1
|
Selc M, Macova R, Babelova A. Novel Strategies Enhancing Bioavailability and Therapeutical Potential of Silibinin for Treatment of Liver Disorders. Drug Des Devel Ther 2024; 18:4629-4659. [PMID: 39444787 PMCID: PMC11498047 DOI: 10.2147/dddt.s483140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Silibinin, a bioactive component found in milk thistle extract (Silybum marianum), is known to have significant therapeutic potential in the treatment of various liver diseases. It is considered a key element of silymarin, which is traditionally used to support liver function. The main mechanisms of action of silibinin are attributed to its antioxidant properties protecting liver cells from damage caused by free radicals. Experimental studies conducted in vitro and in vivo have confirmed its ability to inhibit inflammatory and fibrotic processes, as well as promote the regeneration of damaged liver tissue. Therefore, silibinin represents a promising tool for the treatment of liver diseases. Since the silibinin molecule is insoluble in water and has poor bioavailability in vivo, new perspectives on solving this problem are being sought. The two most promising approaches are the water-soluble derivative silibinin-C-2',3-dihydrogen succinate, disodium salt, and the silibinin-phosphatidylcholine complex. Both drugs are currently under evaluation in liver disease clinical trials. Nevertheless, the mechanism underlying silibinin biological activity is still elusive and its more detailed understanding would undoubtedly increase its potential in the development of effective therapeutic strategies against liver diseases. This review is focused on the therapeutic potential of silibinin and its derivates, approaches to increase the bioavailability and the benefits in the treatment of liver diseases that have been achieved so far. The review discusses the relevant in vitro and in vivo studies that investigated the protective effects of silibinin in various forms of liver damage.
Collapse
Affiliation(s)
- Michal Selc
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radka Macova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Andrea Babelova
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Liu Y, Yang C, Zhang J, Ihsan A, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Recent progress in adverse events of carboxylic acid non-steroidal anti-inflammatory drugs (CBA-NSAIDs) and their association with the metabolism: the consequences on mitochondrial dysfunction and oxidative stress, and prevention with natural plant extracts. Expert Opin Drug Metab Toxicol 2024:1-21. [PMID: 38980754 DOI: 10.1080/17425255.2024.2378885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Carboxylic acid non-steroidal anti-inflammatory drugs (CBA-NSAIDs) are extensively used worldwide due to their antipyretic, analgesic, and anti-inflammatory effects. CBA-NSAIDs have reasonable margin of safety at therapeutic doses, and in the current climate, do not possess addiction potential like opioid drugs. Studies have revealed that various adverse events of CBA-NSAIDs are related mitochondrial dysfunction and oxidative stress. AREAS COVERED This review article summarizes adverse events induced by CBA-NSAIDs, mechanisms of mitochondrial damage, oxidative stress, and metabolic interactions. Meanwhile, this review discusses the treatment and prevention of CBA-NSAIDs damage by natural plant extracts based on antioxidant effects. EXPERT OPINION CBA-NSAIDs can induce reactive oxygen species (ROS) production, mediate DNA, protein and lipid damage, lead to imbalance of cell antioxidant status, change of mitochondrial membrane potential, activate oxidative stress signal pathway, thus leading to oxidative stress and cell damage. Adverse events caused by CBA-NSAIDs often exhibit dose and time dependence. In order to avoid adverse events caused by CBA-NSAIDs, it is necessary to provide detailed patient consultation and eliminate influencing factors. Moreover, constructive research studies on the organ-specific toxicity and mechanism of natural plant extracts in preventing and treating metabolic abnormalities of CBA-NSAIDs, will provide important value for warning and guidance for use of CBA-NSAIDs.
Collapse
Affiliation(s)
- Yanan Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jieying Zhang
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad, Pakistan
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
3
|
Tee PYE, Krishnan T, Cheong XT, Maniam SAP, Looi CY, Ooi YY, Chua CLL, Fung SY, Chia AYY. A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. Fungal Biol Biotechnol 2024; 11:7. [PMID: 38987829 PMCID: PMC11238383 DOI: 10.1186/s40694-024-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.
Collapse
Affiliation(s)
- Phoebe Yon Ern Tee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Thiiben Krishnan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Xin Tian Cheong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Snechaa A P Maniam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia.
| |
Collapse
|
4
|
Yin Y, Shi X, Cai X, Liu F, Ni W, Li B, Wan X, Ren M. Isolation Techniques, Structural Characteristics, and Pharmacological Effects of Phellinus Polysaccharides: A Review. Molecules 2024; 29:3047. [PMID: 38998999 PMCID: PMC11243265 DOI: 10.3390/molecules29133047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Phellinus is a precious perennial medicinal fungus. Its polysaccharides are important bioactive components, and their chemical composition is complex. The polysaccharides are mainly extracted from the fruiting body and mycelium. The yield of the polysaccharides is dependent on the extraction method. They have many pharmacological activities, such as antitumor, immunomodulatory, antioxidant, hypoglycemic, anti-inflammatory, etc. They are also reported to show minor toxic and side effects. Many studies have reported the anticancer activity of Phellinus polysaccharides. This review paper provides a comprehensive examination of the current methodologies for the extraction and purification of Phellinus polysaccharides. Additionally, it delves into the structural characteristics, pharmacological activities, and mechanisms of action of these polysaccharides. The primary aim of this review is to offer a valuable resource for researchers, facilitating further studies on Phellinus polysaccharides and their potential applications.
Collapse
Affiliation(s)
- Yiming Yin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
- College of Pharmacy, Shandong University, Jinan 250100, China
| | - Xiaolin Shi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
| | - Xiaoqing Cai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
| | - Fangrui Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
| | - Wenting Ni
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
| | - Baohong Li
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Xinhuan Wan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Y.); (X.S.); (X.C.); (F.L.); (W.N.)
| | - Meng Ren
- College of Physical Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
5
|
Zhang N, Han Z, Zhang R, Liu L, Gao Y, Li J, Yan M. Ganoderma lucidum Polysaccharides Ameliorate Acetaminophen-Induced Acute Liver Injury by Inhibiting Oxidative Stress and Apoptosis along the Nrf2 Pathway. Nutrients 2024; 16:1859. [PMID: 38931214 PMCID: PMC11206445 DOI: 10.3390/nu16121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The excessive employment of acetaminophen (APAP) is capable of generating oxidative stress and apoptosis, which ultimately result in acute liver injury (ALI). Ganoderma lucidum polysaccharides (GLPs) exhibit hepatoprotective activity, yet the protective impact and potential mechanism of GLPs in relation to APAP-induced ALI remain ambiguous. The intention of this research was to scrutinize the effect of GLPs on APAP-induced ALI and to shed light on their potential mechanism. The results demonstrated that GLPs were capable of notably alleviating the oxidative stress triggered by APAP, as shown through a significant drop in the liver index, the activities of serum ALT and AST, and the amounts of ROS and MDA in liver tissue, along with an increase in the levels of SOD, GSH, and GSH-Px. Within these, the hepatoprotective activity at the high dose was the most conspicuous, and its therapeutic efficacy surpassed that of the positive drug (bifendate). The results of histopathological staining (HE) and apoptosis staining (TUNEL) indicated that GLPs could remarkably inhibit the necrosis of hepatocytes, the permeation of inflammatory cells, and the occurrence of apoptosis induced by APAP. Moreover, Western blot analysis manifested that GLPs enhanced the manifestation of Nrf2 and its subsequent HO-1, GCLC, and NQO1 proteins within the Nrf2 pathway. The results of qPCR also indicated that GLPs augmented the expression of antioxidant genes Nrf2, HO-1, GCLC, and NQO1. The results reveal that GLPs are able to set off the Nrf2 signaling path and attenuate ALI-related oxidative stress and apoptosis, which is a potential natural medicine for the therapy of APAP-induced liver injury.
Collapse
Affiliation(s)
- Nan Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Zhongming Han
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
| | - Rui Zhang
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
| | - Linling Liu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Yanliang Gao
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Jintao Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Meixia Yan
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| |
Collapse
|
6
|
Zu M, Liu G, Chen N, Chen L, Gao Q, Reis RL, Kundu SC, Jin M, Xiao B, Shi X. Oral exosome-like nanovesicles from Phellinus linteus suppress metastatic hepatocellular carcinoma by reactive oxygen species generation and microbiota rebalancing. NANOSCALE 2024; 16:8046-8059. [PMID: 38563130 DOI: 10.1039/d4nr00345d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The biomedical application of nanotechnology in cancer treatment has demonstrated significant potential for improving treatment efficiencies and ameliorating adverse effects. However, the medical translation of nanotechnology-based nanomedicines faces challenges including hazardous environmental effects, difficulties in large-scale production, and possible excessive costs. In the present study, we extracted and purified natural exosome-like nanoparticles (ELNs) from Phellinus linteus. These nanoparticles (denoted as P-ELNs) had an average particle size of 154.1 nm, displayed a negative zeta potential of -31.3 mV, and maintained stability in the gastrointestinal tract. Furthermore, P-ELNs were found to contain a diverse array of functional components, including lipids and pharmacologically active small-molecule constituents. In vitro investigations suggested that they exhibited high internalization efficiency in liver tumor cells (Hepa 1-6) and exerted significant anti-proliferative, anti-migratory, and anti-invasive effects against Hepa 1-6 cells. Strikingly, the therapeutic outcomes of oral P-ELNs were confirmed in an animal model of metastatic hepatocellular carcinoma by amplifying reactive oxygen species (ROS) and rebalancing the gut microbiome. These findings demonstrate the potential of P-ELNs as a promising oral therapeutic platform for liver cancer treatment.
Collapse
Affiliation(s)
- Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Ga Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Nanxi Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Li Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Qiang Gao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Meilan Jin
- Laboratory Animal Center, Southwest University, Chongqing, 400715, China.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Xiaoxiao Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Yang CM, Chien MY, Wang LY, Chuang CH, Chen CH. Goji Ferment Ameliorated Acetaminophen-Induced Liver Injury in vitro and in vivo. Probiotics Antimicrob Proteins 2023; 15:1102-1112. [PMID: 35796949 DOI: 10.1007/s12602-022-09956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the hepatoprotective effects of lyophilized powder of goji ferment (LPGF) against acetaminophen (APAP)-induced hepatic damage in Hep3B cells and in mice. Eleven strains of lactic acid bacteria (LAB) were selected and their hepatoprotection against APAP-induced cellular damage in Hep3B cell line was evaluated. Four strains of LAB, including BCRC11652 (Leuconostoc mesenteroides subsp. mesenteroides), BCRC14619 (Lactobacillus gasseri), KODA-1 (Pediococcus acidilactici), and KODA-2 (Limosilactobacillus fermentum), have hepatoprotective potential against APAP in vitro. Goji significantly stimulated the growth of individual and combined strains of LAB and the optimal fermented condition was the treatment of goji at 10% (w/w) for 24 h. The prepared lyophilized powder of goji ferment (LPGF) containing fifteen combinations of LAB strains was used to explore their hepatoprotection in vitro. LPGF containing all combinations of LAB strains, except for KODA-2, significantly restored APAP-reduced cell viability and improved APAP-increased cellular levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In mice model, LPGF containing BCRC11652, BCRC14619, and KODA-2 was chosen to evaluate its hepatoprotection against APAP-induced liver injury. LPGF at diverse doses have a tendency but no significant improvement on APAP-reduced body weight gain and liver weight. LPGF significantly decreased APAP-increased serum ALT and AST levels in a dose-dependent manner. At the end of experiment, LPGF significantly and dose-dependently reversed APAP-reduced activities of GSH and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase in hepatic tissue. Overall, LPGF was demonstrated to exhibit hepatoprotection against APAP-induced liver injury in vitro and in vivo.
Collapse
Affiliation(s)
- Chih-Min Yang
- Ko Da Pharmaceutical Co. Ltd, Pingzhen Dist, No.20-1, Gongye 3rd Rd, Taoyuan, Taiwan
| | - Mei-Yin Chien
- Ko Da Pharmaceutical Co. Ltd, Pingzhen Dist, No.20-1, Gongye 3rd Rd, Taoyuan, Taiwan
| | - Li-Yu Wang
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, No. 1018 Sec. 6 Taiwan Boulevard, Taichung, 43302, Taiwan
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Hung Chuang
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, No. 1018 Sec. 6 Taiwan Boulevard, Taichung, 43302, Taiwan.
| | - Chao-Hsiang Chen
- Ko Da Pharmaceutical Co. Ltd, Pingzhen Dist, No.20-1, Gongye 3rd Rd, Taoyuan, Taiwan.
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Hua L, Zhang S, Yang J, Zhou X, Shi S. Sanghuangporus vaninii ethanol extract alleviates hyperuricemic renal injury by regulating the uric acid transporters and inhibiting HK-2 apoptosis. Biomed Pharmacother 2023; 164:114970. [PMID: 37279627 DOI: 10.1016/j.biopha.2023.114970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
AIM OF THE STUDY To investigate the acute toxicity of Sanghuangporus ethanol extract (SHEE) on ICR mice and the underlying mechanism of anti-hyperuricemic renal injury. MATERIALS AND METHODS ICR mice were given a single gavage of 1250, 2500, and 5000 mg/kg SHEE, and the general behavior, mortality, body weight, dietary, and water intake were evaluated within 14 days to determine the acute toxicity level. The hyperuricemic kidney injury model in ICR mice was induced with potassium oxonate (PO) and adenine, and the mice were subsequently treated with SHEE (125, 250, 500 mg/kg). HE and hexamine silver staining (PASM) were used to observe the pathology of the kidney. Biochemical markers were tested by uric acid (UA), creatinine (Cr), blood urea nitrogen (BUN), xanthine oxidase (XOD), alanine transferase (ALT), and aspartate transaminase (AST) kits. An MTT assay was used to measure the effects of SHEE on the proliferation of HK-2 damaged by UA. Western blotting and RT-PCR were used to determine the expression of Bcl-2 family-related proteins and major UA transporters, including URAT1, GLUT9, OAT1, OAT3, and ABCG2, respectively. RESULTS Firstly, the acute toxicity study data showed that the median lethal dose (LD50) of SHEE was above 5000 mg/kg, and its oral administration was nontoxic at 2500 mg/kg and below. In addition, SHEE alleviated HUA and its renal injury in ICR mice. SHEE reduced the contents of UA, Cr, BUN and XOD in blood and the contents of ALT and AST in the liver. Furthermore, SHEE inhibited the expression of URAT1 and GLUT9 and promoted the expression of OAT1, OAT3, and ABCG2. More importantly, SHEE could downregulate the apoptosis level and caspase-3 activity. CONCLUSIONS Overall, an oral dose of SHEE below 2500 mg/kg is safe. SHEE inhibits HUA-induced kidney injury by regulating the UA transporters URAT1, GLUT9, OAT1, OAT3 and ABCG2 and inhibiting HK-2 apoptosis.
Collapse
Affiliation(s)
- Liping Hua
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuangshuang Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiali Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoqi Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Senlin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
9
|
Wang X, Sun J, Wang S, Sun T, Zou L. Salicylic acid promotes terpenoid synthesis in the fungi Sanghuangporus baumii. Microb Biotechnol 2023; 16:1360-1372. [PMID: 37096757 DOI: 10.1111/1751-7915.14262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/26/2023] Open
Abstract
Sanghuangporus baumii is a medicinal fungi with anti-inflammatory, liver protection and antitumour effects. Terpenoids are one of the main medicinal ingredients of S. baumii. However, terpenoid production by wild-type S. baumii cannot meet the market demand, which affects its application in medical care. Therefore, exploring how to increase terpenoid content in S. baumii is a promising path in this research field. Salicylic acid (SA) is a secondary metabolite. In this study, a concentration of 350 μmol/L SA was added into fungal cultivations for 2 and 4 days, and then the transcriptome and metabolome of untreated mycelia and treated with SA were analysed. The expression of some genes in the terpenoids biosynthesis pathway increased in SA-induced cultivations, and the content of isopentenyl pyrophosphate (IPP) and geranylgeranyl-PP (GGPP) increased significantly as well as the contents of triterpenoids, diterpenoids, sesquiterpenoids and carotenoids. The gene FPS was considered to be a key gene regulating terpenoid biosynthesis. Therefore, FPS was overexpressed in S. baumii by Agrobacterium tumefaciens-mediated genetic transformation. The gene FPS and its downstream gene (LS) expression levels were confirmed to be increased in the FPS overexpressing transformant, and terpenoid content was 36.98% higher than that of the wild-type strain in the evaluated cultivation conditions.
Collapse
Affiliation(s)
- Xutong Wang
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
- College of Forestry and Grassland Science, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, Jilin, China
| | - Jian Sun
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Shixin Wang
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Tingting Sun
- Department of Food Engineering, Harbin University, Zhongxing Road 109, Nangang District, Harbin, 150086, Heilongjiang, China
| | - Li Zou
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
| |
Collapse
|
10
|
Suh MG, Shin HY, Jeong EJ, Kim G, Jeong SB, Ha EJ, Choi SY, Moon SK, Shin KS, Yu KW, Suh HJ, Kim H. Identification of galacturonic acid-rich polysaccharide with intestinal immune system modulating activity via Peyer's patch from postbiotics of Phellinus linteus mycelial submerged culture. Int J Biol Macromol 2023; 234:123685. [PMID: 36796554 DOI: 10.1016/j.ijbiomac.2023.123685] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Interests in the development and exploration of industrial applications of medicinal mushrooms as postbiotics have lately increased. We recently reported the potential use of Phellinus linteus mycelial-containing whole culture extract (PLME) prepared by submerged cultivation as a postbiotic that promotes immune system activation. Here, we aimed to isolate and structurally elucidate the active ingredients in PLME by activity-guided fractionation. The intestinal immunostimulatory activity was evaluated by bone marrow (BM) cell proliferation activity and related cytokine production in C3H-HeN mouse-derived Peyer's patch (PP) cells treated with polysaccharide fractions. The initially crude polysaccharide (PLME-CP) of PLME prepared using ethanol precipitation was further fractionated into four fractions (PLME-CP-0 to -III) by anion-exchange column chromatography. BM cell proliferation and cytokine production of PLME-CP-III were significantly improved compared to those of PLME-CP. PLME-CP-III was then fractionated into PLME-CP-III-1 and PLME-CP-III-2 by gel filtration chromatography. Based on the molecular weight distribution, monosaccharide, and glycosyl linkage analyses, PLME-CP-III-1 was revealed as a novel galacturonic acid-rich acidic polysaccharide and further shown to play an important role in facilitating PP-mediated intestinal immunostimulatory activity. This is the first study demonstrating the structural characteristics of a novel intestinal immune system modulating acidic polysaccharide from P. linteus mycelium-containing whole culture broth postbiotics.
Collapse
Affiliation(s)
- Min Geun Suh
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; R&D Center Neo Cremar Cooperation Limited, 211 Jungdae-ro, Songpa-gu, Seoul 05702, South Korea
| | - Hyun Young Shin
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Eun-Jin Jeong
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Gaeuleh Kim
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Se Bin Jeong
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Eun Ji Ha
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Sang-Yong Choi
- R&D Center Neo Cremar Cooperation Limited, 211 Jungdae-ro, Songpa-gu, Seoul 05702, South Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea
| | - Kwang-Soon Shin
- Department of Food and Biotechnology, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, South Korea
| | - Kwang-Won Yu
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Hyung-Joo Suh
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea.
| |
Collapse
|
11
|
Qin D, Han S, Liu M, Guo T, Hu Z, Zhou Y, Luo F. Polysaccharides from Phellinus linteus: A systematic review of their extractions, purifications, structures and functions. Int J Biol Macromol 2023; 230:123163. [PMID: 36623622 DOI: 10.1016/j.ijbiomac.2023.123163] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
Phellinus linteus (P. linteus) is a famous Chinese medicine and has a long history in China. In recent years, P. linteus polysaccharides (PLPs) have attracted extensive attention because of their biological activities such as anti-bacteria, anti-aging, anti-oxidation, anti-inflammation, anti-tumor, hepatoprotective effect and hypoglycemic effect. In this review, we systemically summarized the advances in extractions, purifications and structural characterizations of PLPs, and also analyzed their biological functions and molecular mechanisms. Meanwhile, the structure-activity relationships of PLPs are closely related to their anti-oxidation and anti-tumor activities. So far, the applications of PLPs are still very limited, further exploring structure-activity relationships, biological functions and their mechanisms of PLPs will promote to develop functional foods.
Collapse
Affiliation(s)
- Dandan Qin
- Hunan Provincial Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuai Han
- Hunan Provincial Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Menglin Liu
- Hunan Provincial Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianyi Guo
- Hunan Provincial Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zuomin Hu
- Hunan Provincial Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yaping Zhou
- Hunan Provincial Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
12
|
Lin G, Li Y, Chen X, Zhang F, Linhardt RJ, Zhang A. Extraction, structure and bioactivities of polysaccharides from Sanghuangporus spp.: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Shen XL, Guo YN, Lu MH, Ding KN, Liang SS, Mou RW, Yuan S, He YM, Tang LP. Acetaminophen-induced hepatotoxicity predominantly via inhibiting Nrf2 antioxidative pathway and activating TLR4-NF-κB-MAPK inflammatory response in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114590. [PMID: 36738614 DOI: 10.1016/j.ecoenv.2023.114590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
To explore the action time and molecular mechanism underlying the effect of acetaminophen (APAP) on liver injury. APAP was used to establish drug-induced liver injury (DILI) model in mice. Mice in the model group were intraperitoneally injected 300 mg/kg APAP for 6, 12, and 24 h respectively, and control group mice were given the same volume of normal saline. The mice were anesthetized through intravenous injection of sodium pentobarbital at 6, 12, and 24 h after APAP poisoning. Analysis of ALT, AST and ALP in serum, liver histopathological observation, oxidative damage and western blot were performed. The livers in APAP exposed mice were pale, smaller, with a rough texture, and poorly arranged cells. Lesions, large areas of hyperemia, inflammation, swelling, poorly cell arrangement, necrosis, and apoptosis of liver cells were obvious in the liver tissue sections. Serum ALT, AST and ALP levels were significantly enhanced at 12 h of APAP adminstration mice than that of in control group mice (P<0.05). The histopathological alterations and proinflammatory cytokines (IL-1β, TNF-α and IL-6) levels were most severe at 12 h of APAP-induced hepatotoxicity. APAP treatment induced oxidative stress by decreasing hepatic activities of superoxide dismutase (SOD) and glutathione (GSH) (P<0.05), and enhancing malondialdehyde (MDA) content (P<0.05). Moreover, APAP inhibited erythroid 2-related factor 2 (Nrf2) antioxidative pathway with decreased of Nrf2 and HO-1 proteins levels. Furthermore, APAP aggravated the activation of NLRP3 inflammasome by increasing of NLRP3, caspase-1, ASC, IL-1β and IL-18 proteins levels. Finally, APAP further significantly activated the toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. This study demonstrated that APAP-induced hepatotoxicity by inhibiting of Nrf2 antioxidative pathway and promoting TLR4-NF-κB-MAPK inflammatory response and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xing-Ling Shen
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yan-Na Guo
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Meng-Han Lu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kang-Ning Ding
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Shao-Shan Liang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rui-Wei Mou
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Sheng Yuan
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yong-Ming He
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| | - Lu-Ping Tang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
14
|
Zhou N, Long H, Yu L, Xia X, Zhu Z, Liu X. Selenium-containing polysaccharide from Spirulina platensis alleviates Cd-induced toxicity in mice by inhibiting liver inflammation mediated by gut microbiota. Front Nutr 2022; 9:950062. [PMID: 36407546 PMCID: PMC9669715 DOI: 10.3389/fnut.2022.950062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/28/2022] [Indexed: 10/24/2023] Open
Abstract
Selenium-containing polysaccharide from Spirulina platensis (Se-SPP) has been demonstrated to help in inhibiting cadmium-induced injury in mice, but the underlying mechanism has not been determined. This study aimed to investigate the beneficial effects of Se-SPP on alleviating Cd-induced toxicity in mice by targeting liver inflammatory and gut microbiota. Se-SPP supplementation for 28 days in Cd-induced toxic mice significantly mitigated liver pathological damage and inflammation, which was correlated to the upregulation of antioxidant enzyme activity. Furthermore, Se-SPP effectively restored Cd-induced disruption of the intestinal barrier compared to model group, as indicated by the depletion of Muribaculaceae and the enrichment of Ruminococcaceae. Spearman's correlation analysis revealed that the Se-SPP-altered microbes were highly correlated with inflammation-related indexes in Cd-induced toxic mice. Noteworthily, the modulation of Se-SPP on the Ruminococcaceae population contributed to the improvement of Cd-induced inflammation-related diseases by downregulating the tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in the liver. These findings suggested that Se-SPP may act as prebiotics for ameliorating Cd-induced toxicity in mice by inhibiting liver inflammation mediated by gut microbiota, and target-specific microbiota of Cd-induced inflammation-related diseases deserve further attention.
Collapse
Affiliation(s)
- Ning Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hairong Long
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lian Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xianghua Xia
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
15
|
Analysis of Phellinus Igniarius Effects on Gastric Cancer Cells by Atomic Force Microscopy. Micron 2022; 164:103376. [DOI: 10.1016/j.micron.2022.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
16
|
Sarkar C, Mondal M, Al-Khafaji K, El-Kersh DM, Jamaddar S, Ray P, Roy UK, Afroze M, Moniruzzaman M, Khan M, Asha UH, Khalipha ABR, Mori E, de Lacerda BCGV, Araújo IM, Coutinho HDM, Shill MC, Islam MT. GC–MS analysis, and evaluation of protective effect of Piper chaba stem bark against paracetamol-induced liver damage in Sprague-Dawley rats: Possible defensive mechanism by targeting CYP2E1 enzyme through in silico study. Life Sci 2022; 309:121044. [DOI: 10.1016/j.lfs.2022.121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
17
|
Exosome-like nanovesicles derived from Phellinus linteus inhibit Mical2 expression through cross-kingdom regulation and inhibit ultraviolet-induced skin aging. J Nanobiotechnology 2022; 20:455. [PMID: 36271377 PMCID: PMC9587628 DOI: 10.1186/s12951-022-01657-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Phellinus linteus (PL), which is a typical medicinal fungus, has been shown to have antitumor and anti-inflammatory activities. However, studies on the effect of anti-photoaging are limited. Studies have shown that exosome-like nanovesicles are functional components of many medicinal plants, and miRNAs in exosome-like nanovesicles play a cross-kingdom regulatory role. At present, research on fungi exosome-like nanovesicles (FELNVs) is few. Results We systematically evaluated the anti-aging effects of PL. FELNVs of PL were isolated, and the functional molecular mechanisms were evaluated. The results of volunteer testing showed that PL had anti-aging activity. The results of component analysis showed that FELNVs were the important components of PL function. FELNVs are nanoparticles (100–260 nm) with a double shell structure. Molecular mechanism research results showed that miR-CM1 in FELNVs could inhibit Mical2 expression in HaCaT cells through cross-kingdom regulation, thereby promoting COL1A2 expression; inhibiting MMP1 expression in skin cells; decreasing the levels of ROS, MDA, and SA-β-Gal; and increasing SOD activity induced by ultraviolet (UV) rays. The above results indicated that miR-CM1 derived from PL inhibited the expression of Mical2 through cross-kingdom regulation and inhibited UV-induced skin aging. Conclusion miR-CM1 plays an anti-aging role by inhibiting the expression of Mical2 in human skin cells through cross-species regulation. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01657-6.
Collapse
|
18
|
Zhang H, Jiang F, Li L, Liu X, Yan JK. Recent advances in the bioactive polysaccharides and other key components from Phellinus spp. and their pharmacological effects: A review. Int J Biol Macromol 2022; 222:3108-3128. [DOI: 10.1016/j.ijbiomac.2022.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
19
|
Wang H, Ma JX, Zhou M, Si J, Cui BK. Current advances and potential trends of the polysaccharides derived from medicinal mushrooms sanghuang. Front Microbiol 2022; 13:965934. [PMID: 35992671 PMCID: PMC9382022 DOI: 10.3389/fmicb.2022.965934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022] Open
Abstract
For thousands of years, sanghuang is distinctive as a general designation for a group of precious and rare Chinese medicinal mushrooms. Numerous investigations have revealed that polysaccharide is one of the important biological active ingredients of sanghuang with various excellent biological activities, including antioxidant, anti-aging, anti-tumor, immunomodulatory, anti-inflammatory, anti-diabetic, hepatoprotective, and anti-microbial functionalities. For the past two decades, preparation, structural characterization, and reliable bioactivities of the polysaccharides from fruiting bodies, cultured mycelia, and fermentation broth of sanghuang have been arousing extensive interest, and particularly, different strains, sources, and isolation protocols might result in obvious discrepancies in structural features and bioactivities. Therefore, this review summarizes the recent reports on preparation strategies, structural features, bioactivities, and structure-activity relationships of sanghuang polysaccharides, which will enrich the knowledge on the values of natural sanghuang polysaccharides and support their further development and utilization as therapeutic agents, vaccines, and functional foods in tonic and clinical treatment.
Collapse
|
20
|
Bai X, Feng Z, Peng S, Zhu T, Jiao L, Mao N, Gu P, Liu Z, Yang Y, Wang D. Chitosan-modified Phellinus igniarius polysaccharide PLGA nanoparticles ameliorated inflammatory bowel disease. BIOMATERIALS ADVANCES 2022; 139:213002. [PMID: 35882149 DOI: 10.1016/j.bioadv.2022.213002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
In many clinical studies, prebiotics have been used as adjuvant therapy for inflammatory bowel disease (IBD). Phellinus igniarius polysaccharide (PIP) possesses great anti-inflammatory and prebiotic activities. Herein, we developed an orally deliverable PIP-loaded chitosan-modified PLGA nanomedicine (CS-PIPP) to investigate its anti-inflammatory effect in vitro and in vivo. Dextran sodium sulfate (DSS)-induced colitis model was established to evaluate the preventive effect of CS-PIPP on IBD. This study characterized that CS-PIPP had a size of 288.7 ± 5.49 nm, positive zeta potential, and showed good stability over four weeks. The in-vitro study suggested that CS-PIPP had enhanced phagocytosis by macrophages, which could further significantly inhibit M1-like macrophages phenotype and regulate lipopolysaccharide (LPS)-induced inflammatory cytokines. The in-vivo study revealed that CS-PIPP prominently prevented intestinal inflammatory damage and protected the integrity of the intestinal barrier. Moreover, CS-PIPP increased the contents of short-chain fatty acids (SCFAs) and positively regulated the gut microbiota. Specifically, CS-PIPP reduced enteropathogenic microorganisms while increasing the beneficial microbiota, including Lactobacillus and Akkermansia, which revealed the potential of CS-PIPP as prebiotics. Generally, CS-PIPP promoted the anti-inflammatory effect of PIP, so it could be regarded as a novel and potent nanoformulation to treat IBD.
Collapse
Affiliation(s)
- Xinxin Bai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zian Feng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Structural diversity and bioactivity of polysaccharides from medicinal mushroom Phellinus spp.: A review. Food Chem 2022; 397:133731. [PMID: 35908464 DOI: 10.1016/j.foodchem.2022.133731] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
Phellinus spp., an important medicinal fungus mushroom extensively cultivated and consumed in East Asia for over 2000 years, is traditionally considered a precious food supplement and medicinal ingredient. Published studies showed that the polysaccharides are major bioactive macromolecules from Phellinus spp. (PPs) with multiple health-promoting effects, including immunomodulatory, anti-cancer, anti-inflammatory, hepatoprotective, hypoglycemic, hypolipidemic, antioxidant, and other bioactivities. Although the polysaccharides extracted from the fruiting body, mycelium, and fermentation broth of Phellinus spp. have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge for their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. This review systematically summarizes the recent progress in the isolation and purification, chemical structures, bioactivities, and the underlying mechanisms of PPs. Information from this review provides insights into the further development of polysaccharides from PPs as therapeutic agents and functional foods.
Collapse
|
22
|
Xu B, Hao K, Chen X, Wu E, Nie D, Zhang G, Si H. Broussonetia papyrifera Polysaccharide Alleviated Acetaminophen-Induced Liver Injury by Regulating the Intestinal Flora. Nutrients 2022; 14:nu14132636. [PMID: 35807816 PMCID: PMC9268590 DOI: 10.3390/nu14132636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Liver injury caused by an overdose of acetaminophen (APAP) is a major public health problem. This study aimed to evaluate the effects of Broussonetia papyrifera polysaccharide (BPP) on liver injury and intestinal flora induced by APAP. The results showed that BPP could protect against APAP-induced liver injury, alleviate liver apoptosis, improve antioxidant capacity and enhance the liver’s detoxification ability to APAP. At the same time, BPP improved the intestinal flora disorder caused by APAP. More importantly, we found that the hepatoprotective effect of BPP disappeared after the depletion of gut microbiota in mice. Further, we reconstructed the intestinal flora structure of mice through fecal microbiota transplantation and found that the symptoms of APAP—induced liver injury were effectively alleviated. Overall, BPP was a potential hepatoprotective drug that could protect against APAP-induced liver injury and might be mediated by intestinal flora.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongbin Si
- Correspondence: ; Tel.: +86-136-8771-1878
| |
Collapse
|
23
|
The Regulatory Roles of Polysaccharides and Ferroptosis-Related Phytochemicals in Liver Diseases. Nutrients 2022; 14:nu14112303. [PMID: 35684103 PMCID: PMC9182636 DOI: 10.3390/nu14112303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
Liver disease is a global health burden with high morbidity and mortality worldwide. Liver injuries can develop into severe end-stage diseases, such as cirrhosis or hepatocellular carcinoma, without valid treatment. Therefore, identifying novel drugs may promote liver disease treatment. Phytochemicals, including polysaccharides, flavonoids, alkaloids, and terpenes, are abundant in foods and medicinal plants and have various bioactivities, such as antioxidation, immunoregulation, and tumor killing. Recent studies have shown that many natural polysaccharides play protective roles in liver disease models in vitro and in vivo, such as fatty liver disease, alcoholic liver disease, drug-induced liver injury, and liver cancer. The mechanisms of liver disease are complex. Notably, ferroptosis, a new type of cell death driven by iron and lipid peroxidation, is considered to be the key mechanism in many hepatic pathologies. Therefore, polysaccharides and other types of phytochemicals with activities in ferroptosis regulation provide novel therapeutic strategies for ferroptosis-related liver diseases. This review summarizes our current understanding of the mechanisms of ferroptosis and liver injury and compelling preclinical evidence of natural bioactive polysaccharides and phytochemicals in treating liver disease.
Collapse
|
24
|
Zhou Y, Wang J, Zhang D, Liu J, Wu Q, Chen J, Tan P, Xing B, Han Y, Zhang P, Xiao X, Pei J. Mechanism of drug-induced liver injury and hepatoprotective effects of natural drugs. Chin Med 2021; 16:135. [PMID: 34895294 PMCID: PMC8665608 DOI: 10.1186/s13020-021-00543-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a common adverse drug reaction (ADR) and a serious threat to health that affects disease treatments. At present, no targeted clinical drugs are available for DILI. Traditional natural medicines have been widely used as health products. Some natural medicines exert specific hepatoprotective effects, with few side effects and significant clinical efficacy. Thus, natural medicines may be a promising direction for DILI treatment. In this review, we summarize the current knowledge, common drugs and mechanisms of DILI, as well as the clinical trials of natural drugs and their bioactive components in anticipation of the future development of potential hepatoprotective drugs.
Collapse
Affiliation(s)
- Yongfeng Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Junnan Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488 China
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Dingkun Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Jiaxin Liu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Qinghua Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Jiang Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Peng Tan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Boyu Xing
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Yanzhong Han
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Xiaohe Xiao
- Department of Liver Disease, Fifth Medical Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Jin Pei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| |
Collapse
|
25
|
YİLMAZ S, GÖÇMEN Y, TOKPINAR A, UÇAR İ, ATEŞ Ş, AVNİOĞLU S, NİSARİ M. Parasetamol Verilen Gebe Ratlarda Fetüs Karaciğerleri Üzerine VEGF A, SOST ve Fetuin A Etkileri. ACTA MEDICA ALANYA 2020. [DOI: 10.30565/medalanya.688286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|