1
|
Zhu F, Dai J, Yan Z, Xu Q, Ma M, Chen N, Liu D, Zang Y. Engineering regioselectivity of glycosyltransferase for efficient polydatin synthesis. Food Chem 2024; 460:140698. [PMID: 39098192 DOI: 10.1016/j.foodchem.2024.140698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Resveratrol is a promising functional ingredient applied in food products. However, low bioavailability and poor water solubility, which can be improved by glycosylation, hinder its application. A uridine diphosphate-dependent glycosyltransferase (UGT) from Bacillus subtilis 168 (named UGTBS) presents potential application for resveratrol glycosylation; nonetheless, imprecise regioselectivity renders the synthesis of resveratrol-3-O-β-D-glucoside (polydatin) difficult. Therefore, molecular evolution was applied to UGTBS. A triple mutant Y14I/I62G/M315W was developed for 3-OH glycosylation of resveratrol and polydatin accounted for 91% of the total product. Kinetic determination and molecular docking indicated that the enhancement of hydrogen bond interaction and altered conformation of the binding pocket increases the enzyme's affinity for the 3-OH group, stabilizing the enzyme-substrate intermediate and promoting polydatin formation. Furthermore, a fed-batch cascade reaction by periodic addition of resveratrol was conducted and nearly 20 mM polydatin was obtained. The mutant Y14I/I62G/M315W can be used for polydatin manufacture.
Collapse
Affiliation(s)
- Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China.
| | - Jingli Dai
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China; School of Pharmacy, Anhui University of Traditional Chinese Medicine, HeFei 230012, China
| | - Zixu Yan
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China; School of Pharmacy, Anhui University of Traditional Chinese Medicine, HeFei 230012, China
| | - Qilin Xu
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China
| | - Menghua Ma
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China
| | - Naidong Chen
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China
| | - Dandan Liu
- Hepatology Department, Lu'an Hospital of Traditional Chinese Medicine, Lu'an city 237005, China
| | - Yongjun Zang
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China.
| |
Collapse
|
2
|
Lu C, Wang H, Zheng D, Jia S, Xing Q, Wang Z, Li Q, Zhao L. Cloning and Direct Evolution of a Novel 7- O-Glycosyltransferase from Cucurbita moschata and Its Application in the Efficient Biocatalytic Synthesis of Luteolin-7- O-glucoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19093-19106. [PMID: 39161099 DOI: 10.1021/acs.jafc.4c04444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Luteolin-7-O-glucoside(L7G), a glycosylation product of luteolin, is present in a variety of foods, vegetables, and medicinal herbs and is commonly used in dietary supplements due to its health benefits. Meanwhile, luteolin-7-O-glucoside is an indicator component for the quality control of honeysuckle in the pharmacopoeia. However, its low content in plants has hindered its use in animal pharmacological studies and clinical practice. In this study, a novel 7-O-glycosyltransferase CmGT from Cucurbita moschata was cloned, which could efficiently convert luteolin into luteolin-7-O-glucoside under optimal conditions (40 °C and pH 8.5). To further improve the catalytic efficiency of CmGT, a 3D structure of CmGT was constructed, and directed evolution was performed. The mutant CmGT-S16A-T80W was obtained by using alanine scanning and iterative saturation mutagenesis. This mutant exhibited a kcat/Km value of 772 s-1·M-1, which was 3.16-fold of the wild-type enzyme CmGT. Finally, by introducing a soluble tag and UDPG synthesis pathway, the strain BXC was able to convert 1.25 g/L of luteolin into 1.91 g/L of luteolin-7-O-glucoside under optimal conditions, achieving a molar conversion rate of 96% and a space-time yield of 27.08 mg/L/h. This study provides an efficient method for the biosynthesis of luteolin-7-O-glucoside, which holds broad application prospects in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Changning Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haoyu Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Daiyi Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shutong Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiqi Xing
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang South Road, Lianyungang, Jiangsu 222001, China
| | - Qi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jinpu Research institute, Nanjing Forestry University, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jinpu Research institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
He H, Chen J, Xie J, Ding J, Pan H, Li Y, Jia H. Engineering UDP-Glycosyltransferase UGTPg29 for the Efficient Synthesis of Ginsenoside Rg3 from Protopanaxadiol. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05009-y. [PMID: 39120838 DOI: 10.1007/s12010-024-05009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Rare ginsenosides Rg3 and Rh2, which exhibit diverse pharmacological effects, are derivatives of protopanaxadiol (PPD). UDP-glycosyltransferases, such as the M315F variant of Bs-YjiC (Bs-YjiCm) from Bacillus subtilis and UGTPg29 from Panax ginseng, can efficiently convert PPD into Rh2 and Rh2 into Rg3, respectively. In the present study, the N178I mutation of Bs-YjiCm was introduced, resulting in an increase in Rh2 production. UDP-glycosyltransferase UGTPg29 was then engineered to improve its robustness through semi-rational design. The variant R91M/D184M/A287V/A342L, which indicated desirable stability and activity, was utilized in coupling with the N178I variant of Bs-YjiCm and sucrose synthase AtSuSy from Arabidopsis thaliana to set up a "one-pot" three-enzyme reaction for the biosynthesis of Rg3. The influential factors, including the ratio and concentration of UDP-glycosyltransferases, pH, and the concentrations of UDP, sucrose, and DMSO, were optimized. On this basis, a fed-batch strategy was adopted to achieve a Rg3 yield as high as 12.38 mM (9.72 g/L) with a final yield of 68.78% within 24 h. This work may provide promising UDP-glycosyltransferase candidates for ginsenoside biosynthesis.
Collapse
Affiliation(s)
- Huichang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiajie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiangtao Xie
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiajie Ding
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Matera A, Dulak K, Werner H, Sordon S, Huszcza E, Popłoński J. Investigation on production and reaction conditions of sucrose synthase based glucosylation cascade towards flavonoid modification. Bioorg Chem 2024; 146:107287. [PMID: 38503024 DOI: 10.1016/j.bioorg.2024.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Enzyme-based glycosylation is of great interest in the context of natural products decoration. Yet, its industrial application is hindered by optimisation difficulties and hard-to-standardise productivities. In this study, five sugar nucleotide-dependent glucosyltransferases from different origins (bacterial, plant and fungal) were coupled with soy sucrose synthase (GmSuSy) to create a set of diverse cascade biocatalysts for flavonoid glucosylation, which evaluation brought new insights into the field. Investigations into co-expression conditions and reaction settings enabled to define optimal induction temperature (25 °C) and uridine diphosphate (UDP) concentration (0.5 mM) for all tested pairs of enzymes. Moreover, the influence of pH and substrate concentration on the monoglucosylated product distribution was detected and analysed. The utilisation of crude protein extracts as a cost-effective source of catalysts unveiled their glycosidase activity against flavonoid glucosides, resulting in decreased productivity, which, to our knowledge, has not previously been discussed in such a context. Additionally, examination of the commercially available EziG immobilisation resins showed that selection of suitable carrier for solid catalyst production can be problematic and not only enzyme's but also reagent's properties have to be considered. Flavonoids, due to their complexation and hydrophobic properties, can adsorb on different types of surfaces, including divalent metal ions required for IMAC based immobilisation, necessitating detailed examination of the resins while the catalysis design.
Collapse
Affiliation(s)
- Agata Matera
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Hanna Werner
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
5
|
Yuan X, Li R, He W, Xu W, Xu W, Yan G, Xu S, Chen L, Feng Y, Li H. Progress in Identification of UDP-Glycosyltransferases for Ginsenoside Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:1246-1267. [PMID: 38449105 DOI: 10.1021/acs.jnatprod.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Ginsenosides, the primary pharmacologically active constituents of the Panax genus, have demonstrated a variety of medicinal properties, including anticardiovascular disease, cytotoxic, antiaging, and antidiabetes effects. However, the low concentration of ginsenosides in plants and the challenges associated with their extraction impede the advancement and application of ginsenosides. Heterologous biosynthesis represents a promising strategy for the targeted production of these natural active compounds. As representative triterpenoids, the biosynthetic pathway of the aglycone skeletons of ginsenosides has been successfully decoded. While the sugar moiety is vital for the structural diversity and pharmacological activity of ginsenosides, the mining of uridine diphosphate-dependent glycosyltransferases (UGTs) involved in ginsenoside biosynthesis has attracted a lot of attention and made great progress in recent years. In this paper, we summarize the identification and functional study of UGTs responsible for ginsenoside synthesis in both plants, such as Panax ginseng and Gynostemma pentaphyllum, and microorganisms including Bacillus subtilis and Saccharomyces cerevisiae. The UGT-related microbial cell factories for large-scale ginsenoside production are also mentioned. Additionally, we delve into strategies for UGT mining, particularly potential rapid screening or identification methods, providing insights and prospects. This review provides insights into the study of other unknown glycosyltransferases as candidate genetic elements for the heterologous biosynthesis of rare ginsenosides.
Collapse
Affiliation(s)
- Xiaoxuan Yuan
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruiqiong Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weishen He
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wen Xu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Guohong Yan
- Pharmacy Department, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, China
| | - Shaohua Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Lixia Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yaqian Feng
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
6
|
Chu J, Zhao L, Xu X, Li Y, Wu B, Qin S, He B. Evolving the 3-O/6-O regiospecificity of a microbial glycosyltransferase for efficient production of ginsenoside Rh1 and unnatural ginsenoside. Int J Biol Macromol 2024; 261:129678. [PMID: 38280704 DOI: 10.1016/j.ijbiomac.2024.129678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Glycosyltransferase is a popular and promising enzyme to produce high-value-added natural products. Rare ginsenoside Rh1 and unnatural ginsenoside 3β-O-Glc-PPT are promising candidates for drugs. Herein, the microbial glycosyltransferase UGTBL1 was able to catalyze the 20(S)-protopanaxatriol (PPT) 3-O/6-O-glycosylation with poor 6-O-regiospecificity. A structure-guided strategy of mutations involving loop engineering, PSPG motif evolution, and access tunnel engineering was proposed to engineer the enzyme UGTBL1. The variant I62R/M320H/P321Y/N170A from protein engineering achieved a great improvement in 6-O regioselectivity which increased from 10.98 % (WT) to 96.26 % and a booming conversion of 95.57 % for ginsenoside Rh1. A single mutant M320W showed an improved 3-O regioselectivity of 84.83 % and an increased conversion of 98.13 % for the 3β-O-glc-PPT product. Molecular docking and molecular dynamics (MD) simulations were performed to elucidate the possible molecular basis of the regiospecificity and catalytic activity. The unprecedented high titer of ginsenoside Rh1 (20.48 g/L) and 3β-O-Glc-PPT (18.04 g/L) was attained with high regioselectivity and yields using fed-batch cascade reactions from UDPG recycle, which was the highest yield reported to date. This work could provide an efficient and cost-effective approach to the valuable ginsenosides.
Collapse
Affiliation(s)
- Jianlin Chu
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| | - Lu Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| | - Xiaoli Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| | - Yuting Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| | - Song Qin
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China.
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China.
| |
Collapse
|
7
|
Zhang H, Che X, Jing H, Su Y, Yang W, Wang R, Zhang G, Meng J, Yuan W, Wang J, Gao W. A New Potent Inhibitor against α-Glucosidase Based on an In Vitro Enzymatic Synthesis Approach. Molecules 2024; 29:878. [PMID: 38398628 PMCID: PMC10893485 DOI: 10.3390/molecules29040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Inhibiting the activity of intestinal α-glucosidase is considered an effective approach for treating type II diabetes mellitus (T2DM). In this study, we employed an in vitro enzymatic synthesis approach to synthesize four derivatives of natural products (NPs) for the discovery of therapeutic drugs for T2DM. Network pharmacology analysis revealed that the betulinic acid derivative P3 exerted its effects in the treatment of T2DM through multiple targets. Neuroactive ligand-receptor interaction and the calcium signaling pathway were identified as key signaling pathways involved in the therapeutic action of compound P3 in T2DM. The results of molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations indicate that compound P3 exhibits a more stable binding interaction and lower binding energy (-41.237 kcal/mol) with α-glucosidase compared to acarbose. In addition, compound P3 demonstrates excellent characteristics in various pharmacokinetic prediction models. Therefore, P3 holds promise as a lead compound for the development of drugs for T2DM and warrants further exploration. Finally, we performed site-directed mutagenesis to achieve targeted synthesis of betulinic acid derivative. This work demonstrates a practical strategy of discovering novel anti-hyperglycemic drugs from derivatives of NPs synthesized through in vitro enzymatic synthesis technology, providing potential insights into compound P3 as a lead compound for anti-hyperglycemic drug development.
Collapse
Affiliation(s)
- Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Xiance Che
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (X.C.); (H.J.)
| | - Hongyan Jing
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (X.C.); (H.J.)
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guoqi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wei Yuan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (H.Z.); (Y.S.); (W.Y.); (R.W.); (G.Z.); (J.M.); (W.Y.)
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Ali MY, Liaqat F, Khazi MI, Sethupathy S, Zhu D. Utilization of glycosyltransferases as a seamless tool for synthesis and modification of the oligosaccharides-A review. Int J Biol Macromol 2023; 249:125916. [PMID: 37527764 DOI: 10.1016/j.ijbiomac.2023.125916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
Glycosyltransferases (GTs) catalyze the transfer of active monosaccharide donors to carbohydrates to create a wide range of oligosaccharide structures. GTs display strong regioselectivity and stereoselectivity in producing glycosidic bonds, making them extremely valuable in the in vitro synthesis of oligosaccharides. The synthesis of oligosaccharides by GTs often gives high yields; however, the enzyme activity may experience product inhibition. Additionally, the higher cost of nucleotide sugars limits the usage of GTs for oligosaccharide synthesis. In this review, we comprehensively discussed the structure and mechanism of GTs based on recent literature and the CAZY website data. To provide innovative ideas for the functional studies of GTs, we summarized several remarkable characteristics of GTs, including folding, substrate specificity, regioselectivity, donor sugar nucleotides, catalytic reversibility, and differences between GTs and GHs. In particular, we highlighted the recent advancements in multi-enzyme cascade reactions and co-immobilization of GTs, focusing on overcoming problems with product inhibition and cost issues. Finally, we presented various types of GT that have been successfully used for oligosaccharide synthesis. We concluded that there is still an opportunity for improvement in enzymatically produced oligosaccharide yield, and future research should focus on improving the yield and reducing the production cost.
Collapse
Affiliation(s)
- Mohamad Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Fakhra Liaqat
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mahammed Ilyas Khazi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Zhao L, Ma Z, Wang Q, Shen Y, Zhang L, Chen L, Shi G, Ding Z. Highly Efficient Production of UDP-Glucose from Sucrose via the Semirational Engineering of Sucrose Synthase and a Cascade Route Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12549-12557. [PMID: 37552844 DOI: 10.1021/acs.jafc.3c03877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Nucleotide sugars are essential precursors for carbohydrate synthesis but are in scarce supply. Uridine diphosphate (UDP)-glucose is a core building block in nucleotide sugar preparation, making its efficient synthesis critical. Here, a process for producing valuable UDP-glucose and functional mannose from sucrose was established and improved via a semirational sucrose synthase (SuSy) design and the accurate D-mannose isomerase (MIase) cascade. Engineered SuSy exhibited enzyme activity 2.2-fold greater than that of the WT. The structural analysis identified a latch-hinge combination as the hotspot for enhancing enzyme activity. Coupling MIase, process optimization, and reaction kinetic analysis revealed that MIase addition during the high-speed UDP-glucose synthesis phase distinctly accelerated the entire process. The simultaneous triggering of enzyme modules halved the reaction time and significantly increased the UDP-glucose yield. A maximum UDP-glucose yield of 83%, space-time yield of 70 g/L/h, and mannose yield of 32% were achieved. This novel and efficient strategy for sucrose value-added exploitation has industrial promise.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Linpei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Li M, Ma M, Wu Z, Liang X, Zheng Q, Li D, An T, Wang G. Advances in the biosynthesis and metabolic engineering of rare ginsenosides. Appl Microbiol Biotechnol 2023; 107:3391-3404. [PMID: 37126085 DOI: 10.1007/s00253-023-12549-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Rare ginsenosides are the deglycosylated secondary metabolic derivatives of major ginsenosides, and they are more readily absorbed into the bloodstream and function as active substances. The traditional preparation methods hindered the potential application of these effective components. The continuous elucidation of ginsenoside biosynthesis pathways has rendered the production of rare ginsenosides using synthetic biology techniques effective for their large-scale production. Previously, only the progress in the biosynthesis and biotechnological production of major ginsenosides was highlighted. In this review, we summarized the recent advances in the identification of key enzymes involved in the biosynthetic pathways of rare ginsenosides, especially the glycosyltransferases (GTs). Then the construction of microbial chassis for the production of rare ginsenosides, mainly in Saccharomyces cerevisiae, was presented. In the future, discovery of more GTs and improving their catalytic efficiencies are essential for the metabolic engineering of rare ginsenosides. This review will give more clues and be helpful for the characterization of the biosynthesis and metabolic engineering of rare ginsenosides. KEY POINTS: • The key enzymes involved in the biosynthetic pathways of rare ginsenosides are summarized. • The recent progress in metabolic engineering of rare ginsenosides is presented. • The discovery of glycosyltransferases is essential for the microbial production of rare ginsenosides in the future.
Collapse
Affiliation(s)
- Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
11
|
Cui C, Yan J, Liu Y, Zhang Z, Su Q, Kong M, Zhou C, Ming H. One-pot biosynthesis of gastrodin using UDP-glycosyltransferase itUGT2 with an in situ UDP-glucose recycling system. Enzyme Microb Technol 2023; 166:110226. [PMID: 36913860 DOI: 10.1016/j.enzmictec.2023.110226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Gastrodin, the major effective ingredient in Tianma (Gastrodia elata), is a p-hydroxybenzoic acid derivative with various activities. Gastrodin has been widely investigated for food and medical applications. The last biosynthetic step for gastrodin is UDP-glycosyltransferase (UGT)-mediated glycosylation with UDP-glucose (UDPG) as glycosyl donor. In this study, we performed a one-pot reaction both in vitro and in vivo to synthesize gastrodin from p-hydroxybenzyl alcohol (pHBA) by coupling UDP-glucosyltransferase from Indigofera tinctoria (itUGT2) to sucrose synthase from Glycine max (GmSuSy) for regeneration of UDPG. The in vitro results showed that itUGT2 transferred a glucosyl group to pHBA to generate gastrodin. After 37 UDPG regeneration cycles with 2.5% (molar ratio) UDP, the pHBA conversion reached 93% at 8 h. Furthermore, a recombinant strain with itUGT2 and GmSuSy genes was constructed. Through optimizing the incubation conditions, a 95% pHBA conversion rate (220 mg/L gastrodin titer) was achieved in vivo without addition of UDPG, which was 2.6-fold higher than that without GmSuSy. This in situ system for gastrodin biosynthesis provides a highly efficient strategy for both in vitro gastrodin synthesis and in vivo biosynthesis of gastrodin in E. coli with UDPG regeneration.
Collapse
Affiliation(s)
- Caixia Cui
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| | - Jinyuan Yan
- Changdu Bureau of Science and Technology, Changdu 854000, PR China
| | - Yongtao Liu
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Zhao Zhang
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Qingyang Su
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Mengyuan Kong
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Chenyan Zhou
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Hong Ming
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
12
|
Zhao L, Ma Z, Wang Q, Hu M, Zhang J, Chen L, Shi G, Ding Z. Engineering the Thermostability of Sucrose Synthase by Reshaping the Subunit Interaction Contributes to Efficient UDP-Glucose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3832-3841. [PMID: 36795895 DOI: 10.1021/acs.jafc.2c08642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The restricted availability of UDP-glucose, an essential precursor that targets oligo/polysaccharide and glycoside synthesis, makes its practical application difficult. Sucrose synthase (Susy), which catalyzes one-step UDP-glucose synthesis, is a promising candidate. However, due to poor thermostability of Susy, mesophilic conditions are required for synthesis, which slow down the process, limit productivity, and prevent scaled and efficient UDP-glucose preparation. Here, we obtained an engineered thermostable Susy (mutant M4) from Nitrosospira multiformis through automated prediction and greedy accumulation of beneficial mutations. The mutant improved the T1/2 value at 55 °C by 27-fold, resulting in UDP-glucose synthesis at 37 g/L/h of space-time yield that met industrial biotransformation standards. Furthermore, global interaction between mutant M4 subunits was reconstructed by newly formed interfaces according to molecular dynamics simulations, with residue Trp162 playing an important role in strengthening the interface interaction. This work enabled effective, time-saving UDP-glucose production and paved the way for rational thermostability engineering of oligomeric enzymes.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Manfeng Hu
- School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jingxiang Zhang
- School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Yang L, Ping Q, Yuan Z, Jiang J, Guo B, Liu C, Rao Y, Shi J, Zhang Y. Highly efficient synthesis of mono-β-1,6-Glucosylated Rebaudioside A derivative catalyzed by glycosyltransferase YjiC. Carbohydr Res 2023; 523:108737. [PMID: 36657220 DOI: 10.1016/j.carres.2022.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Steviol glycosides have attracted great interest because of their high levels of sweetness and safety, and absence of calories. Improvement of their sensory qualities via glycosylation modification by glycosyltransferase is a research hotspot. In this study, YjiC, a uridine diphosphate-dependent glycosyltransferase from Bacillus subtilis 168, was found with the ability to glycosylate rebaudioside A (Reb A) to produce a novel mono β-1, 6-glycosylated Reb A derivative rebaudioside L2 (Reb L2). It has an improved sweetness compared with Reb A. Next, a cascade reaction was established by combining YjiC with sucrose synthase AtSuSy from Arabidopsis thaliana for scale-up preparation of Reb L2. It shows that Reb L2 (30.94 mg/mL) could be efficiently synthesized with an excellent yield of 91.34% within 12 h. Therefore, this study provides a potential approach for the production and application of new steviol glycoside Reb L2, expanding the scope of steviol glycosides.
Collapse
Affiliation(s)
- Lifeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Qian Ping
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jiejuan Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
14
|
Li C, Yan X, Xu Z, Wang Y, Shen X, Zhang L, Zhou Z, Wang P. Pathway elucidation of bioactive rhamnosylated ginsenosides in Panax ginseng and their de novo high-level production by engineered Saccharomyces cerevisiae. Commun Biol 2022; 5:775. [PMID: 35918414 PMCID: PMC9345943 DOI: 10.1038/s42003-022-03740-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/19/2022] [Indexed: 01/16/2023] Open
Abstract
Rg2 and Re are both rhamnose-containing ginsenosides isolated exclusively from Panax plants, which exhibit broad spectrum of pharmacological activities. However, limitations of current plant-relied manufacturing methods have largely hampered their medical applications. Here, we report elucidation of the complete biosynthetic pathway of these two ginsenosides by the identification of a rhamnosyltransferase PgURT94 from Panax ginseng. We then achieve de novo bio-production of Rg2 and Re from glucose by reconstituting their biosynthetic pathways in yeast. Through stepwise strain engineering and fed-batch fermentation, the maximum yield of Rg2 and Re reach 1.3 and 3.6 g/L, respectively. Our work completes the identification of the last missing enzyme for Rg2 and Re biosynthesis and achieves their high-level production by engineered yeasts. Once scaled, this microbial biosynthesis platform will enable a robust and stable supply of Rg2 and Re and facilitate their food and medical applications.
Collapse
Affiliation(s)
- Chaojing Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Xu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Henan University, Kaifeng, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Shen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- Logic Informatics Co., Ltd., Shanghai, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Guo B, Deng Z, Meng F, Wang Q, Zhang Y, Yuan Z, Rao Y. Enhancement of Rebaudioside M Production by Structure-Guided Engineering of Glycosyltransferase UGT76G1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5088-5094. [PMID: 35417157 DOI: 10.1021/acs.jafc.2c01209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to zero-calorie and advanced organoleptic properties similar to sucrose, the plant-derived rebaudioside M (Reb M) has been considered as a next generation sweetener. However, a low content of Reb M in Stevia rebaudiana Bertoni and low enzymatic activity of UGT76G1, which is an uridine diphosphate glucose (UDPG)-dependent glycosyltransferase with the ability to glycosylate rebaudioside D (Reb D) to produce Reb M through the formation of β-1,3 glycosidic bond, restrict its commercial usage. To improve the catalytic activity of UGT76G1, a variant UGT76G1-T284S/M88L/L200A was obtained by structure-guided evolution, whose catalytic activity toward Reb D increased by 2.38 times compared with UGT76G1-T284S. This allowed us to prepare Reb M on a large-scale with a great yield of 90.50%. Moreover, molecular dynamics simulation illustrated that UGT76G1-T284S/M88L/L200A reduced distances from Reb D to catalytic residues and UDPG. Hence, we report an efficient method for the potential scale production of Reb M in this study.
Collapse
Affiliation(s)
- Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Fei Meng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, P. R. China
| | - Qingfu Wang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
16
|
He B, Bai X, Tan Y, Xie W, Feng Y, Yang GY. Glycosyltransferases: Mining, engineering and applications in biosynthesis of glycosylated plant natural products. Synth Syst Biotechnol 2022; 7:602-620. [PMID: 35261926 PMCID: PMC8883072 DOI: 10.1016/j.synbio.2022.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 01/02/2022] [Indexed: 12/14/2022] Open
Abstract
UDP-Glycosyltransferases (UGTs) catalyze the transfer of nucleotide-activated sugars to specific acceptors, among which the GT1 family enzymes are well-known for their function in biosynthesis of natural product glycosides. Elucidating GT function represents necessary step in metabolic engineering of aglycone glycosylation to produce drug leads, cosmetics, nutrients and sweeteners. In this review, we systematically summarize the phylogenetic distribution and catalytic diversity of plant GTs. We also discuss recent progress in the identification of novel GT candidates for synthesis of plant natural products (PNPs) using multi-omics technology and deep learning predicted models. We also highlight recent advances in rational design and directed evolution engineering strategies for new or improved GT functions. Finally, we cover recent breakthroughs in the application of GTs for microbial biosynthesis of some representative glycosylated PNPs, including flavonoid glycosides (fisetin 3-O-glycosides, astragalin, scutellarein 7-O-glucoside), terpenoid glycosides (rebaudioside A, ginsenosides) and polyketide glycosides (salidroside, polydatin).
Collapse
Affiliation(s)
- Bo He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yumeng Tan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wentao Xie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Coines J, Cuxart I, Teze D, Rovira C. Computer Simulation to Rationalize “Rational” Engineering of Glycoside Hydrolases and Glycosyltransferases. J Phys Chem B 2022; 126:802-812. [PMID: 35073079 PMCID: PMC8819650 DOI: 10.1021/acs.jpcb.1c09536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Glycoside hydrolases
and glycosyltransferases are the main classes
of enzymes that synthesize and degrade carbohydrates, molecules essential
to life that are a challenge for classical chemistry. As such, considerable
efforts have been made to engineer these enzymes and make them pliable
to human needs, ranging from directed evolution to rational design,
including mechanism engineering. Such endeavors fall short and are
unreported in numerous cases, while even success is a necessary but
not sufficient proof that the chemical rationale behind the design
is correct. Here we review some of the recent work in CAZyme mechanism
engineering, showing that computational simulations are instrumental
to rationalize experimental data, providing mechanistic insight into
how native and engineered CAZymes catalyze chemical reactions. We
illustrate this with two recent studies in which (i) a glycoside hydrolase
is converted into a glycoside phosphorylase and (ii) substrate specificity
of a glycosyltransferase is engineered toward forming O-, N-, or S-glycosidic bonds.
Collapse
Affiliation(s)
- Joan Coines
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Irene Cuxart
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - David Teze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
18
|
Le DD, Kim W, Lim S, Kim SC, Choi G. Identification of three groups of ginsenoside biosynthetic UDP-glycosyltransferases from Gynostemma pentaphyllum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111069. [PMID: 34763860 DOI: 10.1016/j.plantsci.2021.111069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/06/2021] [Accepted: 09/24/2021] [Indexed: 05/02/2023]
Abstract
Ginsenosides are glycosylated dammarene-type triterpenes that have been identified in distantly related Panax ginseng and Gynostemma pentaphyllum. The phylogenetic relatedness of the ginsenoside biosynthetic genes in the two species was previously unknown. The final steps of ginsenoside biosynthesis are the glycosylations of hydroxylated triterpenes, protopanaxadiol (PPD) and protopanaxatriol (PPT), and their glycosylated forms by UDP-glycosyltransferases (UGTs). Ginsenoside biosynthetic UGTs have been identified in Panax but not in Gynostemma. Through a biochemical screening of Gynostemma UGTs (GpUGTs), we herein identified three groups of ginsenoside biosynthetic GpUGTs. These groups comprise: two GpUGTs that belong to the UGT71 family and glucosylate the C20-OH positions of PPD- and PPT-type ginsenosides; one GpUGT that belongs to the UGT74 family and glucosylates the C3-OH position of PPD-type ginsenosides; and two GpUGTs that belong to the UGT94 family and add a glucose to the C3-O-glucosides of PPD-type ginsenosides. These GpUGTs belong to the same UGT families as the ginsenoside biosynthetic Panax UGTs (PgUGTs). However, GpUGTs and PgUGTs belong to different subfamilies. Furthermore, cucumber UGTs orthologous to GpUGTs do not glucosylate ginsenosides. These results collectively suggest that, during evolution, P. ginseng and G. pentaphyllum independently opted to use the same UGT families to synthesize ginsenosides.
Collapse
Affiliation(s)
- Duc Duy Le
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Woohyun Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Soohwan Lim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
19
|
Zhao L, Xu X, Tian Y, Pang B, Chu J, He B. Single site mutations of glycosyltransferase with improved activity and regioselectivity for directed biosynthesis of unnatural protopanaxatriol-type ginsenoside product. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Liu L, Wang H, Chai X, Meng Q, Jiang S, Zhao F. Advances in Biocatalytic Synthesis, Pharmacological Activities, Pharmaceutical Preparation and Metabolism of Ginsenoside Rh2. Mini Rev Med Chem 2021; 22:437-448. [PMID: 34517798 DOI: 10.2174/1389557521666210913114631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/25/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
Ginsenoside Rh2 (3β-O-Glc-protopanaxadiol), a trace but characteristic pharmacological component of red ginseng, exhibited versatile pharmacological activities, such as antitumor effects, improved cardiac function and fibrosis, anti-inflammatory effects, antibiosis and excellent medicinal potential. In recent years, increased research has been performed on the biocatalytic synthesis of ginsenoside Rh2. In this paper, advances in the biocatalytic synthesis, pharmacological activities, pharmaceutical preparation and metabolism of ginsenoside Rh2 are reviewed.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Shandong Province, 276826. China
| | - Xiaoyun Chai
- School of Pharmacy, Naval Medical University, Shanghai, 200433. China
| | - Qingguo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005. China
| | - Sheng Jiang
- Shandong Wendeng Jizhen American Ginseng Industry Co., Ltd., Shandong Province, 264400. China
| | - Fenglan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005. China
| |
Collapse
|
21
|
Chen T, Chen Z, Wang N, Chu J, Fan B, Cheng C, Qin S, He B. Highly Regioselective and Efficient Biosynthesis of Polydatin by an Engineered UGT BL1- AtSuSy Cascade Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8695-8702. [PMID: 34319737 DOI: 10.1021/acs.jafc.1c02518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polydatin, resveratrol-3-O-β-glucoside, possesses various biological activities. However, the regioselective glucosylation of resveratrol by UDP-glycosyltransferases (UGTs) constitutes a persistent problem. In this study, semi-rational design and iterative combinatorial mutagenesis were carried out to screen the mutants of UGTBL1 and the high specificity with the glycosylation of the 3-OH group of resveratrol was explored. The triple mutant I62G/M112D/K143G exhibited near-perfect control of polydatin synthesis (regioselectivity ∼ 99%), and the ratio of polydatin to resveratrol-4'-O-β-glucoside was finally enhanced by 786-fold. Molecular docking revealed that the mutant could form three H-bonds between 3-, 5-, and 4'-OH groups of resveratrol and the residues around the active center, resulting in the oriented-binding of resveratrol. Furthermore, UGTBL1 mutant coupling sucrose synthase AtSuSy can synthesize polydatin at an unprecedented high titer of 10.33 g/L, together with efficient UDPG regeneration (RCmax = 54). This study provides an efficient approach for the regioselective biosynthesis of polydatin.
Collapse
Affiliation(s)
- Tianyi Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| | - Ziyi Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| | - Nan Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| | - Jianlin Chu
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| | - Bo Fan
- School of Pharmacy, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| | - Song Qin
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing 211800, China
| |
Collapse
|
22
|
A thermostable glycosyltransferase from Paenibacillus polymyxa NJPI29: recombinant expression, characterization, and application in synthesis of glycosides. 3 Biotech 2021; 11:314. [PMID: 34109099 DOI: 10.1007/s13205-021-02855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022] Open
Abstract
Glycosylation is a prominent biological mechanism, affecting the structural and functional diversity of many natural products. In this study, a novel thermostable uridine diphosphate-dependent glycosyltransferase gene PpGT1 was cloned from Paenibacillus polymyxa NJPI29 and recombinantly expressed in B. subtilis WB600. The purified PpGT1 had a molecular weight of 45 kDa, as estimated using SDS-PAGE. The PpGT1 could catalyze the glycosylation of vanillic acid, methyl vanillate, caffeic acid, cinnamic alcohol, and ferulic acid. Moreover, PpGT1 possessed good thermostability and retained 80% of its original activity even after 12 h of incubation at 45 °C. In addition, PpGT1 remained stable within a neutral to alkaline pH range as well as in the presence of metal ions. The synthesis of methyl vanillate 4-O-β-D-glucoside by purified PpGT1 reached a yield 3.58 mM in a system with pH 8.0, 45 °C, 12 mM UDP-Glc, and 4 mM methyl vanillate. 3D-structure-based amino acid sequence alignments revealed that the catalytic residues and C-terminated PSPG motif were conserved. These unusual properties indicated that PpGT1 is a candidate UGT for valuable natural product industrial applications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02855-z.
Collapse
|
23
|
Zhao JN, Wang RF, Zhao SJ, Wang ZT. Advance in glycosyltransferases, the important bioparts for production of diversified ginsenosides. Chin J Nat Med 2021; 18:643-658. [PMID: 32928508 DOI: 10.1016/s1875-5364(20)60003-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Ginsenosides are a series of glycosylated triterpenoids predominantly originated from Panax species with multiple pharmacological activities such as anti-aging, mediatory effect on the immune system and the nervous system. During the biosynthesis of ginsenosides, glycosyltransferases play essential roles by transferring various sugar moieties to the sapogenins in contributing to form structure and bioactivity diversified ginsenosides, which makes them important bioparts for synthetic biology-based production of these valuable ginsenosides. In this review, we summarized the functional elucidated glycosyltransferases responsible for ginsenoside biosynthesis, the advance in the protein engineering of UDP-glycosyltransferases (UGTs) and their application with the aim to provide in-depth understanding on ginsenoside-related UGTs for the production of rare ginsenosides applying synthetic biology-based microbial cell factories in the future.
Collapse
Affiliation(s)
- Jia-Ning Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ru-Feng Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shu-Juan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zheng-Tao Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
24
|
Exploiting the Reversibility of GTBP1 Catalyzed One-pot Reactions for the Synergistical Synthesis of Ponasterone A and Phenolic Glycosides. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Li W, Sun W, Li C. Engineered microorganisms and enzymes for efficiently synthesizing plant natural products. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Yao L, Wang J, He J, Huang L, Gao W. Endophytes, biotransforming microorganisms, and engineering microbial factories for triterpenoid saponins production. Crit Rev Biotechnol 2021; 41:249-272. [PMID: 33472430 DOI: 10.1080/07388551.2020.1869691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Triterpenoid saponins are structurally diverse secondary metabolites. They are the main active ingredient of many medicinal plants and have a wide range of pharmacological effects. Traditional production of triterpenoid saponins, directly extracted from cultivated plants, cannot meet the rapidly growing demand of pharmaceutical industry. Microorganisms with triterpenoid saponins production ability (especially Agrobacterium genus) and biotransformation ability, such as fungal species in Armillaria and Aspergillus genera and bacterial species in Bacillus and Intestinal microflora, represent a valuable source of active metabolites. With the development of synthetic biology, engineering microorganisms acquired more potential in terms of triterpenoid saponins production. This review focusses on potential mechanisms and the high yield strategies of microorganisms with inherent production or biotransformation ability of triterpenoid saponins. Advances in the engineering of microorganisms, such as Saccharomyces cerevisiae, Yarrowia lipolytica, and Escherichia coli, for the biosynthesis triterpenoid saponins de novo have also been reported. Strategies to increase the yield of triterpenoid saponins in engineering microorganisms are summarized following four aspects, that is, introduction of high efficient gene, optimization of enzyme activity, enhancement of metabolic flux to target compounds, and optimization of fermentation conditions. Furthermore, the challenges and future directions for improving the yield of triterpenoid saponins biosynthesis in engineering microorganisms are discussed.
Collapse
Affiliation(s)
- Lu Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Junping He
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
27
|
Biocatalysis for Rare Ginsenoside Rh2 Production in High Level with Co-Immobilized UDP-Glycosyltransferase Bs-YjiC Mutant and Sucrose Synthase AtSuSy. Catalysts 2021. [DOI: 10.3390/catal11010132] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rare ginsenoside Rh2 exhibits diverse pharmacological effects. UDP-glycosyltransferase (UGT) catalyzed glycosylation of protopanaxadiol (PPD) has been of growing interest in recent years. UDP-glycosyltransferase Bs-YjiC coupling sucrose synthase in one-pot reaction was successfully applied to ginsenoside biosynthesis with UDP-glucose regeneration from sucrose and UDP, which formed a green and sustainable approach. In this study, the his-tagged UDP-glycosyltransferase Bs-YjiC mutant M315F and sucrose synthase AtSuSy were co-immobilized on heterofunctional supports. The affinity adsorption significantly improved the capacity of specific binding of the two recombinant enzymes, and the dual enzyme covalently cross-linked by the acetaldehyde groups significantly promoted the binding stability of the immobilized bienzyme, allowing higher substrate concentration by easing substrate inhibition for the coupled reaction. The dual enzyme amount used for ginsenoside Rh2 biosynthesis is Bs-YjiC-M315F: AtSuSy = 18 mU/mL: 25.2 mU/mL, a yield of 79.2% was achieved. The coimmobilized M315F/AtSuSy had good operational stability of repetitive usage for 10 cycles, and the yield of ginsenoside Rh2 was kept between 77.6% and 81.3%. The high titer of the ginsenoside Rh2 cumulatively reached up to 16.6 mM (10.3 g/L) using fed-batch technology, and the final yield was 83.2%. This study has established a green and sustainable approach for the production of ginsenoside Rh2 in a high level of titer, which provides promising candidates for natural drug research and development.
Collapse
|
28
|
Structural and biochemical studies of the glycosyltransferase Bs-YjiC from Bacillus subtilis. Int J Biol Macromol 2020; 166:806-817. [PMID: 33152360 DOI: 10.1016/j.ijbiomac.2020.10.238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/19/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023]
Abstract
Glycosylation possess prominent biological and pharmacological significance in natural product and drug candidate synthesis. The glycosyltransferase YjiC, discovered from Bacillus subtilis (Bs-YjiC), shows potential applications in drug development due to its wide substrate spectrums. In order to elucidate its catalytic mechanism, we solved the crystal structure of Bs-YjiC, demonstrating that Bs-YjiC adopts a typical GT-B fold consisting of a flexible N-domain and a relatively rigid C-domain. Structural analysis coupled with site-directed mutagenesis studies revealed that site Ser277 was critical for Nucleoside Diphosphate (NDP) recognition, while Glu317, Gln318, Ser128 and Ser129 were crucial for glycosyl moiety recognition. Our results illustrate the structural basis for acceptor promiscuity in Bs-YjiC and provide a starting point for further protein engineering of Bs-YjiC in industrial and pharmaceutical applications.
Collapse
|
29
|
Abstract
Cascade reactions have been described as efficient and universal tools, and are of substantial interest in synthetic organic chemistry. This review article provides an overview of the novel and recent achievements in enzyme cascade processes catalyzed by multi-enzymatic or chemoenzymatic systems. The examples here selected collect the advances related to the application of the sequential use of enzymes in natural or genetically modified combination; second, the important combination of enzymes and metal complex systems, and finally we described the application of biocatalytic biohybrid systems on in situ catalytic solid-phase as a novel strategy. Examples of efficient and interesting enzymatic catalytic cascade processes in organic chemistry, in the production of important industrial products, such as the designing of novel biosensors or bio-chemocatalytic systems for medicinal chemistry application, are discussed
Collapse
|
30
|
Maharjan R, Fukuda Y, Shimomura N, Nakayama T, Okimoto Y, Kawakami K, Nakayama T, Hamada H, Inoue T, Ozaki SI. An Ambidextrous Polyphenol Glycosyltransferase PaGT2 from Phytolacca americana. Biochemistry 2020; 59:2551-2561. [PMID: 32525309 DOI: 10.1021/acs.biochem.0c00224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glycosylation of small hydrophobic compounds is catalyzed by uridine diphosphate glycosyltransferases (UGTs). Because glycosylation is an invaluable tool for improving the stability and water solubility of hydrophobic compounds, UGTs have attracted attention for their application in the food, cosmetics, and pharmaceutical industries. However, the ability of UGTs to accept and glycosylate a wide range of substrates is not clearly understood due to the existence of a large number of UGTs. PaGT2, a UGT from Phytolacca americana, can regioselectively glycosylate piceatannol but has low activity toward other stilbenoids. To elucidate the substrate specificity and catalytic mechanism, we determined the crystal structures of PaGT2 with and without substrates and performed molecular docking studies. The structures have revealed key residues involved in substrate recognition and suggest the presence of a nonconserved catalytic residue (His81) in addition to the highly conserved catalytic histidine in UGTs (His18). The role of the identified residues in substrate recognition and catalysis is elucidated with the mutational assay. Additionally, the structure-guided mutation of Cys142 to other residues, Ala, Phe, and Gln, allows PaGT2 to glycosylate resveratrol with high regioselectivity, which is negligibly glycosylated by the wild-type enzyme. These results provide a basis for tailoring an efficient glycosyltransferase.
Collapse
Affiliation(s)
- Rakesh Maharjan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yohta Fukuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naomichi Shimomura
- Department of Biological Chemistry, Graduate School of Science and Technology for Innovations, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Taisuke Nakayama
- National Institute of Biomedical Innovation, Health and Nutrition, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yuta Okimoto
- Department of Biological Chemistry, Graduate School of Science and Technology for Innovations, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Koki Kawakami
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Hiroki Hamada
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shin-Ichi Ozaki
- Department of Biological Chemistry, Graduate School of Science and Technology for Innovations, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|