1
|
Özaslan MS. Some pyrroles as inhibitors of the pentose phosphate pathways enzymes: An in vitro and molecular docking study. J Mol Recognit 2024; 37:e3083. [PMID: 38514991 DOI: 10.1002/jmr.3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) are pentose phosphate pathway enzymes. Compounds with a heterocyclic pyrrole ring system containing this atom can be derivatized with various functional groups into highly effective bioactive agents. In this study, pyrrole derivatives on these enzyme's activity were investigated. The IC50 values of different concentrations of pyrrole derivatives for G6PD were found in the range of 0.022-0.221 mM Ki values 0.021 ± 0.003-0.177 ± 0.021 and for 6PGD IC50 values 0.020-0.147, mM Ki values 0.013 ± 0.002-0.113 ± 0.030 mM. The 2-acetyl-1-methylpyrrole (1g) showed the best inhibition value for G6PD and 6PGD enzymes. In addition, in silico molecular docking experiments were performed to elucidate how these pyrrole derivatives (1a-g) interact with the binding sites of the target enzymes. The study's findings on pyrrole derivatives could be used to create innovative therapeutics that could be a treatment for many diseases, especially cancer manifestations.
Collapse
Affiliation(s)
- Muhammet Serhat Özaslan
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
2
|
Gökçe B, Muhammed MT. Evaluation of in vitro effect, molecular docking, and molecular dynamics simulations of some dihydropyridine-class calcium channel blockers on human serum paraoxonase 1 (hPON1) enzyme activity. Biotechnol Appl Biochem 2023; 70:1707-1719. [PMID: 37071114 DOI: 10.1002/bab.2467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/11/2023] [Indexed: 04/19/2023]
Abstract
Paraoxonase 1 (PON1) was purified 148.80-fold in 37.92% yield by hydrophobic interaction chromatography technique. The purity of PON1 was checked by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with a single band of 43 kDa. The in vitro effects of nine different calcium channel blockers on PON1 activity were evaluated. All drugs strongly decreased PON1 activity, and IC50 levels were between 13.987 ± 0.59 and 238.104 ± 2.14 μM, Ki values between 8.58 ± 0.36 and 111 ± 1.27 μM. The drugs with the strongest inhibitory effect were nisoldipine with 13.987 ± 0.59 μM and nicardipine with 20.158 ± 0.43 μM. The mechanism of action for the inhibition of the enzyme by nisoldipine and nicardipine was investigated through molecular docking. The stability of enzyme-ligand complexes obtained from the docking was explored through molecular dynamics simulation. The binding affinity of the ligands toward the enzyme was also investigated through MMPBSA (molecular mechanics Poisson-Boltzmann surface area method). The computational analysis demonstrated these compounds could inhibit the enzyme. Nisoldipine had the strongest binding, and its complex was the most stable one. Furthermore, nicardipine was found to have the highest affinity toward the enzyme.
Collapse
Affiliation(s)
- Başak Gökçe
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
| |
Collapse
|
3
|
Lolak N, Akocak S, Durgun M, Duran HE, Necip A, Türkeş C, Işık M, Beydemir Ş. Novel bis-ureido-substituted sulfaguanidines and sulfisoxazoles as carbonic anhydrase and acetylcholinesterase inhibitors. Mol Divers 2023; 27:1735-1749. [PMID: 36136229 DOI: 10.1007/s11030-022-10527-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
To discover alternative substances to compounds used to treat many diseases, especially treating Alzheimer's disease (AD) and Parkinson's disease targeting carbonic anhydrase (hCA) and acetylcholinesterase (AChE) enzymes, is important. For this purpose, a series of novel bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives were synthesized, and their inhibitory capacities were screened against hCA isoenzymes (hCA I and II) and AChE. Possible binding mechanisms of inhibitors to the active site were elucidated by in silico studies, and the results were supported by in vitro results. Moreover, the percent radical scavenging capacities of the derivatives were also evaluated. The derivatives (SG1-4 and SO1-4) were more effective against hCAs compared to standard drug acetazolamide (KI values of 98.28-439.17 nM for hCA I and II, respectively) and exhibited the highest inhibition with the KIs in the ranges of 2.54 ± 0.50-41.02 ± 7.52 nM for hCA I, 11.20 ± 2.97-67.14 ± 13.58 nM for hCA II, and 257.60 ± 27.84-442.60 ± 52.13 nM for AChE. Also, compounds SG1 and SO1 also showed ABTS radical scavenging activity at the rate of 70% and 78%, respectively. These results will contribute to the literature for the rational design and synthesis of new potent and selective inhibitors targeting hCAs and AChE with multifunctional effects such as radical scavenging as well as inhibition. This study focused on the synthesis and inhibitory effects of bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives against human hCA I and II isoforms and AChE. In order to test synthesized derivatives' free radical scavenging potentials were the DPPH and ABTS assays. In silico studies elucidated possible binding mechanisms of inhibitors to the active site.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adiyaman, Turkey.
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adiyaman, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290, Şanlıurfa, Turkey
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Adem Necip
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, 63300, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey.
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
4
|
Raza MA, Farwa U, Ashraf A, Berrin Poyraz E, Yesilbag S, Agar E, Al-Sehemi AG. Synthesis, crystal structure, spectroscopic and computational investigations of the newly synthesized Schiff bases scaffold as enzyme inhibitor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122864. [PMID: 37244023 DOI: 10.1016/j.saa.2023.122864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
The current project was planned to access the enzyme inhibition potential of the synthesize imines; (E)-2-(2-hydroxy-4,5-dimethoxybenzylideneamino)benzonitrile 1 and (E)-2-(((3-hydroxy-4-methylphenyl)imino)methyl)-4-methoxyphenol 2 by the reported protocol of our continuous research and also assess their theoretical function in term of in silico action. The structural characterization of imines was done through advanced techniques i.e., FTIR, 1H NMR, 13C NMR, and UV spectroscopy. Moreover, a single X-Ray diffraction technique (SCXRD) was employed for real structural identification of imines dimensions, which revealed that compound 1 has a triclinic crystal system although 2 has a monoclinic one. A 2D fingerprint plot and Hirshfeld surface analysis (HS) was employed in the crystalline assembly of compounds to check intermolecular contacts and also their degree of contributions. Both compounds were optimized by B3LYP functional mode using a certain basis set (6-31G). The practical data (XRD) and theoretical data (DFT) of both molecules were compared and found between a sound coherence. Molecular docking studies in term of in silico assessment were conducted against enzymes of the esterase and alpha-glucosidase family. The docking outputs give a forecast about compounds that could be employed as protein inhibitors against analyzed protein surfaces.
Collapse
Affiliation(s)
- Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan.
| | - Umme Farwa
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Adnan Ashraf
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Emine Berrin Poyraz
- Department of Physics, Faculty of Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Semanur Yesilbag
- Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Erbil Agar
- Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun, Turkey
| | | |
Collapse
|
5
|
Tokalı FS, Demir Y, Türkeş C, Dinçer B, Beydemir Ş. Novel acetic acid derivatives containing quinazolin-4(3H)-one ring: Synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors. Drug Dev Res 2023; 84:275-295. [PMID: 36598092 DOI: 10.1002/ddr.22031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Aldose reductase (AR) is a crucial enzyme of the polyol pathway through which glucose is metabolized under conditions of hyperglycemia related to diabetes. A series of novel acetic acid derivatives containing quinazolin-4(3H)-one ring (1-22) was synthesized and tested for in vitro AR inhibitory effect. All the target compounds exhibited nanomolar activity against the target enzyme, and all compounds displayed higher activity as compared to the reference drug epalrestat. Among them, Compound 19, named 2-(4-[(2-[(4-methylpiperazin-1-yl)methyl]-4-oxoquinazolin-3(4H)-ylimino)methyl]phenoxy)acetic acid, displayed the strongest inhibitory effect with a KI value of 61.20 ± 10.18 nM. Additionally, these compounds were investigated for activity against L929, nontumoral fibroblast cells, and MCF-7, breast cancer cells using the MTT assay. Compounds 16 and 19 showed lower toxicity against the normal L929 cells. The synthesized compounds' (1-22) absorption, distribution, metabolism, and excretion properties were also evaluated. Molecular docking simulations were used to look into the possible binding mechanisms of these inhibitors against AR.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Büşra Dinçer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
6
|
Arslan G, Gökçe B, Muhammed MT, Albayrak Ö, Önkol T, Özçelik AB. Synthesis, DFT Calculations, and Molecular Docking Study of Acetohydrazide‐Based Sulfonamide Derivatives as Paraoxonase 1 Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Gülnur Arslan
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Gazi University Ankara 06100 Türkiye
| | - Başak Gökçe
- Department of Biochemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
| | - Özlem Albayrak
- Department of Biochemistry Faculty of Pharmacy Suleyman Demirel University Isparta 32260 Türkiye
| | - Tijen Önkol
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Gazi University Ankara 06100 Türkiye
| | - Azime Berna Özçelik
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Gazi University Ankara 06100 Türkiye
| |
Collapse
|
7
|
Palabıyık E, Sulumer AN, Uguz H, Avcı B, Askın S, Askın H, Demir Y. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart. J Mol Recognit 2023; 36:e3004. [PMID: 36537558 DOI: 10.1002/jmr.3004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Atherosclerosis and cognitive impairment are both influenced by hyperlipidemia. Due to their high margin of safety and low cost, natural chemicals have recently attracted particular attention in the context of the treatment of disease. Hence, the purpose of this study was to investigate the possible amendatory impact of ethanol extract walnut (Juglans regia) seed coat (E-WSC) on some metabolic enzymes (glutathione reductase (GR), paraoxonase-1 (PON1), aldose reductase (AR), sorbitol dehydrogenase (SDH), acetylcholinesterase (AChE), glutathione S-transferase (GST), and butyrylcholinesterase (BChE)) activity in the liver, kidney, and heart of rats with Triton WR-1339-induced hyperlipidemia. Rats were divided into five groups: control group, HL-Control group (Triton WR-1339 400 mg/kg, i.p administered group), E- WSC + 150 (150 mg/kg,o.d given group), E- WSC + 300 (E- WSC 300 mg/kg, o.d given group) and HL+ E-WSC + 300 (Group receiving E- WSC 300 mg/kg, o.d 30 min prior to administration of Triton WR-1339 400 mg/kg, i.p). In HL-Control, AR, SDH, and BChE enzyme activity was significantly increased in all tissues compared to the control, while the activity of other studied enzymes was significantly decreased. The effects of hyperlipidemia on balance were improved and alterations in the activity of the investigated metabolic enzymes were prevented by E-WSC. As a result, promising natural compounds that can be used as adjuvant therapy in the treatment of cognitive disorders and hyperlipidemia may be found in E-WSC powder.
Collapse
Affiliation(s)
- Esra Palabıyık
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ayşe Nurseli Sulumer
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Handan Uguz
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Bahri Avcı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Seda Askın
- Health Services Vocational School, Ataturk University, Erzurum, Turkey
| | - Hakan Askın
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
8
|
Duran HE. Pyrimidines: Molecular docking and inhibition studies on carbonic anhydrase and cholinesterases. Biotechnol Appl Biochem 2023; 70:68-82. [PMID: 35112394 DOI: 10.1002/bab.2329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. The disease is characterized by dementia, memory impairment, cognitive impairment, and speech impairment. Cholinesterases (ChEs; AChE, acetylcholinesterase and BChE, butyrylcholinesterase) inhibitors and their benefits of cholinergic replacement in the treatment of AD have been researched and documented by scientists in various ways to date. Recent studies prove that human carbonic anhydrases (hCAs) are also one of the important targets in the treatment of AD. Therefore, the development of new agents that can simultaneously modulate the various mechanisms or targets involved in the AD pathway may be a powerful strategy to treat AD, the current disease. Considering these data, the effects of the pyrimidines (1-7) were investigated in this study for the discovery and development of multitargeted ChEs and hCAs inhibitors associated with AD. In addition, the molecular docking analysis of the 4-amino-2-choloropyrimidine (2) was performed to understand the binding interactions on the active site of the enzyme. All compounds (1-7) showed satisfactory enzyme inhibitory potency in micromolar concentrations against AChE, BChE, hCAI, and hCAII with KI values ranging from 0.099 to 0.241 μM, from 1.324 to 3.418 μM, from 0.201 to 0.884 μM, from 1.867 to 3.913 μM, respectively. Due to their ChEs and hCAs inhibition, these compounds (1-7) may be considered as leads for investigations in neurodegenerative diseases. All these results revealed that the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.201 ± 0.041 μM for hCA I), the 4-amino-6-hydroxypyrimidine (4) (KI value of 1.867 ± 0.296 μM for hCA II), the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.099 ± 0.008 μM for AChE), and the 4-amino-2-chloropyrimidine (2) (KI value of 1.324 ± 0.273 μM for BChE) from the pyrimidines in this series were the most promising derivatives, as they exhibited a good multifunctional inhibition at all experimental levels and in the in silico validation against these enzymes, for the treatment of AD.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
9
|
Yakan H, Muğlu H, Türkeş C, Demir Y, Erdoğan M, Çavuş MS, Beydemir Ş. A novel series of thiosemicarbazone hybrid scaffolds: Design, Synthesis, DFT studies, metabolic enzyme inhibition properties, and molecular docking calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Duran HE, Beydemir Ş. Recombinant human carbonic anhydrase VII: Purification, characterization, inhibition, and molecular docking studies. Biotechnol Appl Biochem 2023; 70:415-428. [PMID: 35638720 DOI: 10.1002/bab.2367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 05/01/2022] [Indexed: 11/05/2022]
Abstract
Human carbonic anhydrase VII (hCA VII), a cytosolic enzyme, defends against oxidative stress by preventing reactive oxygen species from forming. In our study, first, hCA VII was cloned into Escherichia coli (One Shot Mach1-T1R) strain by using cDNA of the human brain and successfully expressed. The integrity of the plasmid generated by colony PCR was checked, and after, for protein expression, the plasmid was transformed into E. coli BL21 (DE-3) strain. hCA VII expression was observed after 6 h of isopropyl-D-1-thiogalactopyranoside (IPTG) induction. The fusion protein containing hexahistidine (6xHis) was purified with 7.02 EU/mg of specific activity, had 48.07% of purification yield, and approximately 21-folds using a ProbondTM nickel chelating resin affinity column. Then, both molecular mass determination and purity control of the purified recombinant enzyme was done by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The mass of the SUMO-hCA VII fusion protein was calculated as 46.77 kDa. As a result of Western blot analysis using anti-His G-HRP antibody, the fusion protein was detected as approximately 45 kDa. Furthermore, the characterization assays and in vitro inhibition studies were done for the recombinant enzyme. KI values of these agents were found between 0.29 μM and 157.6 mM. Finally, molecular docking investigations of these antibiotics were undertaken to understand further the binding interactions on the active site of this recombinant enzyme.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
11
|
Demir Y, Ceylan H, Türkeş C, Beydemir Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J Biomol Struct Dyn 2022; 40:12008-12021. [PMID: 34424822 DOI: 10.1080/07391102.2021.1967195] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aldose reductase (AR) and sorbitol dehydrogenase (SDH) are important enzymes of the polyol pathway. In the current study, inhibitory effects of vulpinic acid (VA) carnosic acid (CA) and usnic acid (UA) on purified AR and SDH enzymes were determined. These enzymes inhibition could be essential to prevent diabetic complications. AR and SDH enzymes were purified from sheep kidney. Then, VA, CA and UA were tested in various concentrations against these enzymes activity in vitro. KI values were found to be as 1.46 ± 0.04, 5.13 ± 0.25 and 11.71 ± 0.27 μΜ for VA, CA and UA, respectively, for AR. KI constants were found to be as 15.32 ± 0.34, 145.60 ± 2.17 and 213.40 ± 2.64 μΜ VA, CA and UA, respectively, for SDH. These findings indicate that VA, CA and UA could be useful in the treatment of diabetic complications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Hamid Ceylan
- Faculty of Science, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
12
|
Yıldız ML, Demir Y, Küfrevioğlu ÖI. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes. J Mol Recognit 2022; 35:e2987. [PMID: 36326002 DOI: 10.1002/jmr.2987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/05/2023]
Abstract
Inhibition studies of enzymes in the pentose phosphate pathway (PPP) have recently emerged as a promising technique for pharmacological intervention in several illnesses. Glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) are the most important enzymes of the PPP. For this purpose, in the current study, we examined the effect of some fluorophenylthiourea on G6PD and 6PGD enzyme activity. These compounds exhibited moderate inhibitory activity against G6PD and 6PGD with KI values ranging from 21.60 ± 8.42 to 39.70 ± 11.26 μM, and 15.82 ± 1.54 to 29.97 ± 5.72 μM, respectively. 2,6-difluorophenylthiourea displayed the most potent inhibitory effect for G6PD, and 2-fluorophenylthiourea demonstrated the most substantial inhibitory effect for 6PGD. Furthermore, the molecular docking analyses of the fluorophenylthioureas, competitive inhibitors, were performed to understand the binding interactions at the enzymes' binding site.
Collapse
Affiliation(s)
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | | |
Collapse
|
13
|
Çalışkan B, Demir Y, Türkeş C. Ophthalmic drugs: in vitro paraoxonase 1 inhibition and molecular docking studies. Biotechnol Appl Biochem 2022; 69:2273-2283. [PMID: 34786760 DOI: 10.1002/bab.2284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/06/2021] [Indexed: 12/27/2022]
Abstract
Glaucoma is a neuropathy disorder and is generally treated by drugs. Allergic conjunctivitis is a common ophthalmologic disease. Paraoxonase 1 (PON1) is an organophosphate hydrolyzer and antiatherogenic enzyme. PON1 is known for preventing atherosclerosis through lipid-modifying features, as well as which has decisive actions of antiapoptosis, anti-inflammatory, antithrombosis, and antiadhesion antioxidant activity properties. Thus, reducing the enzyme levels in hyperthyroidism, chronic renal failure, glaucoma, diabetes mellitus, and cardiovascular diseases is a significant risk. This study was tested some ophthalmic drugs used to treat the diseases, such as glaucoma and allergic conjunctivitis, mentioned above, travoprost, latanoprost, ketotifen, emedastine, and olopatadine, for their inhibition activities against PON1. These drugs displayed the potent inhibition effect with IC50 values ranging between 14.95 ± 0.15 and 299.60 ± 4.07 μM and KI constants ranging from 9.71 ± 2.63 to 261.50 ± 59.98 μM. Besides, the molecular docking analyses of the competitive inhibitors, travoprost, emedastine, and olopatadine, were performed to understand the binding interactions on the enzyme's binding site. According to both in vitro and in silico analysis results, travoprost had the most potent effect on PON1 enzyme activity.
Collapse
Affiliation(s)
- Büşra Çalışkan
- Department of Opthalmology, Kağızman State Hospital, Kağızman, Kars, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24100, Turkey
| |
Collapse
|
14
|
Korkmaz IN, Türkeş C, Demir Y, Öztekin A, Özdemir H, Beydemir Ş. Biological evaluation and in silico study of benzohydrazide derivatives as paraoxonase 1 inhibitors. J Biochem Mol Toxicol 2022; 36:e23180. [PMID: 35916346 DOI: 10.1002/jbt.23180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022]
Abstract
Serum paraoxonase 1 (PON1) is found in all mammalian species and is a calcium-dependent hydrolytic enzyme. PON1 hydrolyze several substrates, including carbonates, esters, and organophosphates. In the current study, we aimed to investigate the effect of the presynthesized benzohydrazide derivatives (1-9) on PON1 activity. Benzohydrazide compounds moderate inhibited PON1 with the half-maximal inhibitory concentration values ranging from 76.04 ± 13.51 to 221.70 ± 13.59 μM and KI values ranging from 38.75 ± 12.21 to 543.50 ± 69.76 μM. Compound 4 (2-amino-4-chlorobenzohydrazide) showed the best inhibition (KI = 38.75 ± 12.21 μM). Molecular docking and ADME-Tox studies of benzohydrazide derivatives were also carried out. In this context, we hope that the results obtained in this study contribute to the determination of the side effects of current and new benzohydrazide-based pharmacological compounds to be developed.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Aykut Öztekin
- Department of Medical Services and Techniques, Vocational School of Health Services, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
15
|
Korkmaz IN, Türkeş C, Demir Y, Özdemir H, Beydemir Ş. Methyl benzoate derivatives: in vitro Paraoxonase 1 inhibition and in silico studies. J Biochem Mol Toxicol 2022; 36:e23152. [PMID: 35708184 DOI: 10.1002/jbt.23152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022]
Abstract
Paraoxonase 1 (PON1) can metabolize some compounds such as aromatic carboxylic acid and unsaturated aliphatic esters, arylesters, cyclic carbonate, plucuronide drugs, some carbamate insecticide classes, nerve gases, and lactone compounds. Methyl benzoate has recently been shown to display potent toxicity against several insect species. In the current study, we aimed to investigate the effect of the methyl benzoate compounds (1-17) on PON1 activity. Methyl benzoate compounds inhibited PON1 with KI values ranging from 25.10 ± 4.73 to 502.10 ± 64.72 μM. Compound 10 (methyl 4-amino-2-bromo benzoate) showed the best inhibition (KI = 25.10 ± 4.73 μM). Furthermore, using the ADME-Tox, Glide XP, and MM-GBSA tools of the Schrödinger Suite 2021-4, a complete ligand-receptor interaction prediction was performed to characterize the methyl benzoates (1-17), probable binding modalities versus the PON1.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
16
|
Tian YQ, Hu D, Zhang YL, Zou J, Chen GL, Guo MQ. Inhibitors Targeting Multiple Janus Kinases From Zanthoxylum simulans Mediate Inhibition and Apoptosis Against Gastric Cancer Cells via the Estrogen Pathway. Front Chem 2022; 10:922110. [PMID: 35734442 PMCID: PMC9207197 DOI: 10.3389/fchem.2022.922110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Janus kinases (JAKs) play a key role in subtly regulating proliferation, apoptosis, and differentiation of cancer cells, and their inhibitors are actively sought as new drug leads. By developing JAKs based affinity ultrafiltration method coupled with LC/Q-TOF-MS in order to discover selective JAKs inhibitors from total quaternary alkaloids (QAs) from Zanthoxylum simulans, peak 19 (Berberine) and peak 21 (Chelerythrine) were revealed to exhibit notable selectivity on JAK1, JAK2, and JAK3 over Tyk2. In addition, Chelerythrine showed stronger inhibitory activity than the positive control (Cerdulatinib) on gastric cancer cells (AGS), while Berberine, with weaker inhibition. Chelerythrine and Berberine also showed obvious inhibition on human hepatocyte cells (LO2). Furthermore, molecular docking analysis revealed their discrepancies due to different interaction bonds and characteristic residues. Quaternary N was proposed as the functional group to enhance the selectivity of JAK1, and some specific moieties towards Asp1021, Leu855, and Leu828 were suggested to increase the selectivity for JAK1, JAK2, and JAK3, respectively. As the most potential inhibitor of JAKs from QAs, Chelerythrine exhibited distinct suppression of adhesion, migration, invasion, and stimulating apoptosis of AGS cells, which was consistent with the significant down-regulation of estrogen receptors (ER-α36, ER-α66, and ER-β1) and Src expression. In conclusion, an efficient screening approach was developed to identify Berberine and Chelerythrine as potential selective candidates from Zanthoxylum simulans with significant anti-proliferative activity against gastric carcinoma. As we know, it was the first report to propose an estrogen signal pathway for Chelerythrine in anti-gastric cancer cells (AGS) study. The results supported Chelerythrine inhibitory effects on AGS by not only direct inhibiting JAKs but also down-regulating the estrogen pathway.
Collapse
Affiliation(s)
- Yong-Qiang Tian
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Dai Hu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Li Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zou
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, China
| | - Gui-Lin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Quan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Ming-Quan Guo,
| |
Collapse
|
17
|
Tokalı FS, Demir Y, Demircioğlu İH, Türkeş C, Kalay E, Şendil K, Beydemir Ş. Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin-4(3H)-one derivatives as potential aldose reductase inhibitors. Drug Dev Res 2022; 83:586-604. [PMID: 34585414 DOI: 10.1002/ddr.21887] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
A series of novel sulfonates containing quinazolin-4(3H)-one ring derivatives was designed to inhibit aldose reductase (ALR2, EC 1.1.1.21). Novel quinazolinone derivatives (1-21) were synthesized from the reaction of sulfonated aldehydes with 3-amino-2-alkylquinazolin-4(3H)-ones in glacial acetic acid with good yields (85%-94%). The structures of the novel molecules were characterized using IR, 1 H-NMR, 13 C-NMR, and HRMS. All the novel quinazolinones (1-21) demonstrated nanomolar levels of inhibitory activity against ALR2 (KI s are in the range of 101.50-2066.00 nM). Besides, 4-[(2-isopropyl-4-oxoquinazolin-3[4H]-ylimino)methyl]phenyl benzenesulfonate (15) showed higher inhibitor activity inhibited ALR2 up to 7.7-fold compared to epalrestat, a standard inhibitor. Binding interactions between ALR2 and quinazolinones have been investigated using Schrödinger Small-Molecule Drug Discovery Suite 2021-1, reported possible inhibitor-ALR2 interactions. Both in vitro and in silico study results suggest that these quinazolin-4(3H)-one ring derivatives (1-21) require further molecular modification to improve their drug nominee potency as an ALR2 inhibitor.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | | | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Kıvılcım Şendil
- Department of Chemistry, Faculty of Arts and Science, Kafkas University, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
18
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Yeni Y, Hacımüftüoğlu A, Ereminsoy E, Küfrevioğlu Öİ, Beydemir Ş. Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Mol Divers 2022; 26:2825-2845. [PMID: 35397086 PMCID: PMC8994094 DOI: 10.1007/s11030-022-10422-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
Abstract The acetylcholinesterase and carbonic anhydrase inhibitors (AChEIs and hCAIs) remain key therapeutic agents for many bioactivities such as anti-Alzheimer and antiobesity antiepileptic, anticancer, antiinfective, antiglaucoma, and diuretic effects. Here, it has been attempted to discover novel multi-target AChEIs and hCAIs that are highly potent, orally bioavailable, may be brain penetrant, and have higher effectiveness at lower doses than tacrine and acetazolamide. After detailed investigations both in vitro and in silico, novel N-substituted sulfonyl amide derivatives (6a–j) were determined to be highly potent inhibitors for AChE and hCAs (KIs are in the range of 23.11–52.49 nM, 18.66–59.62 nM, and 9.33–120.80 nM for AChE, hCA I, and hCA II, respectively). Moreover, according to the cytotoxic effect studies, such as the ADME-Tox, cortex neuron cells, and neuroblastoma SH-SY5Y cell line, compounds 6a, 6d, and 6h, which are the most potent representative versus the target enzymes, were identified as orally bioavailable, highly selective, and brain preferentially distributed AChEIs and hCAIs. The docking studies revealed precise binding modes between 6a, 6d, and 6h and hCA II, hCA I, and AChE, respectively. The results presented here might provide a solid basis for further investigation into more potent AChEIs and hCAIs. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11030-022-10422-8.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187, Serdivan, Sakarya, Türkiye
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Türkiye.
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187, Serdivan, Sakarya, Türkiye.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Türkiye
| | - Yeşim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Türkiye
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Türkiye
| | - Ergün Ereminsoy
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Türkiye.,The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Türkiye
| |
Collapse
|
19
|
Türkeş C, Demir Y, Beydemir Ş. Infection Medications: Assessment In‐Vitro Glutathione S‐Transferase Inhibition and Molecular Docking Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202103197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
20
|
Yapar G, Esra Duran H, Lolak N, Akocak S, Türkeş C, Durgun M, Işık M, Beydemir Ş. Biological effects of bis-hydrazone compounds bearing isovanillin moiety on the aldose reductase. Bioorg Chem 2021; 117:105473. [PMID: 34768205 DOI: 10.1016/j.bioorg.2021.105473] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023]
Abstract
Aldose reductase (ALR2), one of the metabolically important enzymes, catalyzes the formation of sorbitol from glucose in the polyol pathway. ALR2 inhibition is required to prevent diabetic complications. In the present study, the novel bis-hydrazone compounds bearing isovanillin moiety (GY1-12) were synthesized, and various chromatographic methods were applied to purify the ALR2 enzyme. Afterward, the inhibitory effect of the synthesized compounds on the ALR2 was screened in vitro. All the novel bis-hydrazones demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 12.55-35.04 nM, and 13.38-88.21 nM, respectively. Compounds GY-11, GY-7, and GY-5 against ALR2 were identified as the highly potent inhibitors, respectively, and were superior to the standard drug, epalrestat. Moreover, a comprehensive ligand-receptor interactions prediction was performed using ADME-Tox, Glide XP, and MM-GBSA modules of Schrödinger Small-Molecule Drug Discovery Suite to elucidate the novel bis-hydrazone derivatives, potential binding modes versus the ALR2. As a result, these compounds with ALR2 inhibitory effects may be potential alternative agents that can be used to treat or prevent diabetic complications.
Collapse
Affiliation(s)
- Gönül Yapar
- Department of Chemistry, Faculty of Arts and Sciences, İstanbul Technical University, İstanbul 34469, Turkey.
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars 36100, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa 63290, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey.
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey; The Rectorate of Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
21
|
Türkeş C, Kesebir AÖ, Demir Y, Küfrevioğlu Öİ, Beydemir Ş. Calcium Channel Blockers: The Effect of Glutathione S‐Transferase Enzyme Activity and Molecular Docking Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202103100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Arzu Öztürk Kesebir
- Department of Chemistry Faculty of Science Atatürk University Erzurum 25240 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | | | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
22
|
Boy S, Aras A, Türkan F, Akyıldırım O, Beytur M, Sedef Karaman H, Manap S, Yüksek H. Synthesis, Spectroscopic Analysis, and in Vitro/in Silico Biological Studies of Novel Piperidine Derivatives Heterocyclic Schiff-Mannich Base Compounds. Chem Biodivers 2021; 18:e2100433. [PMID: 34596972 DOI: 10.1002/cbdv.202100433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
In the present study, 3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (S1-8) were synthesized by treating 4-hydroxybenzaldehyde (B) with eight different 3-substitued-4-amino-4,5-dihydro-1H-1,2,4-triazole-5-ones (T1-8) in acetic acid medium, separately. The synthesized Schiff bases (S) were reacted with formaldehyde and secondary amine such as 4-piperidinecarboxyamide to afford novel heterocyclic bases. 3-Substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (T) were treated with 4-piperidinecarboxyamide in the presence of formaldehyde to synthesize eight new 1-(4-piperidinecarboxyamide-1-yl-methyl)-3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (M1-8). The structure characterization of compounds was carried out using 1 H-NMR, IR, HR-MS, and 13 C-NMR spectroscopic methods. The inhibitory properties of the newly synthesized compounds were calculated against the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and glutathione S-transferase (GST) enzymes. Ki values were calculated in the range of 20.06±3.11-36.86±6.17 μM for GST, 17.87±2.91-30.53±4.25 μM for AChE, 9.08±0.69-20.02±2.88 μM for BChE, respectively, Besides, IC50 values were also calculated. Best binding scores of -inhibitors against used enzymes were calculated as -12.095 kcal/mol, -12.775 kcal/mol, and -9.336 kcal/mol, respectively. While 5-oxo-triazole piperidine-4-carboxamide moieties have a critical role in the inhibition of AChE and GST enzymes, hydroxy benzyl moiety is important for BChE enzyme inhibition.
Collapse
Affiliation(s)
- Songül Boy
- Atatürk Vocational College of Health Service, Kafkas University, Kars, 36100, Turkey
| | - Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, 76100, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Iğdır University, Iğdır, 76000, Turkey
| | - Onur Akyıldırım
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, 36100, Turkey
| | - Murat Beytur
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey
| | - Halide Sedef Karaman
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey
| | - Sevda Manap
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey
| | - Haydar Yüksek
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey
| |
Collapse
|
23
|
Sever B, Türkeş C, Altıntop MD, Demir Y, Akalın Çiftçi G, Beydemir Ş. Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Arch Pharm (Weinheim) 2021; 354:e2100294. [PMID: 34569655 DOI: 10.1002/ardp.202100294] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 01/25/2023]
Abstract
New hybrid thiazolyl-pyrazoline derivatives (4a-k) were obtained through a facile and versatile synthetic procedure, and their inhibitory effects on the human carbonic anhydrase (hCA) isoforms I and II as well as on acetylcholinesterase (AChE) were determined. All new thiazolyl-pyrazolines showed activity at nanomolar levels as hCA I, hCA II, and AChE inhibitors, with KI values in the range of 13.35-63.79, 7.01-115.80, and 17.89-48.05 nM, respectively. 1-[4-(4-Cyanophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4f) and 1-(4-phenylthiazol-2-yl)-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4a) against hCAs and 1-[4-(4-chlorophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4d) and 1-[4-(4-nitrophenyl)thiazol-2-yl]-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (4b) against AChE were identified as highly potent inhibitors, superior to the standard drugs, acetazolamide and tacrine, respectively. Compounds 4a-k were also evaluated for their cytotoxic effects on the L929 mouse fibroblast (normal) cell line. Moreover, a comprehensive ligand-receptor interaction prediction was performed using the ADME-Tox, Glide XP, and MM-GBSA modules of the Schrödinger Small-Molecule Drug Discovery Suite to elucidate the potential binding modes of the new hybrid inhibitors against these metabolic enzymes.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mehlika D Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
24
|
Taslimi P, Işık M, Türkan F, Durgun M, Türkeş C, Gülçin İ, Beydemir Ş. Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: biological evaluation and molecular docking studies. J Biomol Struct Dyn 2021; 39:5449-5460. [PMID: 32691682 DOI: 10.1080/07391102.2020.1790422] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Sulfonamide derivatives exhibit a wide biological activity and can function as potential medical molecules in the development of a drug. Studies have reported that the compounds have an effect on many enzymes. In this study, the derivatives of amine sulfonamide (1i-11i) were prepared with reduced imine compounds (1-11) with NaBH4 in methanol. The synthesized compounds were fully characterized by spectral data and analytical. The effect of the synthesized derivatives on acetylcholinesterase (AChE), glutathione S-transferase (GST) and α-glycosidase (α-GLY) enzymes were determined. For the AChE and α-GLY, the most powerful inhibition was observed on 10 and 10i series with KI value in the range 2.26 ± 0.45-3.57 ± 0.97 and 95.73 ± 13.67-102.45 ± 11.72 µM, respectively. KI values of the series for GST were found in the range of 22.76 ± 1.23-49.29 ± 4.49. Finally, the compounds have a stronger inhibitor in lower concentrations by the attachment of functional electronegative groups such as two halogens (-Br and -CI), -OH to the benzene ring and -SO2NH2. The crystal structures of AChE, α-GLY, and GST in complex with selected derivatives 4 and 10 show the importance of the functional moieties in the binding modes within the receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Fikret Türkan
- Department of Medical Services and Techniques, Vocational School of Health Services, Iğdır University, Iğdır, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
25
|
Topal M, Ozturk Sarıkaya SB, Topal F. Determination of
Angelica archangelica
’s Antioxidant Capacity and Mineral Content. ChemistrySelect 2021. [DOI: 10.1002/slct.202102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meryem Topal
- Gumushane University Vocational School of Health Services Gumushane 29100 Turkey
| | - S. Beyza Ozturk Sarıkaya
- Gumushane University Faculty of Engineering and Natural Sciences Department of Food Engineering Gumushane 29100 Turkey
| | - Fevzi Topal
- Gumushane University Department of Chemical and Chemical Processing Technologies Laboratory Technology Program Gumushane Vocational School Gumushane 29100 Turkey
| |
Collapse
|
26
|
Cetin G, Tras B, Uney K. The Effects of P‐glycoprotein Modulators on the Transition of Levofloxacin to Rat Brain, Testicle, and Plasma: In Vivo and In Silico Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202102122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gul Cetin
- Department of Pharmacology Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24100 Turkey
| | - Bunyamin Tras
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| |
Collapse
|
27
|
Yaşar Ü, Gönül İ, Türkeş C, Demir Y, Beydemir Ş. Transition‐Metal Complexes of Bidentate Schiff‐Base Ligands: In Vitro and In Silico Evaluation as Non‐Classical Carbonic Anhydrase and Potential Acetylcholinesterase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202102082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ümit Yaşar
- Department of Laboratory and Veterinary Health Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - İlyas Gönül
- Department of Chemistry Faculty of Arts and Science Cukurova University Adana 01330 Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24100 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
28
|
Sever B, Altıntop MD, Demir Y, Yılmaz N, Akalın Çiftçi G, Beydemir Ş, Özdemir A. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem Biol Interact 2021; 345:109576. [PMID: 34252406 DOI: 10.1016/j.cbi.2021.109576] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
Aldose reductase (AR) acts as a multi-disease target for the design and development of therapeutic agents for the management of diabetic complications as well as non-diabetic diseases. In the search for potent AR inhibitors, the microwave-assisted synthesis of twenty new compounds with a 1,3-diaryl-5-(4-fluorophenyl)-2-pyrazoline moiety as a common fragment in their structure (1-20) was carried out efficiently. Compounds 1-20 were subjected to in vitro studies, which were conducted to assess their AR inhibitory effects and cytotoxicity towards L929 mouse fibroblast (normal) cells. Among these compounds, 1-(3-bromophenyl)-3-(4-piperidinophenyl)-5-(4-fluorophenyl)-2-pyrazoline (20) was identified as the most promising AR inhibitor with an IC50 value of 0.160 ± 0.005 μM exerting competitive inhibition with a Ki value of 0.019 ± 0.001 μM as compared to epalrestat (IC50 = 0.279 ± 0.001 μM; Ki = 0.801 ± 0.023 μM) and quercetin (IC50 = 4.120 ± 0.123 μM; Ki = 6.082 ± 0.272 μM). Compound 20 displayed cytotoxicity towards L929 cells with an IC50 value of 18.75 ± 1.06 μM highlighting its safety as an AR inhibitor. Molecular docking studies suggested that π-π stacking interactions occurred between the m-bromophenyl moiety of compound 20 and Trp21. Based on in silico pharmacokinetic studies, compound 20 was found to possess favorable oral bioavailability and drug-like properties. It can be concluded that compound 20 is a potential orally bioavailable AR inhibitor for the management of diabetic complications as well as non-diabetic diseases.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Nalan Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey; The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| |
Collapse
|
29
|
Askin S, Tahtaci H, Türkeş C, Demir Y, Ece A, Akalın Çiftçi G, Beydemir Ş. Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorg Chem 2021; 113:105009. [PMID: 34052739 DOI: 10.1016/j.bioorg.2021.105009] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Imidazole and thiadiazole derivatives display an extensive application in pharmaceutical chemistry, and they have been investigated as bioactive molecules for medicinal chemistry purposes. Classical carbonic anhydrase (CA) inhibitors are based on sulfonamide groups, but inhibiting all CA isoforms nonspecifically, thereby causing undesired side effects, is the main drawback of these types of inhibitors. Here we reported an investigation of novel 2,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (9a-k, 10a, and 11a) and 2,5,6-trisubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (12a-20a) that do not possess the zinc-binding sulfonamide group for the inhibition of human carbonic anhydrase (hCA, EC 4.2.1.1) I and II isoforms and also of acetylcholinesterase (AChE, EC 3.1.1.7). Imidazo[2,1-b][1,3,4]thiadiazoles demonstrated low nanomolar inhibitory activity against hCA I, hCA II, and AChE (KIs are in the range of 23.44-105.50 nM, 10.32-104.70 nM, and 20.52-54.06 nM, respectively). Besides, compound 9b inhibit hCA I up to 18-fold compared to acetazolamide, while compound 10a has a 5-fold selectivity towards hCA II. The synthesized compounds were also evaluated for their cytotoxic effects on the L929 mouse fibroblast cell line. Molecular docking simulations were performed to elucidate these inhibitors' potential binding modes against hCA I and II isoforms and AChE. The novel compounds reported here can represent interesting lead compounds, and the results presented here might provide further structural guidance to discover and design more potent hCA and AChE inhibitors.
Collapse
Affiliation(s)
- Sercan Askin
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabük University, Karabük 78050, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan 75700, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey.
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey; The Rectorate of Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
30
|
Türkeş C, Akocak S, Işık M, Lolak N, Taslimi P, Durgun M, Gülçin İ, Budak Y, Beydemir Ş. Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors. J Biomol Struct Dyn 2021; 40:8752-8764. [PMID: 33950796 DOI: 10.1080/07391102.2021.1916599] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The underlying cause of many metabolic diseases is abnormal changes in enzyme activity in metabolism. Inhibition of metabolic enzymes such as cholinesterases (ChEs; acetylcholinesterase, AChE and butyrylcholinesterase, BChE) and α-glucosidase (α-GLY) is one of the accepted approaches in the treatment of Alzheimer's disease (AD) and diabetes mellitus (DM). Here we reported an investigation of a new series of novel ureido-substituted derivatives with sulfamethazine backbone (2a-f) for the inhibition of AChE, BChE, and α-GLY. All the derivatives demonstrated activity in nanomolar levels as AChE, BChE, and α-GLY inhibitors with KI values in the range of 56.07-204.95 nM, 38.05-147.04 nM, and 12.80-79.22 nM, respectively. Among the many strong N-(4,6-dimethylpyrimidin-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamide derivatives (2a-f) detected against ChEs, compound 2c, the 4-fluorophenylureido derivative, demonstrated the most potent inhibition profile towards AChE and BChE. A comprehensive ligand/receptor interaction prediction was performed in silico for the three metabolic enzymes providing molecular docking investigation using Glide XP, MM-GBSA, and ADME-Tox modules. The present research reinforces the rationale behind utilizing inhibitors with sulfamethazine backbone as innovative anticholinergic and antidiabetic agents with a new mechanism of action, submitting propositions for the rational design and synthesis of novel strong inhibitors targeting ChEs and α-GLY.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Yakup Budak
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
31
|
Mosca A, Del Casale A, Borro M, Gentile G, Pomes LM, Padovano A, Fiaschè F, Pinzone V, Rapinesi C, Zoppi T, Brugnoli R, Sani G, Kotzalidis GD, Girardi P, Ferracuti S, Simmaco M, Pompili M. PON1 polymorphisms can predict generalized anxiety and depressed mood in patients with multiple chemical sensitivity. Per Med 2021; 18:255-267. [PMID: 33728967 DOI: 10.2217/pme-2019-0141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Multiple chemical sensitivity (MCS) is a chronic condition with somatic, cognitive and affective symptoms that follow contact with chemical agents at usually non toxic concentrations. We aimed to assess the role of genetic polymorphisms involved in oxidative stress on anxiety and depression in MCS. Materials & methods: Our study investigated the CAT rs1001179, MPO rs2333227, PON1 rs662 and PON1 rs705379 polymorphisms in MCS. Results: The AG genotype of the PON1 rs662 and the TT and CT genotypes of the PON1 rs705379 were involved in anxiety and depression. Discussion: These results are in line with existing evidence of PON1 involvement in MCS and suggest a further role of this gene in the exhibition of anxiety and depression in this disease.
Collapse
Affiliation(s)
- Alessio Mosca
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy
| | - Antonio Del Casale
- Department of Dynamic & Clinical Psychology, & Health Studies, Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Psychiatry, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Laboratory & Advanced Molecular Diagnostics, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Laboratory & Advanced Molecular Diagnostics, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Leda Marina Pomes
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Laboratory & Advanced Molecular Diagnostics, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Alessio Padovano
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Psychiatry, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Federica Fiaschè
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Psychiatry, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Vito Pinzone
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Psychiatry, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Chiara Rapinesi
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy
| | - Teodolinda Zoppi
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Psychiatry, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Roberto Brugnoli
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Psychiatry, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Gabriele Sani
- Institute of Psychiatry & Psychology, Department of Geriatrics, Neuroscience & Orthopedics, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Università Cattolica del Sacro Cuore, Rome, Italy
| | - Georgios Demetrios Kotzalidis
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy
| | - Paolo Girardi
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Psychiatry, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Stefano Ferracuti
- Department of Human Neuroscience, Sapienza University; Unit of Risk Management, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Laboratory & Advanced Molecular Diagnostics, 'Sant'Andrea' University Hospital, Rome, Italy
| | - Maurizio Pompili
- Department of Neuroscience, Mental Health, & Sensory Organs (NESMOS), Faculty of Medicine & Psychology, Sapienza University, Rome, Italy.,Unit of Psychiatry, 'Sant'Andrea' University Hospital, Rome, Italy
| |
Collapse
|
32
|
Sever B, Altıntop MD, Demir Y, Türkeş C, Özbaş K, Çiftçi GA, Beydemir Ş, Özdemir A. A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
In an effort to identify potent aldose reductase (AR) inhibitors, 5-(arylidene)thiazolidine-2,4-diones (1–8), which were prepared by the solvent-free reaction of 2,4-thiazolidinedione with aromatic aldehydes in the presence of urea, were examined for their in vitro AR inhibitory activities and cytotoxicity. 5-(2-Hydroxy-3-methylbenzylidene)thiazolidine-2,4-dione (3) was the most potent AR inhibitor in this series, exerting uncompetitive inhibition with a K
i value of 0.445 ± 0.013 µM. The IC50 value of compound 3 for L929 mouse fibroblast cells was determined as 8.9 ± 0.66 µM, pointing out its safety as an AR inhibitor. Molecular docking studies suggested that compound 3 exhibited good affinity to the binding site of AR (PDB ID: 4JIR). Based upon in silico absorption, distribution, metabolism, and excretion data, the compound is predicted to have favorable pharmacokinetic features. Taking into account the in silico and in vitro data, compound 3 stands out as a potential orally bioavailable AR inhibitor for the management of diabetic complications as well as nondiabetic diseases.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University , 26470 Eskişehir , Turkey
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University , 26470 Eskişehir , Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University , 75700 Ardahan , Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University , 24100 Erzincan , Turkey
| | - Kaan Özbaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University , 26470 Eskişehir , Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University , 26470 Eskişehir , Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University , 26470 Eskişehir , Turkey
- The Rectorate of Bilecik Şeyh Edebali University , 11230 Bilecik , Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University , 26470 Eskişehir , Turkey
| |
Collapse
|
33
|
Akocak S, Taslimi P, Lolak N, Işık M, Durgun M, Budak Y, Türkeş C, Gülçin İ, Beydemir Ş. Synthesis, Characterization, and Inhibition Study of Novel Substituted Phenylureido Sulfaguanidine Derivatives as α‐Glycosidase and Cholinesterase Inhibitors. Chem Biodivers 2021; 18:e2000958. [DOI: 10.1002/cbdv.202000958] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Suleyman Akocak
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Adıyaman University Adıyaman 02040 Turkey
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartın University Bartın 74100 Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Adıyaman University Adıyaman 02040 Turkey
| | - Mesut Işık
- Department of Bioengineering Faculty of Engineering Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| | - Mustafa Durgun
- Department of Chemistry Faculty of Arts and Sciences Harran University Şanlıurfa 63290 Turkey
| | - Yakup Budak
- Department of Chemistry Faculty of Arts and Sciences Gaziosmanpaşa University Tokat 60250 Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24100 Turkey
| | - İlhami Gülçin
- Department of Chemistry Faculty of Sciences Atatürk University Erzurum 25240 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
34
|
Aydin BO, Anil D, Demir Y. Synthesis of N-alkylated pyrazolo[3,4-d]pyrimidine analogs and evaluation of acetylcholinesterase and carbonic anhydrase inhibition properties. Arch Pharm (Weinheim) 2021; 354:e2000330. [PMID: 33502038 DOI: 10.1002/ardp.202000330] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 01/28/2023]
Abstract
Fused pyrimidines, especially pyrazolo[3,4-d]pyrimidines, are among the most preferred building blocks for pharmacology studies, as they exhibit a broad spectrum of biological activity. In this study, new derivatives of pyrazolo[3,4-d]pyrimidine were synthesized by alkylation of the N1 nitrogen atom. We synthesized 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine 2 from commercially available aminopyrazolopyrimidine 1 using N-iodosuccinimide as an iodinating agent. The synthesis of compound 2 started with nucleophilic substitution of 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine with R-X (X: -OMs, -Br, -Cl), affording N-alkylated pyrazolo[3,4-d]pyrimidine. We performed this synthesis using a weak inorganic base and the mild temperature was also used for a two-step procedure to generate N-alkylated pyrazolo[3,4-d]pyrimidine derivatives. Also, all compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and the human carbonic anhydrase (hCA) isoforms I and II, with Ki values in the range of 15.41 ± 1.39-63.03 ± 10.68 nM for AChE, 17.68 ± 1.92-66.27 ± 5.43 nM for hCA I, and 8.41 ± 2.03-28.60 ± 7.32 nM for hCA II. Notably, compound 10 was the most selective and potent CA I inhibitor with a significant selectivity ratio of 26.90.
Collapse
Affiliation(s)
- Busra O Aydin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Derya Anil
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey.,Department of Chemistry and Chemical Process Technologies, Technical Sciences Vocational School, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
35
|
Çalışkan B, Öztürk Kesebir A, Demir Y, Akyol Salman İ. The effect of brimonidine and proparacaine on metabolic enzymes: Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase. Biotechnol Appl Biochem 2021; 69:281-288. [PMID: 33438819 DOI: 10.1002/bab.2107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress is to upregulate the pentose phosphate pathway (PPP). The PPP consists of two functional branches, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconaste dehydrogenase (6PGD). Glutathione reductase (GR) has a significant role in catalyzing an oxidized glutathione form into a reduced form. The purpose of this study is to investigate the effects of brimonidine and proparacaine on the activity of 6PGD, G6PD, and GR enzymes purified from human erythrocytes. Brimonidine displayed considerable inhibition profile against G6PD with IC50 value and KI constant of 29.93 ± 3.56 and 48.46 ± 0.66 μM, respectively. On the other hand, proparacaine had no inhibitory effect against G6PD. KI values were found to be 66.06 ± 0.78 and 811.50 ± 11.13 μM for brimonidine and proparacaine, respectively, for 6PGD. KI values were found to be 144.10 ± 2.01 and 1,654.00 ± 26.29 μM for brimonidine and proparacaine, respectively, for GR. Herein, also in silico molecular docking studies were performed between drugs and enzymes.
Collapse
Affiliation(s)
- Büşra Çalışkan
- Department of Ophthalmology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Arzu Öztürk Kesebir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - İlknur Akyol Salman
- Department of Ophthalmology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
36
|
Sever B, Altıntop MD, Demir Y, Pekdoğan M, Akalın Çiftçi G, Beydemir Ş, Özdemir A. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Taler-Verčič A, Goličnik M, Bavec A. The Structure and Function of Paraoxonase-1 and Its Comparison to Paraoxonase-2 and -3. Molecules 2020; 25:molecules25245980. [PMID: 33348669 PMCID: PMC7766523 DOI: 10.3390/molecules25245980] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Serum paraoxonase-1 (PON1) is the most studied member of the group of paraoxonases (PONs). This enzyme possesses three enzymatic activities: lactonase, arylesterase, and paraoxonase activity. PON1 and its isoforms play an important role in drug metabolism as well as in the prevention of cardiovascular and neurodegenerative diseases. Although all three members of the PON family have the same origin and very similar amino acid sequences, they have different functions and are found in different locations. PONs exhibit substrate promiscuity, and their true physiological substrates are still not known. However, possible substrates include homocysteine thiolactone, an analogue of natural quorum-sensing molecules, and the recently discovered derivatives of arachidonic acid—bioactive δ-lactones. Directed evolution, site-directed mutagenesis, and kinetic studies provide comprehensive insights into the active site and catalytic mechanism of PON1. However, there is still a whole world of mystery waiting to be discovered, which would elucidate the substrate promiscuity of a group of enzymes that are so similar in their evolution and sequence yet so distinct in their function.
Collapse
|
38
|
Boy S, Türkan F, Beytur M, Aras A, Akyıldırım O, Karaman HS, Yüksek H. Synthesis, design, and assessment of novel morpholine-derived Mannich bases as multifunctional agents for the potential enzyme inhibitory properties including docking study. Bioorg Chem 2020; 107:104524. [PMID: 33317836 DOI: 10.1016/j.bioorg.2020.104524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
The synthesized Schiff Bases were reacted with formaldehyde and secondary amine such as 2,6-dimethylmorpholine to afford N-Mannich bases through the Mannich reaction. 3-Substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (4) were treated with 2,6-dimethylmorpholine in the presence of formaldehyde to synthesize eight new 1-(2,6-dimethylmorpholino-4-yl-methyl)-3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (4a-h). The structures of the synthesized eight new compounds were characterized using IR, 1H NMR, 13C NMR, and HR-MS spectroscopic methods. Synthesized compounds inhibitory activity determined against the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and glutathione S-transferase (GST) enzymes with Ki values in the range 25.23-42.19 µM for AChE, 19.37-34.22 µM for BChE, and 21.84-41.14 µM for GST, respectively. Binding scores of most active inhibitors against AChE, BChE, and GST enzymes were detected as -10.294 kcal/mol, -9.562 kcal/mol, and -7.112 kcal/mol, respectively. The hydroxybenzylidene moiety of the most active inhibitors caused to inhibition of the enzymes through hydrophobic interaction and hydrogen bond.
Collapse
Affiliation(s)
- Songül Boy
- Atatürk Vocational College of Health Service, Kafkas University, Kars 36100, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Iğdır University, Iğdır 76000, Turkey
| | - Murat Beytur
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars 36100, Turkey
| | - Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır 76100, Turkey.
| | - Onur Akyıldırım
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars 36000, Turkey
| | - Halide Sedef Karaman
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Haydar Yüksek
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars 36100, Turkey
| |
Collapse
|
39
|
Durgun M, Türkeş C, Işık M, Demir Y, Saklı A, Kuru A, Güzel A, Beydemir Ş, Akocak S, Osman SM, AlOthman Z, Supuran CT. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. J Enzyme Inhib Med Chem 2020; 35:950-962. [PMID: 32249705 PMCID: PMC7170330 DOI: 10.1080/14756366.2020.1746784] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Sulphonamides are biologically important compounds with low toxicity, many bioactivities and cost-effectiveness. Eight sulphonamide derivatives were synthesised and characterised by FT-IR, 13C NMR, 1H NMR, LC-MS and elemental analysis. Their inhibitory effect on AChE, and carbonic anhydrase I and II enzyme activities was investigated. Their antioxidant activity was determined using different bioanalytical assays such as radical scavenging tests with ABTS•+, and DPPH•+ as well as metal-reducing abilities with CUPRAC, and FRAP assays. All compounds showed satisfactory enzyme inhibitory potency in nanomolar concentrations against AChE and CA isoforms with KI values ranging from 10.14 ± 0.03 to 100.58 ± 1.90 nM. Amine group containing derivatives showed high metal reduction activity and about 70% ABTS radical scavenging activity. Due to their antioxidant activity and AChE inhibition, these novel compounds may be considered as leads for investigations in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Ali Saklı
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - Ali Kuru
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Abdussamat Güzel
- Department of Pharmacy Services, Vocational School of Health Services, İnönü University, Malatya, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Sameh M. Osman
- Department of Chemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
40
|
Kalaycı M, Türkeş C, Arslan M, Demir Y, Beydemir Ş. Novel benzoic acid derivatives: Synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2020; 354:e2000282. [PMID: 33155700 DOI: 10.1002/ardp.202000282] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia, memory impairment, cognitive dysfunction, and speech impairment. The utility of cholinergic replacement by acetylcholinesterase (AChE) inhibitors in AD treatment has been well documented so far. Recently, studies have also evidenced that human carbonic anhydrases (hCAs) serve as an important target for AD treatment. In this direction, the improvement of new multitarget drugs, which can simultaneously modulate several mechanisms or targets included in the AD pathway, may be a potent strategy to treat AD. In light of these data for understanding and developing AD-related multitarget AChE and hCAs inhibitors, in this study, novel methylene-aminobenzoic acid and tetrahydroisoquinolynyl-benzoic acid derivatives (4a-g and 6a-g) were designed. The synthesized analogs were experimentally validated for their effects by in vitro and direct enzymatic tests. Also, the compounds were subjected to in silico monitoring with Schrödinger Suite software to assign binding affinities of potential derivatives based on Glide XP scoring, molecular mechanics-generalized Born surface area computing, and validation by molecular docking. The results revealed that 6c (1,3-dimethyldihydropyrimidine-2,4-(1H,3H)-dione-substituted, KI value of 33.00 ± 0.29 nM), 6e (cyclohexanone-substituted, KI value of 18.78 ± 0.09 nM), and 6f (2,2-dimethyl-1,3-dioxan-4-one-substituted, KI value of 13.62 ± 0.21 nM) from the benzoic acid derivatives in this series were the most promising derivatives, as they exhibited a good multifunctional inhibition at all experimental levels and in the in silico validation against hCA I, hCA II, and AChE, respectively, for the treatment of AD.
Collapse
Affiliation(s)
- Muharrem Kalaycı
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
41
|
Kilic A, Beyazsakal L, Işık M, Türkeş C, Necip A, Takım K, Beydemir Ş. Mannich reaction derived novel boron complexes with amine-bis(phenolate) ligands: Synthesis, spectroscopy and in vitro/in silico biological studies. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. Int J Biol Macromol 2020; 163:1970-1988. [DOI: 10.1016/j.ijbiomac.2020.09.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
|
43
|
Siddique YH, Rahul, Idrisi M, Shahid M. Effect of Cabergoline on Cognitive Impairments in Transgenic Drosophila Model of Parkinson’s Disease. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200514100917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Parkinson’s disease is a common neurodegenerative disorder characterized
by selective loss of dopaminergic neurons in the substantia nigra pars compacta.
Introduction:
The effects of alpha synuclein, parkin mutation and pharmacological agents have
been studied in the Drosophila model.
Methods:
The effect of cabergoline was studied on the cognitive impairments exhibited by the
transgenic Drosophila expressing human alpha-synuclein in the neurons. The PD flies were allowed
to feed on the diet having 0.5, 1 and 1.5 μM of cabergoline.
Results and Discussion:
The exposure of cabergoline not only showed a dose-dependent significant
delay in the cognitive impairments but also prevented the loss of dopaminergic neurons. Molecular
docking studies showed the positive interaction between cabergoline and alpha-synuclein.
Conclusion:
The results suggest a protective effect of cabergoline against the cognitive impairments.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mantasha Idrisi
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd. Shahid
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
44
|
Karagöz FP, Demir Y, Kotan MŞ, Dursun A, Beydemir Ş, Dikbaş N. Purification of the phytase enzyme from Lactobacillus plantarum: The effect on pansy growth and macro-micro element content. Biotechnol Appl Biochem 2020; 68:1067-1075. [PMID: 32919432 DOI: 10.1002/bab.2026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, the phytase enzyme was purified from Lactobacillus plantarum with a 3.08% recovery, 9.57-purification fold, and with a specific activity of 278.82 EU/mg protein. Then, the effects of the 5 EU and 10 EU purified phytase was determined on the plant growth, quality, the macro-micro nutrient content of pansy (Viola × wittrockiana), which is of great importance in ornamental plants industry. The research was established under greenhouse conditions with natural light in 2017. The pansy seeds were coated with phytase enzyme solution, sown in a peat environment, and transferred to pots at the seedling period. In general, the 5 EU and 10 EU applications increase plant height, the number of leaves per plant, the number of side branches per plant, and flower height parameters compared to control. Also, micro- and macronutrient values in soil and plant samples were examined. According to the results, the phytase application on pansy cultivation positively affected the properties and yielded high quality of plants.
Collapse
Affiliation(s)
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Merve Şenol Kotan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Atilla Dursun
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department Biochemistry, Faculty Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Neslihan Dikbaş
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| |
Collapse
|
45
|
Sakthivel A, Thangagiri B, Raman N, Joseph J, Guda R, Kasula M, Mitu L. Spectroscopic, SOD, anticancer, antimicrobial, molecular docking and DNA binding properties of bioactive VO(IV), Cu(II), Zn(II), Co(II), Mn(II) and Ni(II) complexes obtained from 3-(2-hydroxy-3-methoxybenzylidene)pentane-2,4-dione. J Biomol Struct Dyn 2020; 39:6500-6514. [PMID: 32794423 DOI: 10.1080/07391102.2020.1801508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Novel macrocyclic Schiff base complexes [[ML]X; where M = Cu(II), Co(II), Ni(II), Zn(II), Mn(II) and VO(IV); L = macrocyclic ligand; X = Cl2 and SO42-] have been synthesized and characterized by microanalytical, 1H, 13C NMR, IR, Mass, UV-Vis, EPR spectral studies, as well as conductivity data. All the complexes exhibit square-planar geometry except vanadium complex. Magnetic susceptibility measurements and high conductance data reveal the monomeric and electrolytic nature of the complexes. Electronic absorption, cyclic voltammetry, viscosity measurements have been carried out on the interaction of the complexes with DNA. The results suggest that the complexes bind to DNA by intercalation via the aromatic ring of the macrocycle into the base pairs of DNA. Using gel electrophoresis experiment in the presence and absence of oxidant (H2O2) the nuclease cleavage activity of the complexes has been performed on plasmid DNA. The results demonstrate that most of the complexes have promising superoxide dismutase (SOD)-mimetic activity. The in vitro cytotoxicity of ligand and its complexes has also been evaluated against human breast and colon carcinoma cells. Binding interactions and energies of ligand and its metal complexes [ML]2+ (M = VO(IV), Mn(II), Co(II), Ni(II), Cu(II), Zn(II)) against the receptors EGFR and HER2 are performed using the Auto dock module. Consequently, it is found that the ligand is strong inhibitor for EGFR and HER2 while [VOL]SO4 is good inhibitor for EGFR and [ZnL]Cl2 is moderate inhibitor for HER2. The antimicrobial activity of the ligand and its complexes against bacteria Salmonella typhi, Staphylococcus aureus, Escherichia coli and Bacillus subtilis and fungi Aspergillus niger, Aspergillus flavus, Candida Albicans and Rhizoctonia bataicola. The complexes have higher activities than the macrocyclic free Schiff base. Interaction of [VOL]SO4 to the binding sites of target protein EGFR (PDB ID: 4HJ0). Research HighlightsMacrocyclic Schiff base and its metal complexes were synthesized.Complexes bind to DNA by intercalation via the aromatic ring of the macrocycle into the base pairs of DNA.Vanadyl complex is a good inhibitor for EGFR.The complexes of copper, zinc and vanadium show efficient antitumor activity.Copper and vanadium complexes have superior antimicrobial activity than the standards.
Collapse
Affiliation(s)
- A Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, India
| | - B Thangagiri
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, India
| | - N Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar, India
| | - J Joseph
- Department of Chemistry, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India
| | - Ramu Guda
- Department of Chemistry, Kakatiya University, Warangal, India
| | - Mamatha Kasula
- Department of Chemistry, Kakatiya University, Warangal, India
| | - L Mitu
- Department of Nature Sciences, University of Pitesti, Pitesti, Romania
| |
Collapse
|
46
|
Türkeş C, Demir Y, Beydemir Ş. Some calcium-channel blockers: kinetic and in silico studies on paraoxonase-I. J Biomol Struct Dyn 2020; 40:77-85. [DOI: 10.1080/07391102.2020.1806927] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cüneyt Türkeş
- Faculty of Pharmacy, Department of Biochemistry, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Şükrü Beydemir
- Faculty of Pharmacy, Department of Biochemistry, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
47
|
Işık M, Beydemir Ş. The impact of some phenolic compounds on serum acetylcholinesterase: kinetic analysis of an enzyme/inhibitor interaction and molecular docking study. J Biomol Struct Dyn 2020; 39:6515-6523. [DOI: 10.1080/07391102.2020.1801509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
48
|
Demir Y, Türkeş C, Beydemir Ş. Molecular Docking Studies and Inhibition Properties of Some Antineoplastic Agents against Paraoxonase-I. Anticancer Agents Med Chem 2020; 20:887-896. [DOI: 10.2174/1871520620666200218110645] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/15/2019] [Accepted: 01/27/2020] [Indexed: 01/28/2023]
Abstract
Background:
Currently, most of the drugs used in clinical applications show their pharmacological
influences by inhibiting or activating enzymes. Therefore, enzyme inhibitors have an essential place in the drug
design for many diseases.
Objective:
The current study aimed to contribute to this growing drug design field (i.e., medicine discovery and
development) by analyzing enzyme-drug interactions.
Methods:
For this reason, Paraoxonase-I (PON1) enzyme was purified from fresh human serum by using rapid
chromatographic techniques. Additionally, the inhibition effects of some antineoplastic agents were researched
on the PON1.
Results:
The enzyme was obtained with a specific activity of 2603.57 EU/mg protein. IC50 values for pemetrexed
disodium, irinotecan hydrochloride, dacarbazine, and azacitidine were determined to be 9.63μM,
30.13μM, 53.31μM, and 21.00mM, respectively. These agents found to strongly inhibit PON1, with Ki constants
ranging from 8.29±1.47μM to 23.34±2.71mM. Dacarbazine and azacitidine showed non-competitive inhibition,
while other drugs showed competitive inhibition. Furthermore, molecular docking was performed using maestro
for these agents. Among these, irinotecan hydrochloride and pemetrexed disodium possess the binding energy of
-5.46 and -8.43 kcal/mol, respectively.
Conclusion:
The interaction studies indicated that these agents with the PON1 possess binding affinity.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| |
Collapse
|
49
|
Lolak N, Akocak S, Türkeş C, Taslimi P, Işık M, Beydemir Ş, Gülçin İ, Durgun M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg Chem 2020; 100:103897. [PMID: 32413628 DOI: 10.1016/j.bioorg.2020.103897] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Some metabolic enzyme inhibitors can be used in the treatment of many diseases. Therefore, synthesis and determination of alternative inhibitors are essential. In this study, the inhibition effect of newly synthesized compounds on carbonic anhydrase (cytosolic isoforms, hCA I and hCA II), α-glycosidase (α-GLY), and acetylcholinesterase (AChE) were investigated. The possible binding mechanism of the compounds with a high inhibitory effect on the active site of the enzyme was demonstrated by molecular docking method. We investigated the inhibition effects of novel synthesized compounds (MZ1-MZ11) on metabolic enzymes such as α-GLY, AChE, and hCA I and II. The compound MZ6 for AChE, MZ8 for CA I and CA II and MZ7 for α-GLY showed a very active inhibition profile (KIs 51.67 ± 4.76 for hCA I, 40.35 ± 5.74 nM for hCA II, 41.74 ± 8.08 nM for α-GLY and 335.76 ± 46.91 nM for AChE). The novel synthesized compounds (MZ1-MZ11) have a higher enzyme (α-GLY, AChE, hCA I, and II) inhibitory potential than ACR, TAC, and AZA, respectively. The compounds may have the potential to be used as alternative medicines after further research in the treatment of many diseases such as diabetes, Alzheimer's disease, heart failure, ulcer, and epilepsy.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın 74100, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa 63300, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa 63290, Turkey
| |
Collapse
|
50
|
Işık M, Akocak S, Lolak N, Taslimi P, Türkeş C, Gülçin İ, Durgun M, Beydemir Ş. Synthesis, characterization, biological evaluation, and in silico studies of novel 1,3‐diaryltriazene‐substituted sulfathiazole derivatives. Arch Pharm (Weinheim) 2020; 353:e2000102. [DOI: 10.1002/ardp.202000102] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Vocational School of Health ServicesHarran UniversityŞanlıurfa Turkey
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAdıyaman UniversityAdıyaman Turkey
| | - Nabih Lolak
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAdıyaman UniversityAdıyaman Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of ScienceBartın UniversityBartın Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of PharmacyErzincan Binali Yıldırım UniversityErzincan Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of SciencesAtatürk UniversityErzurum Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and SciencesHarran UniversityŞanlıurfa Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of PharmacyAnadolu UniversityEskişehir Turkey
- The Rectorate of Bilecik Şeyh Edebali UniversityBilecik Turkey
| |
Collapse
|