1
|
Majumdar S, Kar AP, Basu J, Chowdhury PK. Capturing ultrafast energy flow of a heme protein in crowded milieu. Phys Chem Chem Phys 2024; 26:29095-29109. [PMID: 39555941 DOI: 10.1039/d4cp03319a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Energy flow in biomolecules is a dynamic process vital for understanding health, disease, and applications in biotechnology and medicine. In crowded environments, where biomolecular functions are modulated, comprehending energy flow becomes crucial for accurately understanding cellular processes like signaling and subsequent functions. This study employs ultrafast transient absorption spectroscopy to demonstrate energy funneling from the photoexcited heme of bovine heart cytochrome c to the protein exterior, in the presence of common synthetic (Dextran 40, Ficoll 70, PEG 8 and Dextran 70) and protein-based (BSA and β-LG) crowders. The through-space energy transfer mode for ferric and the methionine rebinding mode for ferrous cytochrome c show the strongest solvent coupling. The heterogeneous behaviour of crowders, influenced by crowder-protein interactions and caging effects at certain higher concentrations, reveal diverse trends. Notably, protein crowders perturb all transport routes of vibrational energy transfer, causing delays in energy transfer processes. These findings provide significant insights into the basic tenets of energy flow, one of the most fundamental processes, in crowded cellular environments.
Collapse
Affiliation(s)
- Shubhangi Majumdar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Ambika Prasad Kar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Jaydeep Basu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Kowal-Chwast A, Gabor-Worwa E, Gaud N, Gogola D, Piątek A, Zarębski A, Littlewood P, Smoluch M, Brzózka K, Kuś K. Novel method of measurement of in vitro drug uptake in OATP1B3 overexpressing cells in the presence of dextran. Pharmacol Rep 2024; 76:400-415. [PMID: 38530582 DOI: 10.1007/s43440-024-00583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND In predictions about hepatic clearance (CLH), a number of studies explored the role of albumin and transporters in drug uptake by liver cells, challenging the traditional free-drug theory. It was proposed that liver uptake can occur for transporter substrate compounds not only from the drug's unbound form but also directly from the drug-albumin complex, a phenomenon known as uptake facilitated by albumin. In contrast to albumin, dextran does not exhibit binding properties for compounds. However, as a result of its inherent capacity for stabilization, it is widely used to mimic conditions within cells. METHODS The uptake of eight known substrates of the organic anion-transporting polypeptide 1B3 (OATP1B3) was assessed using a human embryonic kidney cell line (HEK293), which stably overexpresses this transporter. An inert polymer, dextran, was used to simulate cellular conditions, and the results were compared with experiments involving human plasma and human serum albumin (HSA). RESULTS This study is the first to demonstrate that dextran increases compound uptake in cells with overexpression of the OATP1B3 transporter. Contrary to the common theory that highly protein-bound ligands interact with hepatocytes to increase drug uptake, the results indicate that dextran's interaction with test compounds does not significantly increase concentrations near the cell membrane surface. CONCLUSIONS We evaluated the effect of dextran on the uptake of known substrates using OATP1B3 overexpressed in the HEK293 cell line, and we suggest that its impact on drug concentrations in liver cells may differ from the traditional role of plasma proteins and albumin.
Collapse
Affiliation(s)
- Anna Kowal-Chwast
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland.
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Ewelina Gabor-Worwa
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Nilesh Gaud
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Dawid Gogola
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Agnieszka Piątek
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Adrian Zarębski
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Peter Littlewood
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Marek Smoluch
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Krzysztof Brzózka
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Kamil Kuś
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| |
Collapse
|
3
|
Singh BP, Cheppali SK, Saha I, Swamy MJ. Contrasting effects of molecular crowding on the membrane-perturbing and chaperone-like activities of major bovine seminal plasma protein, PDC-109. Int J Biol Macromol 2024; 254:127573. [PMID: 37923045 DOI: 10.1016/j.ijbiomac.2023.127573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Crowded environments inside cells and biological fluids greatly affect protein stability and activity. PDC-109, a polydisperse oligomeric protein of the bovine seminal plasma selectively binds choline phospholipids on the sperm cell surface and causes membrane destabilization and lipid efflux, leading to acrosome reaction. PDC-109 also exhibits chaperone-like activity (CLA) and protects client proteins against various kinds of stress, such as high temperature and low pH. In the present work, we have investigated the effect of molecular crowding on these two different activities of PDC-109 employing Dextran 70 (D70) - a widely used polymeric dextran - as the crowding agent. The results obtained show that presence of D70 markedly increases membrane destabilization by PDC-109. Isothermal titration calorimetric studies revealed that under crowded condition the binding affinity of PDC-109 for choline phospholipids increases approximately 3-fold, which could in turn facilitate membrane destabilization. In contrast, under identical conditions, its CLA was reduced significantly. The decreased CLA could be correlated to reduced surface hydrophobicity, which was due to stabilization of the protein oligomers. These results establish that molecular crowding exhibits contrasting effects on two different functional activities of PDC-109 and highlight the importance of microenvironment of proteins in modulating their functional activities.
Collapse
Affiliation(s)
| | | | - Ishita Saha
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
4
|
Marfai J, McGorty RJ, Robertson-Anderson RM. Cooperative Rheological State-Switching of Enzymatically-Driven Composites of Circular DNA And Dextran. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305824. [PMID: 37500570 DOI: 10.1002/adma.202305824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Polymer topology, which plays a principal role in the rheology of polymeric fluids, and non-equilibrium materials, which exhibit time-varying rheological properties, are topics of intense investigation. Here, composites of circular DNA and dextran are pushed out-of-equilibrium via enzymatic digestion of DNA rings to linear fragments. These time-resolved rheology measurements reveal discrete state-switching, with composites undergoing abrupt transitions between dissipative and elastic-like states. The gating time and lifetime of the elastic-like states, and the magnitude and sharpness of the transitions, are surprisingly decorrelated from digestion rates and non-monotonically depend on the DNA fraction. These results are modeled using sigmoidal two-state functions to show that bulk state-switching can arise from continuous molecular-level activity due to the necessity for cooperative percolation of entanglements to support macroscopic stresses. This platform, coupling the tunability of topological composites with the power of enzymatic reactions, may be leveraged for diverse material applications from wound-healing to self-repairing infrastructure.
Collapse
Affiliation(s)
- Juexin Marfai
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Ryan J McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | | |
Collapse
|
5
|
Xu S, Wang J, Dong J. Nonspecific interaction and overlap concentration influence macromolecular crowding effect on glucose oxidase activity. Int J Biol Macromol 2023; 241:124525. [PMID: 37086776 DOI: 10.1016/j.ijbiomac.2023.124525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
Macromolecular crowding can change kinetics of enzyme catalysis. How interaction between enzymes and neighboring macromolecules contributes to the crowding effect on enzyme catalysis has not been quantitatively revealed. In this study, crowding effects of dextran and poly(ethylene glycol) (PEG) on glucose oxidase (GOx) are studied. Fluorescence resonance energy transfer experiments show the high transfer efficiency and stable interaction between the dextran and GOx. Further fluorescence quenching analysis also proves that the association of the dextran-GOx pair can become stronger than that of the PEG-GOx pair. Dextrans with concentrations above or below their chain overlap concentrations (c*) reduce Michaelis constants (Km) of GOx catalysis by 90 % or 45 %, respectively, through volume exclusion mechanism, and in the meantime elevate the enzymatic efficiency (kcat/Km) by 8-fold or by 3-fold, respectively, which is more dramatic than that found in other enzymes before. Strong association between the enzyme and the dextran results in slow turnover rates (kcat). Intermediate crowding with weak to moderate affinity to the enzyme below the c* can tune the kcat higher than in the free state. Catalysis under crowded conditions is a joint effect of the enzyme-crowder nonspecific interaction, volume exclusion and overlap condition of the crowders.
Collapse
Affiliation(s)
- Siyuan Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang Province 312000, China
| | - Jie Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang Province 312000, China
| | - Jian Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang Province 312000, China.
| |
Collapse
|
6
|
Irukuvajjula SS, Jithender Reddy G, Rao K, Vadrevu LR. Contrasting effect of ficoll on apo and holo forms of bacterial chemotaxis protein Y: Selective destabilization of the conformationally altered holo form. Int J Biol Macromol 2023; 232:123505. [PMID: 36736516 DOI: 10.1016/j.ijbiomac.2023.123505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Chemotaxis Y (CheY), upon metal binding, displays a drastic alteration in its structure and stability. This premise prompted us to study the effect of crowding on the two conformationally distinct states of the same test protein. A comparative analysis on the structure and thermal stability in the presence and absence of the macromolecular crowder, ficoll, and its monomeric unit, sucrose, revealed a contrasting effect of ficoll on the apo and holo forms. In the presence of ficoll while the thermal stability (Tm) of the apo form is enhanced, the thermal stability of the holo form is reduced. The selective lowering of Tm for the holo form in the combined presence of ficoll and sucrose and not in sucrose alone suggests that the contrasting effect is due to the macromolecular nature of ficoll. Since metal-protein interaction remains unperturbed in the presence of ficoll and Mg2+ sequestration is ruled out in a systematic manner the alternative possibility for the exclusive reduction in the thermal stability of the holo form is the ficoll-induced modulation of the relative population of apo and holo forms of CheY.
Collapse
Affiliation(s)
- Shivkumar Sharma Irukuvajjula
- Department of Biological Sciences, Birla Institute of Science and Technology - Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India.
| | - G Jithender Reddy
- NMR Division, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Ministry of Science and Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Krishna Rao
- Tata Institute of Fundamental Research, 36/P, Gopanpally Mandal, Ranga Reddy District, Hyderabad, Telangana State 500107, India
| | - Late Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Science and Technology - Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
7
|
Pastore A, Temussi PA. Crowding revisited: Open questions and future perspectives. Trends Biochem Sci 2022; 47:1048-1058. [PMID: 35691783 DOI: 10.1016/j.tibs.2022.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
Although biophysical studies have traditionally been performed in diluted solutions, it was pointed out in the late 1990s that the cellular milieu contains several other macromolecules, creating a condition of molecular crowding. How crowding affects protein stability is an important question heatedly discussed over the past 20 years. Theoretical estimations have suggested a 5-20°C effect of fold stabilisation. This estimate, however, is at variance with what has been verified experimentally that proposes only a limited increase of stability, opening the question whether some of the assumptions taken for granted should be reconsidered. The present review critically analyses the causes of this discrepancy and discusses the limitations and implications of the current concept of crowding.
Collapse
Affiliation(s)
- Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, SE5 9RT, UK.
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London, SE5 9RT, UK.
| |
Collapse
|
8
|
Joshi A, Kishore N. Macromolecular crowding and preferential exclusion counteract the effect of protein denaturant: Biophysical aspects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Liu D, Qiu Y, Li Q, Zhang H. Atomistic Simulation of Lysozyme in Solutions Crowded by Tetraethylene Glycol: Force Field Dependence. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072110. [PMID: 35408509 PMCID: PMC9000840 DOI: 10.3390/molecules27072110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
The behavior of biomolecules in crowded environments remains largely unknown due to the accuracy of simulation models and the limited experimental data for comparison. Here we chose a small crowder of tetraethylene glycol (PEG-4) to investigate the self-crowding of PEG-4 solutions and molecular crowding effects on the structure and diffusion of lysozyme at varied concentrations from dilute water to pure PEG-4 liquid. Two Amber-like force fields of Amber14SB and a99SB-disp were examined with TIP3P (fast diffusivity and low viscosity) and a99SB-disp (slow diffusivity and high viscosity) water models, respectively. Compared to the Amber14SB protein simulations, the a99SB-disp model yields more coordinated water and less PEG-4 molecules, less intramolecular hydrogen bonds (HBs), more protein-water HBs, and less protein-PEG HBs as well as stronger interactions and more hydrophilic and less hydrophobic contacts with solvent molecules. The a99SB-disp model offers comparable protein-solvent interactions in concentrated PEG-4 solutions to that in pure water. The PEG-4 crowding leads to a slow-down in the diffusivity of water, PEG-4, and protein, and the decline in the diffusion from atomistic simulations is close to or faster than the hard sphere model that neglects attractive interactions. Despite these differences, the overall structure of lysozyme appears to be maintained well at different PEG-4 concentrations for both force fields, except a slightly large deviation at 370 K at low concentrations with the a99SB-disp model. This is mainly attributed to the strong intramolecular interactions of the protein in the Amber14SB force field and to the large viscosity of the a99SB-disp water model. The results indicate that the protein force fields and the viscosity of crowder solutions affect the simulation of biomolecules under crowding conditions.
Collapse
|
10
|
Ghassemi Z, Ruesing S, Leach JB, Zustiak SP. Stability of proteins encapsulated in Michael-type addition polyethylene glycol hydrogels. Biotechnol Bioeng 2021; 118:4840-4853. [PMID: 34606089 PMCID: PMC8585711 DOI: 10.1002/bit.27949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 11/12/2022]
Abstract
Degradable polyethylene glycol (PEG) hydrogels are excellent vehicles for sustained drug release due to their biocompatibility, tunable physical properties, and customizable degradation. However, protein therapeutics are unstable under physiological conditions and releasing degraded or inactive therapeutics can induce immunogenic effects. While controlling protein release from PEG hydrogels has been extensively investigated, few studies have detailed protein stability long-term or under stress conditions. Here, lysozyme and alcohol dehydrogenase (ADH) stability were explored upon encapsulation in PEG hydrogels formed through Michael-type addition. The stability and structure of the two model proteins were monitored by measuring the free energy of unfolding and fluoresce quenching when confined in a hydrogel and compared to PEG solution and buffer. Hydrogels destabilized lysozyme structure at low denaturant concentrations but prevented complete unfolding at high concentrations. ADH was stabilized as the confining mesh size approached the protein radius of gyration. Both proteins retained enzymatic activity within the hydrogels under stress conditions, including denaturant, high temperature, and agitation. Conjugation between lysozyme and PEG-acrylate was identified at long reaction times but no conjugation was observed in the time required for complete gelation. Studies of protein stability in PEG hydrogels, as the one detailed here, can lead to designer technologies for the improved formulation, storage, and delivery of protein therapeutics.
Collapse
Affiliation(s)
- Zahra Ghassemi
- Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Sam Ruesing
- Biomedical Engineering, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA
| | - Jennie B Leach
- Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Silviya P Zustiak
- Biomedical Engineering, Saint Louis University, 3507 Lindell Blvd, St. Louis, MO 63103, USA
| |
Collapse
|
11
|
Wang X, Bowman J, Tu S, Nykypanchuk D, Kuksenok O, Minko S. Polyethylene Glycol Crowder's Effect on Enzyme Aggregation, Thermal Stability, and Residual Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8474-8485. [PMID: 34236863 DOI: 10.1021/acs.langmuir.1c00872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein stability and performance in various natural and artificial systems incorporating many other macromolecules for therapeutic, diagnostic, sensor, and biotechnological applications attract increasing interest with the expansion of these technologies. Here we address the catalytic activity of lysozyme protein (LYZ) in the presence of a polyethylene glycol (PEG) crowder in a broad range of concentrations and temperatures in aqueous solutions of two different molecular mass PEG samples (Mw = 3350 and 10000 g/mol). The phase behavior of PEG-protein solutions is examined by using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), while the enzyme denaturing is monitored by using an activity assay (AS) and circular dichroism (CD) spectroscopy. Molecular dynamic (MD) simulations are used to illustrate the effect of PEG concentration on protein stability at high temperatures. The results demonstrate that LYZ residual activity after 1 h incubation at 80 °C is improved from 15% up to 55% with the addition of PEG. The improvement is attributed to two underlying mechanisms. (i) Primarily, the stabilizing effect is due to the suppression of the enzyme aggregation because of the stronger PEG-protein interactions caused by the increased hydrophobicity of PEG and lysozyme at elevated temperatures. (ii) The MD simulations showed that the addition of PEG to some degree stabilizes the secondary structures of the enzyme by delaying unfolding at elevated temperatures. The more pronounced effect is observed with an increase in PEG concentration. This trend is consistent with CD and AS experimental results, where the thermal stability is strengthened with increasing of PEG concentration and molecular mass. The results show that the highest stabilizing effect is approached at the critical overlap concentration of PEG.
Collapse
Affiliation(s)
- Xue Wang
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Jeremy Bowman
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Sidong Tu
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Abstract
Bioelectrocatalysis using redox enzymes appears as a sustainable way for biosensing, electricity production, or biosynthesis of fine products. Despite advances in the knowledge of parameters that drive the efficiency of enzymatic electrocatalysis, the weak stability of bioelectrodes prevents large scale development of bioelectrocatalysis. In this review, starting from the understanding of the parameters that drive protein instability, we will discuss the main strategies available to improve all enzyme stability, including use of chemicals, protein engineering and immobilization. Considering in a second step the additional requirements for use of redox enzymes, we will evaluate how far these general strategies can be applied to bioelectrocatalysis.
Collapse
|
13
|
Wilcox XE, Chung CB, Slade KM. Macromolecular crowding effects on the kinetics of opposing reactions catalyzed by alcohol dehydrogenase. Biochem Biophys Rep 2021; 26:100956. [PMID: 33665382 PMCID: PMC7905371 DOI: 10.1016/j.bbrep.2021.100956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/01/2022] Open
Abstract
In order to better understand how the complex, densely packed, heterogeneous milieu of a cell influences enzyme kinetics, we exposed opposing reactions catalyzed by yeast alcohol dehydrogenase (YADH) to both synthetic and protein crowders ranging from 10 to 550 kDa. The results reveal that the effects from macromolecular crowding depend on the direction of the reaction. The presence of the synthetic polymers, Ficoll and dextran, decrease Vmax and Km for ethanol oxidation. In contrast, these crowders have little effect or even increase these kinetic parameters for acetaldehyde reduction. This increase in Vmax is likely due to excluded volume effects, which are partially counteracted by viscosity hindering release of the NAD+ product. Macromolecular crowding is further complicated by the presence of a depletion layer in solutions of dextran larger than YADH, which diminishes the hindrance from viscosity. The disparate effects from 25 g/L dextran or glucose compared to 25 g/L Ficoll or sucrose reveals that soft interactions must also be considered. Data from binary mixtures of glucose, dextran, and Ficoll support this “tuning” of opposing factors. While macromolecular crowding was originally proposed to influence proteins mainly through excluded volume effects, this work compliments the growing body of evidence revealing that other factors, such as preferential hydration, chemical interactions, and the presence of a depletion layer also contribute to the overall effect of crowding. Yeast alcohol dehydrogenase reduction of acetaldehyde is enhanced by crowding. Crowding effects on YADH kinetics depend on the direction of the reaction. Crowders like dextran can be used as a tool to elucidate enzyme mechanism. Excluded volume optimizes YADH hydride transfer; viscosity hinders product release. The presence of a depletion layer with large crowders mitigates their effects.
Collapse
Affiliation(s)
- Xander E Wilcox
- Department of Chemistry, University of California at Davis, CA, 95616, USA
| | - Charmaine B Chung
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney St, Geneva, NY, 14456, USA
| | - Kristin M Slade
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney St, Geneva, NY, 14456, USA
| |
Collapse
|
14
|
VanDelinder V, Sickafoose I, Imam ZI, Ko R, Bachand GD. The effects of osmolytes on in vitro kinesin-microtubule motility assays. RSC Adv 2020; 10:42810-42815. [PMID: 35514903 PMCID: PMC9057942 DOI: 10.1039/d0ra08148e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
The gliding motility of microtubule filaments has been used to study the biophysical properties of kinesin motors, as well as being used in a variety of nanotechnological applications. While microtubules are generally stabilized in vitro with paclitaxel (Taxol®), osmolytes such as polyethylene glycol (PEG) and trimethylamine N-oxide (TMAO) are also able to inhibit depolymerization over extended periods of time. High concentrations of TMAO have also been reported to reversibly inhibit kinesin motility of paclitaxel-stabilized microtubules. Here, we examined the effects of the osmolytes PEG, TMAO, and glycerol on stabilizing microtubules during gliding motility on kinesin-coated substrates. As previously observed, microtubule depolymerization was inhibited in a concentration dependent manner by the addition of the different osmolytes. Kinesin-driven motility also exhibited concentration dependent effects with the addition of the osmolytes, specifically reducing the velocity, increasing rates of pinning, and altering trajectories of the microtubules. These data suggest that there is a delicate balance between the ability of osmolytes to stabilize microtubules without inhibiting motility. Overall, these findings provide a more comprehensive understanding of how osmolytes affect the dynamics of microtubules and kinesin motors, and their interactions in crowded environments.
Collapse
Affiliation(s)
- Virginia VanDelinder
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque NM USA
| | - Ian Sickafoose
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque NM USA
| | - Zachary I Imam
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque NM USA
| | - Randy Ko
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque NM USA
| | - George D Bachand
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque NM USA
| |
Collapse
|
15
|
Ross ML, Kunkel J, Long S, Asuri P. Combined Effects of Confinement and Macromolecular Crowding on Protein Stability. Int J Mol Sci 2020; 21:ijms21228516. [PMID: 33198190 PMCID: PMC7697604 DOI: 10.3390/ijms21228516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
Confinement and crowding have been shown to affect protein fates, including folding, functional stability, and their interactions with self and other proteins. Using both theoretical and experimental studies, researchers have established the independent effects of confinement or crowding, but only a few studies have explored their effects in combination; therefore, their combined impact on protein fates is still relatively unknown. Here, we investigated the combined effects of confinement and crowding on protein stability using the pores of agarose hydrogels as a confining agent and the biopolymer, dextran, as a crowding agent. The addition of dextran further stabilized the enzymes encapsulated in agarose; moreover, the observed increases in enhancements (due to the addition of dextran) exceeded the sum of the individual enhancements due to confinement and crowding. These results suggest that even though confinement and crowding may behave differently in how they influence protein fates, these conditions may be combined to provide synergistic benefits for protein stabilization. In summary, our study demonstrated the successful use of polymer-based platforms to advance our understanding of how in vivo like environments impact protein function and structure.
Collapse
|
16
|
Wilcox XE, Ariola A, Jackson JR, Slade KM. Overlap Concentration and the Effect of Macromolecular Crowding on Citrate Synthase Activity. Biochemistry 2020; 59:1737-1746. [DOI: 10.1021/acs.biochem.0c00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xander E. Wilcox
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | - Ashton Ariola
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, New York 14456, United States
| | - Jasmine R. Jackson
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, New York 14456, United States
| | - Kristin M. Slade
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, New York 14456, United States
| |
Collapse
|