1
|
Rahmatabadi SS, Bashiri H, Soleymani B. A comprehensive review on fructosyl peptide oxidase as an important enzyme for present hemoglobin A1c assays. Biotechnol Appl Biochem 2024. [PMID: 39099239 DOI: 10.1002/bab.2647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Glycated proteins are generated by binding of glucose to the proteins in blood stream through a nonenzymatic reaction. Hemoglobin A1c (HbA1c) is a glycated protein with glucose at the N-terminal of β-chain. HbA1c is extensively used as an indicator for assessing the blood glucose concentration in diabetes patients. There are different conventional clinical methods for the detection of HbA1c. However, enzymatic detection method has newly obtained great attention for its high precision and cost-effectiveness. Today, fructosyl peptide oxidase (FPOX) plays a key role in the enzymatic measurement of HbA1c, and different companies have marketed HbA1c assay systems based on FPOX. Recent investigations show that FPOX could be used in assaying HbA1 without requiring HbA1c primary digestion. It could also be applied as a biosensor for HbA1c detection. In this review, we have discussed the recent improvements of FPOX properties, different methods of FPOX purification, solubility, and immobilization, and also the use of FPOX in HbA1c biosensors.
Collapse
Affiliation(s)
- Seyyed Soheil Rahmatabadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hoda Bashiri
- Department of Plant Production Engineering and Genetics, Razi University, Kermanshah, Iran
| | - Bijan Soleymani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Salomón-Flores MK, Valdes-García J, Viviano-Posadas AO, Martínez-Otero D, Barroso-Flores J, Bazany-Rodríguez IJ, Dorazco-González A. Molecular two-point recognition of fructosyl valine and fructosyl glycyl histidine in water by fluorescent Zn(II)-terpyridine complexes bearing boronic acids. Dalton Trans 2024; 53:8692-8708. [PMID: 38700377 DOI: 10.1039/d4dt00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Selective recognition of fructosyl amino acids in water by arylboronic acid-based receptors is a central field of modern supramolecular chemistry that impacts biological and medicinal chemistry. Fructosyl valine (FV) and fructosyl glycyl histidine (FGH) occur as N-terminal moieties of human glycated hemoglobin; therefore, the molecular design of biomimetic receptors is an attractive, but very challenging goal. Herein, we report three novel cationic Zn-terpyridine complexes bearing a fluorescent N-quinolinium nucleus covalently linked to three different isomers of strongly acidified phenylboronic acids (ortho-, 2Zn; meta-, 3Zn and para-, 4Zn) for the optical recognition of FV, FGH and comparative analytes (D-fructose, Gly, Val and His) in pure water at physiological pH. The complexes were designed to act as fluorescent receptors using a cooperative action of boric acid and a metal chelate. Complex 3Zn was found to display the most acidic -B(OH)2 group (pKa = 6.98) and exceptionally tight affinity for FV (K = 1.43 × 105 M-1) with a strong quenching analytical response in the micromolar concentration range. The addition of fructose and the other amino acids only induced moderate optical changes. On the basis of several spectroscopic tools (1H, 11B NMR, UV-Vis, and fluorescence titrations), ESI mass spectrometry, X-ray crystal structure, and DFT calculations, the interaction mode between 3Zn and FV is proposed in a 1 : 1 model through a cooperative two-point recognition involving a sp3 boronate-diol esterification with simultaneous coordination bonding of the carboxylate group of Val to the Zn atom. Fluorescence quenching is attributed to a static complexation photoinduced electron transfer mechanism as evidenced by lifetime experiments. The addition of FGH to 3Zn notably enhanced its emission intensity with micromolar affinity, but with a lower apparent binding constant than that observed for FV. FGH interacts with 3Zn through boronate-diol complexation and coordination of the imidazole ring of His. DFT-optimized structures of complexes 3Zn-FV and 3Zn-FGH show a picture of binding which shows that the Zn-complex has a suitable (B⋯Zn) distance to the two-point recognition with these analytes. Molecular recognition of fructosyl amino acids by transition-metal-based receptors has not been explored until now.
Collapse
Affiliation(s)
- María K Salomón-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Josue Valdes-García
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Alejandro O Viviano-Posadas
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Diego Martínez-Otero
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Joaquín Barroso-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Iván J Bazany-Rodríguez
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Alejandro Dorazco-González
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| |
Collapse
|
3
|
Su Y, Xia C, Zhang H, Gan W, Zhang GQ, Yang Z, Li D. Emerging biosensor probes for glycated hemoglobin (HbA1c) detection. Mikrochim Acta 2024; 191:300. [PMID: 38709399 DOI: 10.1007/s00604-024-06380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of βVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengen Xia
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo-Qi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Zi Yang
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dapeng Li
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Zhou X, Lai W, Zhong J, Yang Y, Chen Z, Zhang C. Point-of-care detection of glycated hemoglobin using a novel dry chemistry-based electrochemiluminescence device. Anal Chim Acta 2023; 1279:341829. [PMID: 37827624 DOI: 10.1016/j.aca.2023.341829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
As a good biomarker to reflect the average level of blood glucose, glycated hemoglobin (HbA1c) is mainly used for long-term glycemic monitoring and risk assessment of complications in diabetic patients. Previous analysis methods for HbA1c usually require complex pretreatment processes and large-scale biochemical analyzers, which makes it difficult to realize the point-of-care testing (POCT) of HbA1c. In this work, we have proposed a three-electrode dry chemistry-based electrochemiluminescence (ECL) biosensor and its self-contained automatic ECL analyzer. In this enzymatic biosensor, fructosyl amino-caid oxidase (FAOD) reacts with the hydrolysis product of HbA1c, and the produced hydrogen peroxide further reacts with luminol under the appropriate driving voltage, generating photons to realize the quantitative detection of HbA1c. Under optimized conditions, the biosensors have a good linear response to different concentrations of fructosyl valine (FV) ranging from 0.05 to 2 mM, with a limit of detection of 2 μM. The within-batch variation is less than 15%, and the biosensors still have 78% of the initial response after the accelerated aging test of 36 h at 37 °C. Furthermore, the recoveries for different concentrations of samples in whole blood were within 92.3-99.7%. These results illustrate that the proposed method has the potential for use in POCT of HbA1c.
Collapse
Affiliation(s)
- Xinya Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wei Lai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jinbiao Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yang Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhenyu Chen
- Guangzhou First People's Hospital Nansha Hospital, Guangzhou, 511457, China.
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
5
|
Mandali PK, Prabakaran A, Annadurai K, Krishnan UM. Trends in Quantification of HbA1c Using Electrochemical and Point-of-Care Analyzers. SENSORS (BASEL, SWITZERLAND) 2023; 23:1901. [PMID: 36850502 PMCID: PMC9965793 DOI: 10.3390/s23041901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Glycated hemoglobin (HbA1c), one of the many variants of hemoglobin (Hb), serves as a standard biomarker of diabetes, as it assesses the long-term glycemic status of the individual for the previous 90-120 days. HbA1c levels in blood are stable and do not fluctuate when compared to the random blood glucose levels. The normal level of HbA1c is 4-6.0%, while concentrations > 6.5% denote diabetes. Conventionally, HbA1c is measured using techniques such as chromatography, spectroscopy, immunoassays, capillary electrophoresis, fluorometry, etc., that are time-consuming, expensive, and involve complex procedures and skilled personnel. These limitations have spurred development of sensors incorporating nanostructured materials that can aid in specific and accurate quantification of HbA1c. Various chemical and biological sensing elements with and without nanoparticle interfaces have been explored for HbA1c detection. Attempts are underway to improve the detection speed, increase accuracy, and reduce sample volumes and detection costs through different combinations of nanomaterials, interfaces, capture elements, and measurement techniques. This review elaborates on the recent advances in the realm of electrochemical detection for HbA1c detection. It also discusses the emerging trends and challenges in the fabrication of effective, accurate, and cost-effective point-of-care (PoC) devices for HbA1c and the potential way forward.
Collapse
Affiliation(s)
- Pavan Kumar Mandali
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Amrish Prabakaran
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Kasthuri Annadurai
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
- School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur 613 401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
- School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
6
|
Mahobiya S, Balayan S, Chauhan N, Khanuja M, Kuchhal NK, Islam SS, Jain U. Tungsten Disulfide Decorated Screen-Printed Electrodes for Sensing of Glycated Hemoglobin. ACS OMEGA 2022; 7:34676-34684. [PMID: 36188317 PMCID: PMC9520739 DOI: 10.1021/acsomega.2c04926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a global menace, and its severity results in various disorders including cardiovascular, retinopathy, neuropathy, and nephropathy. Recently, diabetic conditions are diagnosed through the level of glycated hemoglobin. The level of glycated hemoglobin is determined with enzymatic methodology. Although the system is sensitive, it has various restrictions such as long processing times, expensive equipment required for testing, and complex steps involved in sample preparation. These limitations are a hindrance to faster results. The limitations of the developed methods can be eliminated through biosensors. In this work, an electrochemical platform was fabricated that facilitates the identification of glycated hemoglobin protein in diabetic patients. The working electrode on the integrated circuit was modified with molecularly imprinted polymer decorated with tungsten disulfide nanoparticles to enhance its analytical properties. The analytical properties of the biosensor were studied using electrochemical techniques. The obtained detection limit of the nanoelectronic sensor was 0.01 pM. The calculated sensitivity of the biosensor was observed to be 0.27 μA/pM. Also, the sensor promises to operate in a dynamic working concentration range and provide instant results.
Collapse
Affiliation(s)
- Sunil
Kumar Mahobiya
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| | - Sapna Balayan
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| | - Nidhi Chauhan
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| | - Manika Khanuja
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | | | - S. S. Islam
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | - Utkarsh Jain
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Sector 125, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
7
|
Zhan Z, Li Y, Zhao Y, Zhang H, Wang Z, Fu B, Li WJ. A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin. BIOSENSORS 2022; 12:bios12040221. [PMID: 35448281 PMCID: PMC9024622 DOI: 10.3390/bios12040221] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 05/17/2023]
Abstract
Glycated hemoglobin (HbA1c) is the gold standard for measuring glucose levels in the diagnosis of diabetes due to the excellent stability and reliability of this biomarker. HbA1c is a stable glycated protein formed by the reaction of glucose with hemoglobin (Hb) in red blood cells, which reflects average glucose levels over a period of two to three months without suffering from the disturbance of the outside environment. A number of simple, high-efficiency, and sensitive electrochemical sensors have been developed for the detection of HbA1c. This review aims to highlight current methods and trends in electrochemistry for HbA1c monitoring. The target analytes of electrochemical HbA1c sensors are usually HbA1c or fructosyl valine/fructosyl valine histidine (FV/FVH, the hydrolyzed product of HbA1c). When HbA1c is the target analyte, a sensor works to selectively bind to specific HbA1c regions and then determines the concentration of HbA1c through the quantitative transformation of weak electrical signals such as current, potential, and impedance. When FV/FVH is the target analyte, a sensor is used to indirectly determine HbA1c by detecting FV/FVH when it is hydrolyzed by fructosyl amino acid oxidase (FAO), fructosyl peptide oxidase (FPOX), or a molecularly imprinted catalyst (MIC). Then, a current proportional to the concentration of HbA1c can be produced. In this paper, we review a variety of representative electrochemical HbA1c sensors developed in recent years and elaborate on their operational principles, performance, and promising future clinical applications.
Collapse
Affiliation(s)
- Zhikun Zhan
- School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yang Li
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
- Correspondence: (Y.Z.); (W.J.L.)
| | - Hongyu Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
| | - Zhen Wang
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Boya Fu
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
- Correspondence: (Y.Z.); (W.J.L.)
| |
Collapse
|
8
|
Abstract
Chitosan (CS) and graphene oxide (GO) nanocomposites have received wide attention in biomedical fields due to the synergistic effect between CS which has excellent biological characteristics and GO which owns great physicochemical, mechanical, and optical properties. Nanocomposites based on CS and GO can be fabricated into a variety of forms, such as nanoparticles, hydrogels, scaffolds, films, and nanofibers. Thanks to the ease of functionalization, the performance of these nanocomposites in different forms can be further improved by introducing other functional polymers, nanoparticles, or growth factors. With this background, the current review summarizes the latest developments of CS-GO nanocomposites in different forms and compositions in biomedical applications including drug and biomacromolecules delivery, wound healing, bone tissue engineering, and biosensors. Future improving directions and challenges for clinical practice are proposed as well.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Noviana E, Siswanto S, Budi Hastuti AAM. Advances in Nanomaterial-based Biosensors for Determination of Glycated Hemoglobin. Curr Top Med Chem 2022; 22:2261-2281. [PMID: 36111762 DOI: 10.2174/1568026622666220915114646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
Diabetes is a major public health burden whose prevalence has been steadily increasing over the past decades. Glycated hemoglobin (HbA1c) is currently the gold standard for diagnostics and monitoring of glycemic control in diabetes patients. HbA1c biosensors are often considered to be cost-effective alternatives for smaller testing laboratories or clinics unable to access other reference methods. Many of these sensors deploy nanomaterials as recognition elements, detection labels, and/or transducers for achieving sensitive and selective detection of HbA1c. Nanomaterials have emerged as important sensor components due to their excellent optical and electrical properties, tunable morphologies, and easy integration into multiple sensing platforms. In this review, we discuss the advantages of using nanomaterials to construct HbA1c sensors and various sensing strategies for HbA1c measurements. Key gaps between the current technologies with what is needed moving forward are also summarized.
Collapse
Affiliation(s)
- Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Drug Targeting and Personalized Medicine, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Soni Siswanto
- Research Center for Drug Targeting and Personalized Medicine, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Agustina Ari Murti Budi Hastuti
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center of Excellence Institute for Halal Industry and Systems (PUI-PT IHIS), Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
10
|
Qian Y, Di S, Wang L, Li Z. Recent advances in the synthesis and applications of graphene-polypeptide nanocomposites. J Mater Chem B 2021; 9:6521-6535. [PMID: 34318859 DOI: 10.1039/d1tb00779c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of peptides and graphene-derived materials provides a new way to prepare graphene-based nanocomposites with unique structures, properties, and functions. The modification of graphene with different polypeptides not only improves the biocompatibility and biological recognition ability of graphene-based materials, but also greatly expands their application fields. In this work, we summarize different interactions between graphene and polypeptides, and the synthesis methods of novel functional graphene-polypeptide nanocomposites based on the interactions in recent years (from 2016 to present). In addition, the potential applications of graphene-peptide hybrid nanocomposites in biomedicine, tissue engineering, biosensors, environmental science engineering, optoelectronic materials, and energy storage are introduced. We hope that this review will help readers to understand the methods and mechanisms of the modification of graphene surfaces with biomolecules, and promote readers to understand the synthesis and applications of graphene-based nanocomposites. This work may provide hints and references for the development of peptide sequence design, and biomedical and functional materials, and will help in designing and synthesizing novel graphene-based nanomaterials with unique properties and suitable for various applications in the future.
Collapse
Affiliation(s)
- Yuhong Qian
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China.
| | | | | | | |
Collapse
|
11
|
Development of glycated peptide enzyme sensor based flow injection analysis system for haemoglobin A1c monitoring using quasi-direct electron transfer type engineered fructosyl peptide oxidase. Biosens Bioelectron 2021; 177:112984. [PMID: 33477030 DOI: 10.1016/j.bios.2021.112984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022]
Abstract
Haemoglobin A1c (hemoglobin A1c, HbA1c) is an important long-term glycemic control marker for diabetes. The aim of this study was to develop an enzyme flow injection analysis (FIA) system using engineered fructosyl peptide oxidase (FPOx) based on 2.5th generation principle for an HbA1c automated analytical system. FPOx from Phaeosphaeria nodorum (PnFPOx) was engineered by introducing a Lys residue at the R414 position, to be modified with amine reactive phenazine ethosulfate (arPES) in proximity of FAD. The engineered PnFPOx mutant with minimized oxidase activity, N56A/R414K, showed quasi-direct electron transfer (quasi-DET) ability after PES-modification. The FIA system was constructed by employing a PES-modified PnFPOx N56A/R414K and operated at 0 V against Ag/AgCl. The system showed reproducible responses with a linear range of 20-500 μM for both fructosyl valine (FV) and fructosyl valylhistidine (FVH), with sensitivities of 0.49 nA μM-1 and 0.13 nA μM-1, and the detection limits of 1.3 μM and 2.0 μM for FV and FVH, respectively. These results indicate that the enzyme electrochemical FIA system covers the clinical range of HbA1c detection for more 200 consecutive measurements. Protease digested three different levels of HbA1c samples including healthy and diabetic range subjects were also measured with the FIA system. Thus, it will be possible to develop an integrated system consisting of sample pretreatment and sample electrochemical measurement based on an FIA system possessing quasi-DET type PnFPOx.
Collapse
|
12
|
Pohanka M. Glycated Hemoglobin and Methods for Its Point of Care Testing. BIOSENSORS 2021; 11:70. [PMID: 33806493 PMCID: PMC8000313 DOI: 10.3390/bios11030070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
Glycated hemoglobin (HbA1c) is a product of the spontaneous reaction between hemoglobin and elevated glucose levels in the blood. It is included among the so-called advanced glycation end products, of which is the most important for the clinical diagnosis of diabetes mellitus, and it can serve as an alternative to glycemia measurement. Compared to the diagnosis of diabetes mellitus by glycemia, the HbA1c level is less influenced by a short-term problem with diabetes compensation. Mass spectroscopy and chromatographic techniques are among the standard methods of HbA1c level measurement. Compared to glycemia measurement, there is lack of simple methods for diabetes mellitus diagnosis by means of the HbA1c assay using a point-of-care test. This review article is focused on the surveying of facts about HbA1c and its importance in diabetes mellitus diagnosis, and surveying standard methods and new methods suitable for the HbA1c assay under point-of-care conditions. Various bioassays and biosensors are mentioned and their specifications are discussed.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|