression after PCI with individualized treatment. CONCLUSIONS TCM has terrific potential and good prospects in the treatment of anxiety or depression after PCI. The main direction of future exploration is the study of the mechanism related to Chinese medicine monomers and the large sample clinical study related to compound TCM prescriptions.
Collapse
Affiliation(s)
- Bo Ning
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Teng Ge
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Qiang-Qiang Zhao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Yong-Qing Wu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Huan Chen
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Kun Lian
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Ming-Jun Zhao
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China; Academician Workstation, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China; Shaanxi Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Xi'an, 712046, China.
| |
Collapse
|
27
|
Huo Z, Li J, Li X, Xiao H, Lin Y, Ma Y, Li J, Yang H, Zhang C. Functional fractions of Astragalus polysaccharides as a potential prebiotic to alleviate ulcerative colitis. Int J Biol Macromol 2024; 271:132580. [PMID: 38788871 DOI: 10.1016/j.ijbiomac.2024.132580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that is significantly influenced by an imbalance in the gut microbiota. Astragalus membranaceus, particularly its polysaccharide components, has shown therapeutic potential for the treatment of UC, although the specific active constituents and their mechanistic pathways remain to be fully elucidated. In this study, we investigated two molecular weight fractions of Astragalus polysaccharides (APS), APS1 (Mw < 10 kDa) and APS2 (10 kDa < Mw < 50 kDa), isolated by ultrafiltration, focusing on their prebiotic effects, effects on UC, and the underlying mechanism. Our results showed that both APS1 and APS2 exhibit prebiotic properties, with APS1 significantly outperforming APS2 in ameliorating UC symptoms. APS1 significantly attenuated weight loss and UC manifestations, reduced colonic pathology, and improved intestinal mucosal barrier integrity. In addition, APS1 significantly reduced the levels of inflammatory cytokines in the serum and colonic tissue, and downregulated colonic chemokines. Furthermore, APS1 ameliorated dextran sulfate sodium salt (DSS)-induced intestinal dysbiosis by promoting the growth of beneficial microbes and inhibiting the proliferation of potential pathogens, leading to a significant increase in short-chain fatty acids. In conclusion, this study highlights the potential of APS1 as a novel prebiotic for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Zeqi Huo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Junxiang Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Xiaofeng Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Han Xiao
- Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yang Lin
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yuchan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jiaru Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hui Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
28
|
Xue Q, Wang B, Feng J, Li C, Yu M, Zhao Y, Qi Z. Structural characterization and immune-enhancing effects of a novel polysaccharide extracted from Sargassum fusiforme. Int J Biol Macromol 2024; 270:132497. [PMID: 38763236 DOI: 10.1016/j.ijbiomac.2024.132497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
To alleviate the adverse effects of chemotherapy and bolster immune function, a novel polysaccharide derived from Sargassum fusiforme named as SFP-αII. The structural composition of SFP-αII predominantly consisted of guluronic and mannuronic acids in a molar ratio of 33.8:66.2, with an average molecular weight of 16.5 kDa. Its structure was primarily characterized by →4)-α-GulA-(1 → and →4)-β-ManA-(1 → linkages confirmed by FT-IR, methylation, and NMR analyses. The absence of a triple-helix structure was in SFP-αII was confirmed using circular dichroism and Congo red dye assays. The dimensions varied with lengths ranging from 20 nm up to 3 μm revealed by atomic force microscopy (AFM). SFP-αII has been found to enhance immunomodulatory activity in cyclophosphamide (CTX)-induced immunosuppressed mice. This was evidenced by improvements in immune organ indices, cytokine levels, and the release of nitric oxide (NO). Specifically, SFP-αII mitigated immunosuppression by upregulating the secretion of IL-1β (167.3 %) and TNF-α (227.1 %) at a dose of 400 mg/kg, compared with the CTX group in macrophages. Ultimately, SFP-αII may serve as a mechanism for immune enhancement through modulation of TLR4-mediated NF-κB and MAPK signaling pathways. This integration of traditional Chinese and Western medicine, leveraging SFP-αII as a potential functional food could be pivotal in alleviating immunosuppressive side effects in CTX treatment.
Collapse
Affiliation(s)
- Qinbing Xue
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Bing Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jie Feng
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Chaoyu Li
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China.
| | - Yan Zhao
- Medical Imaging Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zheng Qi
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China.
| |
Collapse
|
29
|
Luo Y, Chen H, Huang C, He S, Wen Q, Cai D. Structure Elucidation of a Novel Polysaccharide Isolated from Euonymus fortunei and Establishing Its Antioxidant and Anticancer Properties. Int J Anal Chem 2024; 2024:8871600. [PMID: 38827786 PMCID: PMC11142861 DOI: 10.1155/2024/8871600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Euonymusfortunei polysaccharides (EFPs) have not been extensively investigated yet in terms of their extraction and biological activity. The orthogonal experimental design was employed in this study to evaluate the optimum yield of EFPs. A maximum yield of 2.63 ± 0.23% was attained using material-liquid ratios of 60 mL/g, extraction temperature of 80°C, ultrasonic power of 144 W, and extraction time of 75 mins. The polysaccharide content reached 53.47 ± 0.31% when deproteinized thrice. An analysis of monosaccharide composition revealed that these polysaccharides consist of Gal, Glc, Man, Fuc, and Rha with a molar ratio of 7.14 ∶ 23.99 ∶ 6.29 ∶ 6.55 ∶ 1.00, respectively, in EFPs. Subsequently, the in vitro scavenging capacities of 2,2-diphenylpicrylhydrazyl (DPPH) and ·OH and superoxide anion radicals, along with the reducing power of EFPs, were studied. Results revealed that EFPs have higher antioxidant activity, particularly ·OH scavenging, as well as reducing power, as compared to Astragalus polysaccharides (ASPs) and Lycium barbarum polysaccharides (LBPs). The Cell Counting Kit-8 (CCK-8) method was used to evaluate the effects of different concentrations of polysaccharides on SKOV3 cell proliferation, and the results revealed their inhibition at concentrations in the range of 200-800 μg/mL. In addition, findings from flow cytometry further confirmed that EFPs blocked the cell cycle at G0/G1 and S phases and induced SKOV3 cell apoptosis. In a word, EFPs could be exploited and used further based on the experimental results from this study.
Collapse
Affiliation(s)
- Yu Luo
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Nanning 530021, China
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Hongtao Chen
- Guangxi University of Chinese Medicine Bainianle Pharmaceutical Co., Ltd, Nanning 530000, China
| | - Chunxi Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shujia He
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Qilong Wen
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Danzhao Cai
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| |
Collapse
|
30
|
Fu G, Zhang M, Huang Y, Han R, Qi K, Yin L, Zhao D, Huang Y, Ma T, Wang L. Effects of different addition levels of CHM-JM113 on growth performance, antioxidant capacity, organ index, and intestinal health of AA broilers. Front Vet Sci 2024; 11:1388173. [PMID: 38812557 PMCID: PMC11133612 DOI: 10.3389/fvets.2024.1388173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of the present study was to investigate the effects of different levels of a Chinese herbal medicine formulation combined with JM113 (CHM-JM113) on growth performance, antioxidant capacity, organ index, and intestinal health of AA broilers. The AA broiler chicks were randomly allocated to 5 treatments as follows: a basic diet for the control group, the basic diet supplemented with 0.25% CHM-JM113, 0.5% CHM-JM113, 1% CHM-JM113 and 2% CHM-JM113 for the treatment group, respectively. The results showed that the addition of CHM-JM113 to the diet significantly reduced the mortality (p < 0.01) and improved the European Broiler Index (EBI) (p < 0.05), whereas it had no significance on growth performance of AA broilers (p > 0.05). Comparing the control group, 0.5 and 1% CHM-JM113 group significantly improved the organ index of liver, spleen and bursa (p < 0.05). In terms of intestinal morphology and structure, the addition of different levels of CHM-JM113 increased VH and VH/CD ratio, decreased CD in the small intestine compared to the control group, with 1 and 2% of the additive dose being more effective (p < 0.05). Chinese herbal medicine and probiotics as natural antioxidants also significantly increased the content of SOD in serum of 21-day-old broilers (p < 0.01), and significantly decreased the content of MDA in serum (p < 0.01). At 42 days of age, the addition of 1 and 2% CHM-JM113 significantly increased the content of SOD (p < 0.01) and significantly decreased the content of MDA in the organism (p < 0.01), accompanied by a significant increase in T-AOC and CAT content. In the study of the effect of CHM-JM113 on intestinal immunity, compared with the control group, we found that 1% or 2% CHM-JM113 had a better effect on the expression of occludin and claudin-1 in the intestinal segments of broilers (p < 0.05). For the expression of GATA-3, 0.5% CHM-JM113 may have a better effect (p < 0.05). CHM-JM113 may be used as an antibiotic alternative in broiler production.
Collapse
Affiliation(s)
- Guanhua Fu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mengyu Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yuanyuan Huang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
- Breeding Branch, Muyuan Foods Co., Ltd., Nanyang, China
| | - Runyu Han
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Kaixuan Qi
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Lidong Yin
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Dongchen Zhao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yueyan Huang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Tenghe Ma
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Lihong Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
31
|
He Z, Liu X, Qin S, Yang Q, Na J, Xue Z, Zhong L. Anticancer Mechanism of Astragalus Polysaccharide and Its Application in Cancer Immunotherapy. Pharmaceuticals (Basel) 2024; 17:636. [PMID: 38794206 PMCID: PMC11124422 DOI: 10.3390/ph17050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Astragalus polysaccharide (APS) derived from A. membranaceus plays a crucial role in traditional Chinese medicine. These polysaccharides have shown antitumor effects and are considered safe. Thus, they have become increasingly important in cancer immunotherapy. APS can limit the spread of cancer by influencing immune cells, promoting cell death, triggering cancer cell autophagy, and impacting the tumor microenvironment. When used in combination with other therapies, APS can enhance treatment outcomes and reduce toxicity and side effects. APS combined with immune checkpoint inhibitors, relay cellular immunotherapy, and cancer vaccines have broadened the application of cancer immunotherapy and enhanced treatment effectiveness. By summarizing the research on APS in cancer immunotherapy over the past two decades, this review elaborates on the anticancer mechanism of APS and its use in cancer immunotherapy and clinical trials. Considering the multiple roles of APS, this review emphasizes the importance of using APS as an adjunct to cancer immunotherapy and compares other polysaccharides with APS. This discussion provides insights into the specific mechanism of action of APS, reveals the molecular targets of APS for developing effective clinical strategies, and highlights the wide application of APS in clinical cancer therapy in the future.
Collapse
Affiliation(s)
- Ziqing He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Zhigang Xue
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
32
|
Kong H, Yang J, Wang X, Mamat N, Xie G, Zhang J, Zhao H, Li J. The combination of Brassica rapa L. polysaccharides and cisplatin enhances the anti liver cancer effect and improves intestinal microbiota and metabolic disorders. Int J Biol Macromol 2024; 265:130706. [PMID: 38458274 DOI: 10.1016/j.ijbiomac.2024.130706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Polysaccharides are commonly used as low-toxicity anticancer active substances to enhance the chemotherapeutic effect of cisplatin and reduce toxicity. Brassica rapa L. polysaccharides have been shown to have hepatoprotective effects; however, their anticancer effects in combination with cisplatin and their mechanisms have not been reported. An acidic polysaccharide from Brassica rapa L. (BRCPe) using hydroalcohol precipitation-assisted sonication was Characterized. The effects of BRCPe combined with cisplatin treatment on tumor growth in hepatocellular carcinoma mouse model were investigated. The impact of the combined treatment on the composition of intestinal flora, levels of short-chain fatty acids and endogenous metabolites in tumor mice were analyzed based on macrogenomic and metabolomic data Our results showed that the BRCPe combined with low-dose Cisplatin group showed better inhibitory activity against hepatocellular carcinoma cell growth in terms of tumor volume, tumor weight, and tumor suppression rate compared with the BRCPe and Cisplation alone group, and reduced the side effects of cisplatin-induced body weight loss, immune deficiency, and liver injury. Furthermore, BRCPe combined with cisplatin was found to induce apoptosis in hepatocellular carcinoma cell through the activation of the caspase cascade reaction. In addition, the intervention of BRCPe were observed to modulate the composition, structure and functional structure of intestinal flora affected by cisplatin. Notably, Lachnospiraceae bacteria, Lactobacillus murinus, Muribaculaceae, and Clostridiales bacteria were identified as significant contributors to microbial species involved in metabolic pathways. Moreover, BRCPe effectively regulate the metabolic disorders in cisplatin-induced hepatocellular carcinoma mice. In conclusion, BRCPe could potentially function as an adjuvant or dietary supplement to augment the effectiveness of cisplatin chemotherapy through the preservation of a more efficient intestinal microenvironmental homeostasis.
Collapse
Affiliation(s)
- Hanrui Kong
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jun Yang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Xiaojing Wang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Nuramina Mamat
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Guoxuan Xie
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jing Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China.
| | - Jinyu Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang, College of Life Science, Xinjiang Normal University, Urumqi 830054, China.
| |
Collapse
|
33
|
Li D, Chen M, Meng X, Sun Y, Liu R, Sun T. Extraction, purification, structural characteristics, bioactivity and potential applications of polysaccharides from Avena sativa L.: A review. Int J Biol Macromol 2024; 265:130891. [PMID: 38493821 DOI: 10.1016/j.ijbiomac.2024.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Avena sativa L. (A. sativa L.), commonly known as oat, is a significant cereal grain crop with excellent edible and medicinal value. Oat polysaccharides (OPs), the major bioactive components of A. sativa L., have received considerable attention due to their beneficial bioactivities. However, the isolation and purification methods of OPs lack innovation, and the structure-activity relationship remains unexplored. This review emphatically summarized recent progress in the extraction and purification methods, structural characteristics, biological activities, structure-to-function associations and the potential application status of OPs. Different materials and isolation methods can result in the differences in the structure and bioactivity of OPs. OPs are mainly composed of various monosaccharide constituents, including glucose, arabinose and mannose, along with galactose, xylose and rhamnose in different molar ratios and types of glycosidic bonds. OPs exhibited a broad molecular weight distribution, ranging from 1.34 × 105 Da to 4.1 × 106 Da. Moreover, structure-activity relationships demonstrated that the monosaccharide composition, molecular weight, linkage types, and chemical modifications are closely related to their multiple bioactivities, including immunomodulatory activity, antioxidant effect, anti-inflammatory activity, antitumor effects etc. This work can provide comprehensive knowledge, update information and promising directions for future exploitation and application of OPs as therapeutic agents and multifunctional food additives.
Collapse
Affiliation(s)
- Dan Li
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
34
|
Liu X, Sun K, Jin X, Wu X, Xia M, Sun Y, Feng L, Li G, Wan X, Chen C. Review on active components and mechanism of natural product polysaccharides against gastric carcinoma. Heliyon 2024; 10:e27218. [PMID: 38449642 PMCID: PMC10915412 DOI: 10.1016/j.heliyon.2024.e27218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
One of the malignant tumors with a high occurrence rate worldwide is gastric carcinoma, which is an epithelial malignant tumor emerging from the stomach. Natural product polysaccharides are a kind of natural macromolecular polymers, which have the functions of regulating immunity, anti-oxidation, anti-fatigue, hypoglycemia, etc. Natural polysaccharides have remarkable effectiveness in preventing the onset, according to studies, and development of gastric cancer at both cellular and animal levels. This paper summarizes the inhibitory mechanisms and therapeutic significance of plant polysaccharides, fungi polysaccharides, and algal polysaccharides in natural product polysaccharides on the occurrence and development of gastric cancer in recent years, providing a theoretical basis for the research, development, and medicinal value of polysaccharides.
Collapse
Affiliation(s)
- Xinze Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Kaijing Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xinmin Wu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Mingjie Xia
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Feng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Guangzhe Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xilin Wan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
35
|
Hu Y, Wei J, Yuan Y, Wei H, Zhou Y, Xiao N, Xiong J, Ren Z, Peng J, Cui C, Zhou Z. Intervention effects of fructooligosaccharide and astragalus polysaccharide, as typical antibiotic alternatives, on antibiotic resistance genes in feces of layer breeding: advantages and defects. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133172. [PMID: 38071777 DOI: 10.1016/j.jhazmat.2023.133172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Although antibiotic alternatives are widely used in livestock and poultry breeding industry after in-feed antibiotics ban, their intervention effects on antibiotic resistance genes (ARGs) in these food animals' feces remain poorly understood. Here effects of fructooligosaccharide (FOS) and astragalus polysaccharide (APS), as typical antibiotic alternatives in China, on ARGs in layer feces were estimated by performing metagenomic sequencings and fluorescence quantitative PCR. Fructooligosaccharide significantly reduced sum abundance of ARGs and mobile genetic elements (MGEs) by increasing Lactobacillus clones and reducing Escherichia clones which had relatively higher abundances of ARG subtypes and MGE subtypes in layer feces. However, at least parts of core ARGs and MGEs categories were not reduced by FOS, such as aminoglycosides- and tetracyclines-resistant genes, Tn916, Integrase, and so on. MGEs and microbiome, especially Escherichia genus and Lactobacillus genus, were the key factors affecting ARGs' sum abundance. MGEs had a higher correlation coefficient with ARGs' sum abundance than Escherichia genus and Lactobacillus genus. These findings firstly reveal the defects of antibiotic alternatives in controlling bacterial resistance in livestock and poultry breeding after in-feed antibiotics ban, and more strategies are needed to control pollutions and risks of core ARGs and MGEs in food animals' feces under a special environment.
Collapse
Affiliation(s)
- Yanping Hu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Naidong Xiao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuqing Ren
- Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, Huazhong Agricultural University, WuHan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongxin Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
36
|
Hu H, Sun W, Zhang L, Zhang Y, Kuang T, Qu D, Lian S, Hu S, Cheng M, Xu Y, Liu S, Qian Y, Lu Y, He L, Cheng Y, Si H. Carboxymethylated Abrus cantoniensis polysaccharide prevents CTX-induced immunosuppression and intestinal damage by regulating intestinal flora and butyric acid content. Int J Biol Macromol 2024; 261:129590. [PMID: 38266859 DOI: 10.1016/j.ijbiomac.2024.129590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
As a Chinese folk health product, Abrus cantoniensis exhibits good immunomodulatory activity because of its polysaccharide components (ACP), and carboxymethylation of polysaccharides can often further improve the biological activity of polysaccharides. In this study, we explored the impact of prophylactic administration of carboxymethylated Abrus cantoniensis polysaccharide (CM-ACP) on immunosuppression and intestinal damage induced by cyclophosphamide (CTX) in mice. Our findings demonstrated that CM-ACP exhibited a more potent immunomodulatory activity compared to ACP. Additionally, CM-ACP effectively enhanced the abundance of short-chain fatty acid (SCFA)-producing bacteria in immunosuppressed mice and regulated the gene expression of STAT6 and STAT3 mediated pathway signals. In order to further explore the relationship among polysaccharides, intestinal immunity and intestinal flora, we performed a pseudo-sterile mouse validation experiment and fecal microbiota transplantation (FMT) experiment. The findings suggest that CM-FMT and butyrate attenuate CTX-induced immunosuppression and intestinal injury. CM-FMT and butyrate show superior immunomodulatory ability, and may effectively regulate intestinal cell metabolism and repair the damaged intestine by activating STAT6 and STAT3-mediated pathways. These findings offer new insights into the mechanisms by which CM-ACP functions as functional food or drug, facilitating immune response regulation and maintaining intestinal health.
Collapse
Affiliation(s)
- Hongjie Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Wenjing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China
| | - Lifang Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yuan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Tiantian Kuang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Dongshuai Qu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Shuaitao Lian
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Shanshan Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Ming Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yanping Xu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Song Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yajing Qian
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Lingzhi He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yumeng Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China.
| |
Collapse
|
37
|
He X, Chen A, Liao Z, Zhong J, Cheng A, Xue X, Li F, Chen M, Yao R, Zhao W, Niu J. Dietary Supplementation of Astragalus membranaceus Extract Affects Growth Performance, Antioxidant Capacity, Immune Response, and Energy Metabolism of Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2024; 2024:3893671. [PMID: 38464590 PMCID: PMC10923623 DOI: 10.1155/2024/3893671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
The present study investigated the effects of Astragalus membranaceus extract (AME) on growth performance, immune response, and energy metabolism of juvenile largemouth bass (Micropterus salmoides). Seven diets containing 0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, and 0.6% AME (Con, AME0.1, AME0.2, AME0.3, AME0.4, AME0.5, and AME0.6 groups) were formulated and fed to M. salmoides for 8 weeks. Final body weight (FBW), feed intake (FI), weight gain (WG), and specific growth rate (SGR) were all significantly higher in AME0.4 group than in Con group (P < 0.05). Feed conversion rate (FCR) was significantly improved in AME0.5 group compared with Con group (P < 0.05). Whole-body crude protein contents were significantly increased in AME0.2 group (P < 0.05). Whole-body crude lipid contents were significantly lower in AME0.2 and AME0.3 groups, while muscle lipid was upregulated by dietary AME (P < 0.05). Hepatic malondialdehyde (MDA) contents were significantly lowered in AME0.3 and AME0.4 groups, and catalase (CAT) activities were significantly increased in AME0.1 and AME0.2 groups (P < 0.05). Plasma aspartate aminotransferase (AST) level was significantly lowered in AME0.5, and AME0.6 groups, and alanine aminotransferase (ALT) level was lowered in AME0.5 groups (P < 0.05). Plasma triglyceride was declined in AME0.6 group, and glucose was decreased by 0.3%-0.5% AME (P < 0.05). Significantly higher hepatocyte diameter, lamina propria width, and submucosal layer thickness were recorded in AME0.6 groups, while the longest villi height was obtained in AME0.2 and AME0.3 groups (P < 0.05). The mRNA expression levels of insulin-like growth factor 1 (igf1) revealed the growth-promoting effect of AME. The anti-inflammatory and antiapoptotic effects of AME were demonstrated by transcription levels of interleukin 8 (il-8), tumor necrosis factor-alpha (tnf-a), caspase, B-cell lymphoma-xl (Bcl-xl), bcl-2 associated x (Bax), and bcl-2-associated death protein (Bad). The transcription levels of lipid metabolism and gluconeogenesis related genes, including acetyl-CoA carboxylase alpha (acc1), fatty acid synthase (fasn), fatty acid binding protein 1 (fabp1), phosphoenolpyruvate carboxykinase 2 (pepck2), and glucose-6-phosphatase catalytic subunit 1a (g6pc), were reduced by AME treatment, while the levels of glycolysis-related genes, including glucokinase (gck) and pyruvate kinase (pk), were the highest in AME0.2 and AME0.3 groups (P < 0.05). According to polynomial regression analysis of SGR, WG, FCR, whole-body crude lipid, MDA, and ALT, the optimal AME supplementation level was estimated to be 0.320%-0.429% of the diet. These results provided insights into the roles of AME in regulating immunity and metabolism, which highly indicated its potential as immunostimulants and metabolic regulators in diverse aquatic animals.
Collapse
Affiliation(s)
- Xuanshu He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anqi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Anda Cheng
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Xinghua Xue
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Fuyuan Li
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Mengdie Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rong Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Xue H, Zhang P, Zhang C, Gao Y, Tan J. Research progress in the preparation, structural characterization, and biological activities of polysaccharides from traditional Chinese medicine. Int J Biol Macromol 2024; 262:129923. [PMID: 38325677 DOI: 10.1016/j.ijbiomac.2024.129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Traditional Chinese medicines are tremendous sources of polysaccharides, which are of great interest in the human welfare system as natural medicines, food, and cosmetics. This review aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of traditional Chinese medicine polysaccharides (TCMPs), and the chemical structure, biological activities (anti-tumor, hypoglycemic, antioxidant, intestinal flora regulation, immunomodulatory, anti-inflammatory, anti-aging, hypolipidemic, hepatoprotective, and other activities), and the underlying mechanisms of polysaccharides extracted from 76 diverse traditional Chinese medicines were compared and discussed. With this wide coverage, a total of 164 scientific articles were searched from the database including Google Scholar, PubMed, Web of Science, and China Knowledge Network. This comprehensive survey from previous reports indicates that TCMPs are non-toxic, highly biocompatible, and good biodegradability. Besides, this review highlights that TCMPs may be excellent functional factors and effective therapeutic drugs. Finally, the current problems and future research advances of TCMPs are also introduced. New valuable insights for the future researches regarding TCMPs are also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengqi Zhang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Can Zhang
- School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, No.74 Xuefu Road, Nangang District, Harbin 150080, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
39
|
Hu B, Zhou W, Deng X, Sun M, Sun R, Li Q, Ren J, Jiang W, Wang Y, Liu S, Zhan J. Structural analysis of polysaccharide from Inonotus obliquus and investigate combined impact on the sex hormones, intestinal microbiota and metabolism in SPF male mice. Int J Biol Macromol 2024; 262:129686. [PMID: 38331071 DOI: 10.1016/j.ijbiomac.2024.129686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
The dysregulation of sex hormone levels is associated with metabolic disorders such as obesity. Inonotus obliquus polysaccharide (IOP) exhibits a promising therapeutic effect on conditions like obesity and diabetes, potentially linked to its influence on intestinal microbiota and metabolism. The exact cause and mechanisms that link sex hormones, gut microbiota and metabolism are still unknown. In this research, we examined the molecular weight, monosaccharide composition, and glycosidic bond type of IOP. We found that IOP mostly consists of alpha-structured 6‑carbon glucopyranose, with a predominant (1 → 4) linkage to monosaccharides and a uniform distribution. Following this, we administered two different concentrations of IOP to mice through gavage. The results of the enzyme-linked immunosorbent assay (ELISA) demonstrated a significant increase in testosterone (T) levels in the IOP group as compared to the control group. Additionally, the results of tissue immunofluorescence indicated that increased IOP led to a decrease in adiponectin content and an increase in SET protein expression. The study also revealed changes in the intestinal microbiota and metabolic changes in mice through 16S rRNA data and non-targeted LC-MS data, respectively. The study also found that IOP mainly affects pathways linked to glycerophospholipid metabolism. In addition, it has been observed that there is an increase in the number of beneficial bacteria, such as the Eubacterium coprostanoligenes group and g.Lachnospiraceae NK4A136 group, while the levels of metabolites that are linked to obesity or diabetes, such as 1,5-anhydrosorbitol, are reduced. Furthermore, biomarker screening has revealed that the main microorganism responsible for the differences between the three groups is g.Erysipelatoclostridiaceae. In summary, these findings suggest that IOP exerts its therapeutic effects through a synergistic interplay between sex hormones, gut microbiome composition, and metabolic processes.
Collapse
Affiliation(s)
- Binhong Hu
- College of Chemistry and life Sciences, Chengdu Normal University, China; Department of Forest Mycology and Plant pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China.
| | - Wenjing Zhou
- College of Chemistry and life Sciences, Chengdu Normal University, China; College of Veterinary Medicine, Yangzhou University (Institute of Comparative Medicine), Yangzhou, China
| | - Xin Deng
- College of Chemistry and life Sciences, Chengdu Normal University, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mengxue Sun
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Rong Sun
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Qing Li
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Jingyuan Ren
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Wei Jiang
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Yanping Wang
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Songqing Liu
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
40
|
Ying Y, Song LY, Pang WL, Zhang SQ, Yu JZ, Liang PT, Li TG, Sun Y, Wang YY, Yan JY, Yang ZS. Astragalus polysaccharide protects experimental colitis through an aryl hydrocarbon receptor-dependent autophagy mechanism. Br J Pharmacol 2024; 181:681-697. [PMID: 37653584 DOI: 10.1111/bph.16229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Disruption of intestinal barriers plays a vital role in the pathogenesis of colitis. The aryl hydrocarbon receptor (AhR) is a recognition sensor that mediates intestinal immune homeostasis and minimizes intestinal inflammation. Astragalus polysaccharide (APS) exerts pharmacological actions in colitis; however, the mechanism has not been elucidated. We investigated whether APS protects through AhR-dependent autophagy. EXPERIMENTAL APPROACH The symptoms of dextran sulfate sodium (DSS)-induced colitis in mice involving intestinal barrier function and inflammatory injury were evaluated after APS administration. Intestinal-specific Becn1 conditional knockout (Becn1 cKO) mice were constructed and compared with wild-type mice. Autophagy and the effects of APS were investigated after the deactivation of AhRs. The relationship between APS-induced AhRs and autophagic Becn1 was investigated using a dual-luciferase reporter system and chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction assay. Caco-2 cells were used to investigate inflammatory responses and AhR-dependent autophagy. KEY RESULTS APS improved intestinal barrier function in inflammatory injury in colitis mice. APS triggered autophagic flow; however, knockout of Becn1 in the gut increased susceptibility to colitis, leading to diminished epithelial barrier function and severe intestinal inflammation, impairing the protective effects of APS. Mechanistically, APS-triggered autophagy depends on AhR expression. Activated AhR binds to the promoter Becn1 to operate transcription of genes involved in anti-inflammation and intestinal barrier repair, while deactivation of AhR correlated with intestinal inflammation and the therapeutic function of APS. CONCLUSIONS AND IMPLICATIONS APS protects colitis mice by targeting autophagy, especially as the AhR stimulates the repair of damaged intestinal barrier functions.
Collapse
Affiliation(s)
- Yi Ying
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li-Yun Song
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen-Lin Pang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si-Qi Zhang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jing-Ze Yu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Peng-Tao Liang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tian-Gang Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yi Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yin-Ying Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jin-Yuan Yan
- Central Laboratory, Kunming Medical University Second Hospital, Kunming, Yunnan, China
| | - Zhong-Shan Yang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
41
|
Zhang X, Gao M, Zhao X, Qi Y, Xu L, Yin L, Peng J. Purification and structural characterization of two polysaccharides with anti-inflammatory activities from Plumbago zeylanica L. Int J Biol Macromol 2024; 260:129455. [PMID: 38232876 DOI: 10.1016/j.ijbiomac.2024.129455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Plumbago zeylanica L., a traditional Chinese medicine, has anti-bacterial and anti-inflammatory effects, and it is critical important to explore the chemical compounds and evaluate their biological actions from the medicinal plant. However, the chemical structure and biological activities of polysaccharides from P. zeylanica. were still poorly understood. In this study, two water-soluble polysaccharides named WPZP-2-1 and WPZP-2-2 were purified from P. zeylanica L. Chemical and spectroscopic tests showed that the main chain of WPZP-2-1 was →4)-α-D-GalpA-(1 → 2)-α-L-Rhap-(1→, and the branch chain was galactose or arabinose. The main chain of WPZP-2-2 was composed of →4)-α-D-GalpA-(1 → 2)-α-L-Rhap-(1→, and the O-2 and O-3 of →4)-α-D-GalpA had a small amount of acetylation. In addition, in vitro test showed that WPZP-2-1 and WPZP-2-2 significantly improved the inflammatory damage of LPS + IFN-γ-induced THP-1 cells via reducing the protein levels of CD14, TLR4 and MyD88, thereby promoting IL-10 expression and inhibiting the mRNA levels of TNF-α and IL-1β. Those findings indicated that WPZP-2-1 and WPZP-2-2 from the plant should be served as the potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Meng Gao
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xuerong Zhao
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yan Qi
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Linan Xu
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lianhong Yin
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Jinyong Peng
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
42
|
Lee SY, Park SY, Park HJ. Immuno-Enhancing Effects of Galium aparine L. in Cyclophosphamide-Induced Immunosuppressed Animal Models. Nutrients 2024; 16:597. [PMID: 38474724 DOI: 10.3390/nu16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigates the immunomodulatory potential of Galium aparine L. (GAE) in immunodeficient animals. In this study, animals were categorized into five groups: the normal group, CYP group (cyclophosphamide intraperitoneal injection), GA5 group (cyclophosphamide + 5 μg GAE), GA50 group (cyclophosphamide + 50 μg GAE), and GA500 group (cyclophosphamide + 500 μg GAE). The CYP group exhibited significantly reduced spleen weights compared to the normal group, while the groups obtaining GAE displayed a dose-dependent increase in spleen weight. Furthermore, the GAE demonstrated dose-dependent enhancement of splenocyte proliferating activity, with significant increases observed in both LPS and ConA-induced assays. NK cell activity significantly increased in the GA50 and GA500 groups compared to the CYP group. Cytokine analysis revealed a significant increase in IL-6, TNF-α, and IFN-γ levels in ConA-induced splenocytes treated with GAE. Gene expression analysis identified 2434 DEG genes in the extract groups. Notable genes, such as Entpd1, Pgf, Thdb, Syt7, Sqor, and Rsc1al, displayed substantial differences in individual gene expression levels, suggesting their potential as target genes for immune enhancement. In conclusion, Galium aparine L. extract exhibits immunomodulatory properties. The observed gene expression changes further support the potential of Galium aparine L. extract as a natural agent for immune augmentation.
Collapse
Affiliation(s)
- Seo-Yeon Lee
- Department Foodservice Management and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Seo-Yeon Park
- Department Foodservice Management and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hee-Jung Park
- Department Foodservice Management and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
43
|
Wang J, Wang L, Tan J, Chai R, Wang Y, Wang Y, Zhao S, Wang X, Bian Y, Liu J. Toxicity studies of condensed fuzheng extract in mice and rats. Heliyon 2024; 10:e24780. [PMID: 38318056 PMCID: PMC10838742 DOI: 10.1016/j.heliyon.2024.e24780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Nutritional supplements have been used to improve immune function. Condensed fuzheng extract (CFE) is a well-known traditional Chinese medicine (TCM) formula that is predominantly made from sheep placenta, Astragalus mongholicus Bunge, and Polygonatum kingianum Collett & Hemsl. However, the toxicological profile of CFE has not been determined. In this study, we investigated the acute (14 days) and sub-chronic (90 days) oral toxicities of CFE in mice and rats and the phytochemical composition of CFE. Materials and methods For the assessment of acute toxicity, 80 ICR mice of both sexes were randomly divided into four groups. Three groups were treated with 4500, 2250 and 1125 mg/kg/d bw CFE daily (n = 10/group per sex) for 14 days; a separate group was used as control. To test the sub-chronic toxicity, male and female Sprague Dawley rats were orally administered 8150, 4075 or 2037 mg/kg bw of CFE for 90 days; a control group was included. Hematological, biochemical, and histopathological markers were tested at the end of the experiment. The chemical composition of CFE was determined by UPLC-HRMS method. Results In both acute and sub-chronic toxicity studies, no mortalities, indications of abnormality, or treatment-related adverse effects were observed. The LD50 of CFE was higher than 4500 mg/kg. There were no significant changes in the hematological and biochemical data in the treatment group compared with the control group (p > 0.05). Histopathological analyses of the heart, liver, spleen, lungs, kidneys, thymus, testes (male rats) and ovaries (female rats) revealed no anatomical changes of each organ. Phytochemical analysis of CFE revealed the presence of flavonoids (highest abundance), phenols and alkaloids. In conclusion, our results showed that CFE is a safe and non-toxic formula. We also reported phytochemicals in CFE that may possess important pharmacological effects.
Collapse
Affiliation(s)
- JiDa Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Wang
- Pharmaceutical Department, Tianjin Second People’s Hospital, Tianjin, China
- Pharmaceutical Department, Tianjin University, Tianjin, China
| | - Junzhen Tan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - RunDong Chai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - ShuWu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - XiangLing Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JianWei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
44
|
Matsui R, Endo K, Saiki T, Haga H, Shen W, Wang X, Yamazaki S, Katayama S, Nagata K, Kitamura H, Tanaka S. Characterization and anti-tumor activities of polysaccharide isolated from Brassica rapa L. via activation of macrophages through TLR2-and TLR4-Dependent pathways. Arch Biochem Biophys 2024; 752:109879. [PMID: 38160699 DOI: 10.1016/j.abb.2023.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
We have previously shown the immunostimulatory effects by Nozawana (Brassica rapa L.). In this report, we determined the characteristics of Nozawana polysaccharide (NPS) and evaluated the immunomodulatory effects and anti-tumor activity of NPS mediated by macrophage activation. The molecular weight of NPS was determined by gel filtration chromatography with an average molecular weight of approximately 100.6 kDa. HPLC analysis showed that NPS contained glucose, galacturonic acid, galactose, and arabinose. NPS increased cytokine and nitric oxide (NO) production by macrophages in a Toll-like receptor (TLR)2 and TLR4-dependent manner. Furthermore, NPS induced apoptosis significantly against 4T1 murine breast cancer cells cultured in conditioned medium from NPS-treated macrophages through tumor necrosis factor-α. In tumor-bearing mouse model, tumor growth was significantly reduced in NPS-treated mice compared with control mice. These results support the potential use of NPS as an immunotherapeutic material found in health food products.
Collapse
Affiliation(s)
- Rina Matsui
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Katsunori Endo
- Division of Food Science and Biotechnology, Department of Science and Technology Agriculture, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Takeru Saiki
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Hazuki Haga
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Weidong Shen
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido, 090-0815, Japan
| | - Xiangdong Wang
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido, 090-0815, Japan
| | - Shinya Yamazaki
- Food Technology Department, Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano, Nagano, 380-0921, Japan
| | - Shigeru Katayama
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan; Division of Food Science and Biotechnology, Department of Science and Technology Agriculture, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Kenji Nagata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido, 090-0815, Japan; Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| | - Sachi Tanaka
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan; Division of Food Science and Biotechnology, Department of Science and Technology Agriculture, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan.
| |
Collapse
|
45
|
Liu Y, Shi Y, Zou J, Zhang X, Zhai B, Guo D, Sun J, Luan F. Extraction, purification, structural features, biological activities, modifications, and applications from Taraxacum mongolicum polysaccharides: A review. Int J Biol Macromol 2024; 259:129193. [PMID: 38191106 DOI: 10.1016/j.ijbiomac.2023.129193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Dandelion (Taraxacum mongolicum Hand.-Mazz), as a famous medicinal and edible plant, has the effects of clearing heat and detoxifying, diuresis, and resolving masses. Phytochemistry investigations revealed that T. mongolicum has various bioactive ingredients, mainly including flavonoids, sterols, polysaccharides, phenolic acids and volatile oils. There is growing evidence have shown that the polysaccharides from T. mongolicum (TMPs) are a class of representative pharmacologically bioactive macromolecules with a variety of biological activities both in vitro and in vivo, such as immunomodulatory, anti-inflammatory, anti-oxidant, anti-tumor, hepatoprotective, hypolipidemic and hypoglycemic, anti-bacterial, regulation of intestinal microbial, and anti-fatigue activities, etc. Additionally, the structural modification and potential applications of TMPs were also outlined. The present review aims to comprehensively and systematically collate the recent research progress on extraction and purification methods, structural characteristics, biological activities, mechanism of action, structural modification, and potential industry applications of TMPs to support their therapeutic potential and health care functions. Overall, the present review provides a theoretical overview for further development and utilization of TMPs in the fields of pharmaceutical and health food.
Collapse
Affiliation(s)
- Ying Liu
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
46
|
Cao L, Zhao J, Wang M, Khan IA, Li XC. Rapid preparation and proton NMR fingerprinting of polysaccharides from Radix Astragali. Carbohydr Res 2024; 536:109053. [PMID: 38310807 DOI: 10.1016/j.carres.2024.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The purity, content, and structure of the polysaccharides prepared from a specific medicinal plant are the fundamental basis to interpret the observed biological activities. An ultrafiltration-based method has been developed for rapid preparation of total and fractional polysaccharides from Radix Astragali in high yield and purity. This method involves extraction of plant material by hot water, treatment with Sevag reagent, and ultrafiltration using molecular weight cutoff concentrators. The prepared polysaccharides were assessed by 1H NMR spectroscopy, providing general purity, fingerprinting, and structural information. This method may be used to efficiently screen polysaccharides in plants.
Collapse
Affiliation(s)
- Liang Cao
- National Center for Natural Products Research, School of Pharmacy, The University of Miscsissippi, University, Mississippi, 38677, USA; Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, PR China
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, The University of Miscsissippi, University, Mississippi, 38677, USA
| | - Mei Wang
- National Center for Natural Products Research, School of Pharmacy, The University of Miscsissippi, University, Mississippi, 38677, USA; Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, Mississippi, 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Miscsissippi, University, Mississippi, 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Xing-Cong Li
- National Center for Natural Products Research, School of Pharmacy, The University of Miscsissippi, University, Mississippi, 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
47
|
Li Q, Zhang C, Xu G, Shang X, Nan X, Li Y, Liu J, Hong Y, Wang Q, Peng G. Astragalus polysaccharide ameliorates CD8 + T cell dysfunction through STAT3/Gal-3/LAG3 pathway in inflammation-induced colorectal cancer. Biomed Pharmacother 2024; 171:116172. [PMID: 38278025 DOI: 10.1016/j.biopha.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024] Open
Abstract
Chronic inflammation can promote cancer development as observed in inflammation-induced colorectal cancer (CRC). However, the poor treatment outcomes emphasize the need for effective treatment. Astragalus polysaccharide (APS), a vital component of the natural drug Astragalus, has anti-tumor effects by inhibiting cancer cell proliferation and enhancing immune function. In this study, we found that APS effectively suppressed CRC development through activating CD8+ T cells and reversing its inhibitory state in the tumor microenvironment (TME) of AOM/DSS inflammation-induced CRC mice. Network pharmacology and clinical databases suggested that the STAT3/ Galectin-3(Gal-3)/LAG3 pathway might be APS's potential target for treating CRC and associated with CD8+ T cell dysfunction. In vivo experiments showed that APS significantly reduced phosphorylated STAT3 and Gal-3 levels in tumor cells, as well as LAG3 in CD8+ T cells. Co-culture experiments with MC38 and CD8+ T cells demonstrated that APS decreased the expression of co-inhibitory receptor LAG3 in CD8+ T cells by targeting STAT3/Gal-3 in MC38 cells. Mechanism investigations revealed that APS specifically improved CD8+ T cell function through modulation of the STAT3/Gal-3/LAG3 pathway to inhibit CRC development, providing insights for future clinical development of natural anti-tumor drugs and immunotherapies as a novel strategy combined with immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Qiuyi Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Chonghao Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Guichuan Xu
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xuekai Shang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xinmei Nan
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yalan Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiajing Liu
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yanfei Hong
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Qing Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| | - Guiying Peng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
48
|
Song M, Aipire A, Dilxat E, Li J, Xia G, Jiang Z, Fan Z, Li J. Research Progress of Polysaccharide-Gold Nanocomplexes in Drug Delivery. Pharmaceutics 2024; 16:88. [PMID: 38258099 PMCID: PMC10820823 DOI: 10.3390/pharmaceutics16010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Clinical drug administration aims to deliver drugs efficiently and safely to target tissues, organs, and cells, with the objective of enabling their therapeutic effects. Currently, the main approach to enhance a drug's effectiveness is ensuring its efficient delivery to the intended site. Due to the fact that there are still various drawbacks of traditional drug delivery methods, such as high toxicity and side effects, insufficient drug specificity, poor targeting, and poor pharmacokinetic performance, nanocarriers have emerged as a promising alternative. Nanocarriers possess significant advantages in drug delivery due to their size tunability and surface modifiability. Moreover, nano-drug delivery systems have demonstrated strong potential in terms of prolonging drug circulation time, improving bioavailability, increasing drug retention at the tumor site, decreasing drug resistance, as well as reducing the undesirable side effects of anticancer drugs. Numerous studies have focused on utilizing polysaccharides as nanodelivery carriers, developing delivery systems based on polysaccharides, or exploiting polysaccharides as tumor-targeting ligands to enhance the precision of nanoparticle delivery. These types of investigations have become commonplace in the academic literature. This review aims to elucidate the preparation methods and principles of polysaccharide gold nanocarriers. It also provides an overview of the factors that affect the loading of polysaccharide gold nanocarriers with different kinds of drugs. Additionally, it outlines the strategies employed by polysaccharide gold nanocarriers to improve the delivery efficiency of various drugs. The objective is to provide a reference for further development of research on polysaccharide gold nanodelivery systems.
Collapse
Affiliation(s)
- Ming Song
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Adila Aipire
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Elzira Dilxat
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Jianmin Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Guoyu Xia
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Ziwen Jiang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China;
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Jinyao Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| |
Collapse
|
49
|
Ying Y, Hao W. Corrigendum: Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: a review. Front Immunol 2024; 14:1361355. [PMID: 38264646 PMCID: PMC10804138 DOI: 10.3389/fimmu.2023.1361355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024] Open
Abstract
[This corrects the article DOI: 10.3389/fimmu.2023.1147641.].
Collapse
Affiliation(s)
- Yang Ying
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wu Hao
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
50
|
Liu S, Xu M, Chen B, Li F, Deng Y, Zhang Y, Lin G, Chen D, Geng Y, Ou Y, Huang X. The potential mechanism of concentrated mannan-oligosaccharide promoting goldfish's (Carassius auratus Linnaeus) resistance to Ichthyophthirius multifiliis invasion. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109290. [PMID: 38104695 DOI: 10.1016/j.fsi.2023.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Because of the low host specificity, Ichthyophthirius multifiliis (Ich) can widely cause white spot disease in aquatic animals, which is extremely difficult to treat. Prior research has demonstrated a considerable impact of concentrated mannan-oligosaccharide (cMOS) on the prevention of white spot disease in goldfish, but the specific mechanism is still unknown. In this study, transcriptome sequencing, histological analysis, immunofluorescence analysis, phagocytosis activity assay and qRT-PCR assay were used to systematically reveal the potential mechanism of cMOS in supporting the resistance of goldfish (Carrasius auratus) to Ich invasion. According to the transcriptome analysis, the gill tissue of goldfish receiving the cMOS diet showed greater expression of mannose-receptor (MRC) related genes, higher phagocytosis activity, up-regulated expression of phagocytosis-related genes and inflammatory-related genes compared with the control, indicating that cMOS can have an effect on phagocytosis and non-specific immunity of goldfish. After the Ich challenge, transcriptome analysis revealed that cMOS fed goldfish displayed a higher level of phagocytic response, whereas non-cMOS fed goldfish displayed a greater inflammatory reaction. Besides, after Ich infection, cMOS-fed goldfish displayed greater phagocytosis activity, a stronger MRC positive signal, higher expression of genes associated with phagocytosis (ABCB2, C3, MRC), and lower expression of genes associated with inflammation (IL-1β, IL-17, IL-8, TNF-α, NFKB). In conclusion, our experimental results suggest that cMOS may support phagocytosis by binding to MRC on the macrophage cell membrane and change the non-specific immunity of goldfish by stimulating cytokine expression. The results of this study provide new insights for the mechanism of cMOS on parasitic infection, and also suggest phagocytosis-related pathways may be potential targets for prevention of Ich infection.
Collapse
Affiliation(s)
- Senyue Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ming Xu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Baipeng Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Fulong Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Yufan Zhang
- Beijing Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Gang Lin
- Beijing Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|