1
|
Qu X, Ji Y, Long J, Zheng D, Qiao Z, Lin Y, Lu C, Zhou Y, Cheng H. Immuno- and gut microbiota-modulatory activities of β-1,6-glucans from Lentinus edodes. Food Chem 2025; 466:142209. [PMID: 39612846 DOI: 10.1016/j.foodchem.2024.142209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
The β-1,6-glucans from Lentinus edodes have a variety of biological activities. However, the research on extraction and separation of β-1,6-glucans from L. edodes is limited and the yield is low. In the present study, we obtained the high-yield and -purity β-1,6-glucans (ALEPA) from L. edodes by using a sequential extraction and separation process, which is simple and suitable for industrialization. ALEPA significantly promoted the proliferation of splenic T lymphocytes and enhanced the phagocytosis activity of peritoneal macrophages in vivo. 16S rRNA sequencing results showed that ALEPA significantly increased the α diversity of gut microbiota and upregulated the relative abundances of short chain fatty acids (SCFAs)-producing bacterial species. Consistently, the SCFAs in the cecum of mice were upregulated. On a mechanical level, we found that the immunomodulatory effect of ALEPA depended on gut microbiota. Collectively, ALEPA is a promising functional food ingredient that regulates gut microbiota and enhances immune function.
Collapse
Affiliation(s)
- Xian Qu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yahui Ji
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jieyi Long
- Infinitus (China) Company Ltd., Guangzhou 510623, China
| | - Donglin Zheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zhonghui Qiao
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yue Lin
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Chang Lu
- School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China..
| |
Collapse
|
2
|
Wang J, Zhang X, Li S, Wang Y, Zhang M, Chen H. Steam explosion-assisted grinding improves the functional properties and antioxidant activity of Java tea-leaf powders (Clerodendranthus spicatus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7965-7976. [PMID: 38822620 DOI: 10.1002/jsfa.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Java tea is widely consumed and has multiple health effects. This study established a steam explosion (SE) pretreatment method to prepare Java tea-leaf powders. The physicochemical, functional properties, phenolic extraction, and antioxidant activity of Java tea-leaf powders produced by simple and SE-assisted milling methods were investigated. RESULTS In comparison with simple milling, SE pretreatment broke the cell wall effectively and reduced the particle size of Java tea-leaf powders. Steam explosion-treated powders showed higher values for sensory signals, bulk and tap density, and for the water solubility index. After SE treatment, the adsorption capacities to glucose, soybean oil, and cholesterol of leaf powders were increased by up to 55, 95, and 80% respectively. The extracts from SE-treated powders also showed higher total polyphenol content and antioxidant activity. CONCLUSION Steam explosion treatment is helpful for the improvement of functional properties and antioxidant activity, which can benefit the development and application of Java tea-leaf powders. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
- School of Medicine, Shanxi Datong University, Datong, P. R. China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, P. R. China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
3
|
You Y, Song C, Fu Y, Sun Y, Wen C, Zhu B, Song S. Structure-activity relationship of Caulerpa lentillifera polysaccharide in inhibiting lipid digestion. Int J Biol Macromol 2024; 260:129435. [PMID: 38228205 DOI: 10.1016/j.ijbiomac.2024.129435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Caulerpa lentillifera polysaccharide (CLP) has been characterized as a sulfated polysaccharide which can effectively inhibit lipid digestion. However, little information was known regarding its inhibitory mechanisms. In the present study, desulfation and degradation were conducted to prepare the derivatives of CLP, and a series of chemical and spectroscopic methods were used to elucidate the structure-activity relationship of CLP on the inhibitory effect of lipid digestion. Results revealed that CLP possessed excellent binding capacities for sodium cholate, sodium glycocholate, and sodium taurocholate. In addition, CLP can effectively inhibit lipase activity by quenching the fluorescence intensity, changing the secondary structure, and decreasing the UV-Vis absorbance. Of note, sulfate groups in CLP took a vital role in inhibiting lipase activity, while the molecular weight of CLP showed a positive correlation with the binding activities of bile acids. Furthermore, adding CLP into the whey protein isolate (WPI) emulsion system also impeded lipid digestion, indicating that CLP can be a potential reduced-fat nutraceutical used in food emulsion systems.
Collapse
Affiliation(s)
- Ying You
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China; Institute of Functional Agriculture, Shanxi Agriculture University, Taigu 030801, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chen Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Yinghuan Fu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaa-nxi University of Science and Technology, Xi'an 710021, PR China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China; Institute of Functional Agriculture, Shanxi Agriculture University, Taigu 030801, China.
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Jing Y, Yan M, Zhang H, Liu D, Qiu X, Hu B, Zhang D, Zheng Y, Wu L. Effects of Extraction Methods on the Physicochemical Properties and Biological Activities of Polysaccharides from Polygonatum sibiricum. Foods 2023; 12:foods12102088. [PMID: 37238906 DOI: 10.3390/foods12102088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Polygonatum sibiricum polysaccharides (PSPs) have important biological functions, such as antioxidation, immunomodulatory, and hypolipidemic functions. Different extraction methods have effects on their structures and activities. In this study, six extraction methods, including hot water extraction (HWE), alkali extraction (AAE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), and freeze-thaw-assisted extraction (FAE) were used to extract PSPs, and their structure-activity relationships were analyzed. The results showed that all six PSPs had similar functional group compositions, thermal stability, and glycosidic bond compositions. PSP-As (PSPs extracted by AAE) exhibited better rheological properties due to their higher molecular weight (Mw). PSP-Es (PSPs extracted by EAE) and PSP-Fs (PSPs extracted by FAE) had better lipid-lowering activity due to their lower Mw. PSP-Es and PSP-Ms (PSPs extracted by MAE), which do not contain uronic acid and have a moderate Mw, had better 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radical-scavenging activity. On the contrary, PSP-Hs (PSPs extracted by HWE) and PSP-Fs, with the Mw of uronic acid, had the best OH-radical-scavenging activity. The high-Mw PSP-As had the best Fe2+-chelating ability. In addition, mannose (Man) may play an important role in the immunomodulatory activity. These results indicate that different extraction methods affect the structure and biological activity of polysaccharides to varying degrees, and these results are helpful for understanding the structure-activity relationship of PSPs.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Meng Yan
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Hao Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Dongbo Liu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Xiaoyue Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Beibei Hu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| |
Collapse
|
5
|
Ye H, Xu Y, Sun Y, Liu B, Chen B, Liu G, Cao Y, Miao J. Purification, identification and hypolipidemic activities of three novel hypolipidemic peptides from tea protein. Food Res Int 2023; 165:112450. [PMID: 36869471 DOI: 10.1016/j.foodres.2022.112450] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
In this study, hypolipidemic peptides were obtained from tea protein by enzymatic hydrolysis, ultrafiltration and high-performance liquid chromatography. Subsequently, the hypolipidemic peptides were identified by mass spectrometry and screened through molecular docking technology, and the hypolipidemic activities and mechanisms of the active peptides were explored. The results showed that the hydrolysate of hypolipidemic peptides obtained by pepsin hydrolysis for 3 h had good bile salt binding ability. After purification, identification and molecular docking screening, three novel hypolipidemic peptides FLF, IYF and QIF were obtained. FLF, IYF and QIF can interact with the receptor proteins 1LPB and 1F6W through hydrogen bonds, π-π bonds, hydrophobic interactions and van der Waals forces, thus exerting hypolipidemic activities. Activity studies showed that, compared with the positive controls, FLF, IYF and QIF had excellent sodium taurocholate binding abilities, pancreatic lipase inhibitory activities and cholesterol esterase inhibitory activities. Moreover, FLF, IYF and QIF can effectively inhibit lipogenic differentiation of 3T3-L1 preadipocytes, reduce intracellular lipid and low-density lipoprotein content and increase high-density lipoprotein content. These results indicated that the three novel hypolipidemic peptides screened in this study had excellent hypolipidemic activities and were expected to be used as natural-derived hypolipidemic active ingredients for the development and application in functional foods.
Collapse
Affiliation(s)
- Haoduo Ye
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Yan Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Yunnan Sun
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, Menghai 666201, China
| | - Benying Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Tea Science, Menghai 666201, China
| | - Bingbing Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Guo Liu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Jianyin Miao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
6
|
Effects of non-starch polysaccharides from pure wheat malt beer on beer quality, in vitro antioxidant, prebiotics, hypoglycemic and hypolipidemic properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Guo Q, Liang S, Ge C, Xiao Z. Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2039182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
ZHENG Z, DENG W, LI Y, SONG H, CHEN S. Extraction, physiological function and application of soluble dietary fiber from edible fungi: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.35422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Wei DENG
- Fujian Agriculture and Forestry University, China
| | - Yibin LI
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - HongBo SONG
- Fujian Agriculture and Forestry University, China
| | | |
Collapse
|
9
|
Liu J, Chen J, Liu X, Shao W, Mei X, Tang Z, Cao X. Binding mechanism of lipase with Lentinus edodes mycelia polysaccharide by multi-spectroscopic methods. J Mol Recognit 2021; 35:e2946. [PMID: 34918387 DOI: 10.1002/jmr.2946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 12/05/2021] [Indexed: 11/12/2022]
Abstract
It is an effective strategy to avoid obesity by inhibiting the activity of lipase. In this study, the binding mechanism of lipase and Lentinus edodes mycelia polysaccharide (LMP) were explored with multi-spectral methods, for example, three-dimensional (3D) fluorescence, Fourier-transformed infrared (FT-IR), and Raman spectra. At 290 K, the binding constant was 2.44 × 105 L/mol, there was only one binding site between LMP and lipase. Static quenching was the quenching mechanism. The major forces were hydrogen bonding and van der Waals force. The binding of LMP to lipase impacted the microenvironment around tyrosine and tryptophan residues. The polarity around these residues was decreased and hydrophobicity was enhanced. This study not only revealed the binding mechanism of LMP on lipase but also provided scientific evidence for expanding the application of LMP in functional food industries.
Collapse
Affiliation(s)
- Jianli Liu
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Jiahe Chen
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Xiangyang Liu
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Wei Shao
- Biology Subject teaching, College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Xueying Mei
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Zhipeng Tang
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang, China
| |
Collapse
|
10
|
Azeredo HM, Tonon RV, McClements DJ. Designing healthier foods: Reducing the content or digestibility of key nutrients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Li R, Xue Z, Jia Y, Wang Y, Li S, Zhou J, Liu J, Zhang M, He C, Chen H. Polysaccharides from mulberry (Morus alba L.) leaf prevents obesity by inhibiting pancreatic lipase in high-fat diet induced mice. Int J Biol Macromol 2021; 192:452-460. [PMID: 34634334 DOI: 10.1016/j.ijbiomac.2021.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/02/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic lipase (PL) is a key enzyme related to the prevention and treatment of obesity. The aim of the study was to evaluate the inhibitory effects of mulberry leaf polysaccharides (MLP) on PL and possible interaction mechanism, inhibition on lipid accumulation in vitro and in vivo. The results revealed that MLP had obvious inhibitory effects on PL (P < 0.05). The interaction of MLP-PL complexes was in a spontaneous way driven by enthalpy, and hydrogen bonds were the main factors in the binding. MLP could significantly inhibit the development of lipid accumulation in HepG2 cells (P < 0.05). Furthermore, consumption of high-fat diet containing MLP showed protective effects on liver and adipose tissue damages in mice, and inhibited the lipid absorption in digestive tract. MLP also significantly reduced the increased expression level of pancreatic digestive enzymes (P < 0.05). The study indicated that the anti-obesity effect of MLP might be caused by inhibition of lipid absorption via reducing PL activity.
Collapse
Affiliation(s)
- Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
12
|
Physicochemical and Biological Properties of Polysaccharides from Dictyophora indusiata Prepared by Different Extraction Techniques. Polymers (Basel) 2021; 13:polym13142357. [PMID: 34301113 PMCID: PMC8309502 DOI: 10.3390/polym13142357] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, different extraction techniques, including traditional hot water extraction (HWE), microwave-assisted extraction (MAE), pressurized assisted extraction (PAE), and ultrasonic-assisted extraction (UAE), were used to extract Dictyophora indusiata polysaccharides (DFPs), and their physicochemical and biological properties were compared. Results revealed that extraction yields of D. indusiata polysaccharides prepared by different extraction techniques ranged from 5.62% to 6.48%. D. indusiata polysaccharides prepared by different extraction techniques possessed similar chemical compositions and monosaccharide compositions, while exhibited different molecular weights (Mw), apparent viscosities, and molar ratios of constituent monosaccharides. In particularly, D. indusiata polysaccharides prepared by HWE (DFP-H) had the highest Mw and apparent viscosity among all DFPs, while D. indusiata polysaccharides extracted by UAE (DFP-U) possessed the lowest Mw and apparent viscosity. In addition, the in vitro antioxidant effects of D. indusiata polysaccharides prepared by PAE (DFP-P) and DFP-U were significantly higher than that of others. Indeed, both DFP-P and DFP-H exhibited much higher in vitro binding properties, including fat, cholesterol, and bile acid binding properties, and lipase inhibitory effects than that of D. indusiata polysaccharides prepared by MAE (DFP-M) and DFP-U. These findings suggest that the PAE technique has good potential for the preparation of D. indusiata polysaccharides with desirable bioactivities for the application in the functional food industry.
Collapse
|
13
|
Healthy function and high valued utilization of edible fungi. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Choi JH, Lee HJ, Park SE, Kim S, Seo KS, Kim KM. Cytotoxicity, metabolic enzyme inhibitory, and anti-inflammatory effect of Lentinula edodes fermented using probiotic lactobacteria. J Food Biochem 2021; 45:e13838. [PMID: 34212412 DOI: 10.1111/jfbc.13838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 01/25/2023]
Abstract
We found that the fermented Lentinula edodes (FLE) products exhibited various differences in terms of proximate composition, free sugar, and amino acid. In particular, there were higher levels of ergosterol, and ergothioneine in FLE-Pediococcus pentosaceus (PP) and -Lactobacillus acidophilus (LA) than in the L. edodes (LE) products. The survival rates of lactic acid bacteria (LAB) strains on artificial gastric juice, artificial bile, or heat (50-60°C) were observed to vary from 60%-66%, 60%-66%, to 42%-79%, respectively. The FLE products up to 300 μg/ml had no cytotoxicity on RAW264.7, AGS, and RBL-2H3 cells, but inhibited the activities of α-amylase, α-glucosidase, and pancreatic lipase, as well as the production of nitrite, IL-1β, IL-4, TNF-α, and prostaglandin E2 (PGE2) from lipopolysaccharide (LPS)-induced inflammatory response. Our findings suggest that FLE products have metabolic enzyme inhibitory and anti-inflammatory effects. PRACTICAL APPLICATIONS: Fermentation plays a critical role in improving the functional and nutritional properties of food. In addition, lactobacteria are the main microorganisms involved in the fermentation of food known to have a variety of biological activities. Therefore, the utilization of lactobacteria for research and development of mushroom food materials can be used as a key strategy to improve the biological activity characteristics of mushroom food materials and to increase their active ingredient content. The present results show that FLE products had promising inhibitory efficacies against the activities of obesity-related metabolic enzymes and LPS-induced inflammatory response. These suggest that FLE products have the potential to be developed as functional probiotic dietary supplements or food products.
Collapse
Affiliation(s)
- Jun-Hui Choi
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| | - Hyo-Jeong Lee
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| | - Se-Eun Park
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| | - Seung Kim
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| | - Kyoung-Sun Seo
- Jangheung County Mushroom Research Institute, Jangheung, Republic of Korea
| | - Ki-Man Kim
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| |
Collapse
|