1
|
Kamelnia R, Ahmadi-Hamedani M, Darroudi M, Kamelnia E. Improving the stability of insulin through effective chemical modifications: A Comprehensive review. Int J Pharm 2024; 661:124399. [PMID: 38944170 DOI: 10.1016/j.ijpharm.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Insulin, an essential peptide hormone, conjointly regulates blood glucose levels by its receptor and it is used as vital drug to treat diabetes. This therapeutic hormone may undergo different chemical modifications during industrial processes, pharmaceutical formulation, and through its endogenous storage in the pancreatic β-cells. Insulin is highly sensitive to environmental stresses and readily undergoes structural changes, being also able to unfold and aggregate in physiological conditions. Even; small changes altering the structural integrity of insulin may have significant impacts on its biological efficacy to its physiological and pharmacological activities. Insulin analogs have been engineered to achieve modified properties, such as improved stability, solubility, and pharmacokinetics, while preserving the molecular pharmacology of insulin. The casually or purposively strategies of chemical modifications of insulin occurred to improve its therapeutic and pharmaceutical properties. Knowing the effects of chemical modification, formation of aggregates, and nanoparticles on protein can be a new look at the production of protein analogues drugs and its application in living system. The project focused on effects of chemical modifications and nanoparticles on the structure, stability, aggregation and their results in effective drug delivery system, biological activity, and pharmacological properties of insulin. The future challenge in biotechnology and pharmacokinetic arises from the complexity of biopharmaceuticals, which are often molecular structures that require formulation and delivery strategies to ensure their efficacy and safety.
Collapse
Affiliation(s)
- Reyhane Kamelnia
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Mahmood Ahmadi-Hamedani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran.
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Kamelnia
- Department of biology, Faculty of sciences, Mashhad branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
2
|
Allahyari M, Motavalizadeh-Kakhky AR, Mehrzad J, Zhiani R, Chamani J. Cellulose nanocrystals derived from chicory plant: an un-competitive inhibitor of aromatase in breast cancer cells via PI3K/AKT/mTOP signalling pathway. J Biomol Struct Dyn 2024; 42:5575-5589. [PMID: 37340682 DOI: 10.1080/07391102.2023.2226751] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
A significant contributing factor in the development of breast cancer is the estrogens. The synthesis of estrogens is primarily facilitated by aromatase (CYP19), a cytochrome P450 enzyme. Notably, aromatase is expressed at a higher level in human breast cancer tissue compared with the normal breast tissue. Therefore, inhibiting aromatase activity is a potential strategy in hormone receptor-positive breast cancer treatment. In this study, Cellulose Nanocrystals (CNCs) were obtained from Chicory plant waste through a sulfuric acid hydrolysis method with the objective of investigating that whether the obtained CNCs could act as an inhibitor of aromatase enzyme, and prevent the conversion of androgens to estrogens. Structural analysis of CNCs was carried out using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), while morphological results were obtained using AFM, TEM, and FE-SEM. Furthermore, the nano-particles were found to be spherical in shape with a diameter range of 35-37 nm and displayed a reasonable negative surface charge. Stable transfection of MCF-7 cells with CYP19 has demonstrated the ability of CNCs to inhibit aromatase activities and prevent cell growth by interfering with the enzyme activities. Spectroscopic results revealed the binding constant of CYP19-CNCs and (CYP19-Androstenedione)-CNCs complexes to be 2.07 × 103 L/gr and 2.06 × 104 L/gr, respectively. Conductometry and CD data reported different interaction behaviors among CYP19 and CYP19-Androstenedione complexes at the presence of CNCs in the system. Moreover, the addition of CNCs to the solution in a successive manner resulted in the enhancement of the secondary structure of the CYP19-androstenedione complex. Additionally, CNCs showed a marked reduction in the viability of cancer cells compared to normal cells by enhancing the expression of Bax and p53 at protein and mRNA levels, and by decreasing mRNA levels of PI3K, AKT, and mTOP, as well as protein levels of PI3Kg-P110 and P-mTOP, in MCF-7 cells after incubation with CNCs at IC50 concentration. These findings confirm the decrease in proliferation of breast cancer cells associated with induction of apoptosis through down-regulation of the PI3K/AKT/mTOP signaling pathway. According to the provided data, the obtained CNCs are capable of inhibiting aromatase enzyme activity, which has significant implications for the treatment of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manizheh Allahyari
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Ali Reza Motavalizadeh-Kakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Material Technology and Processing Research Center, Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Advance Research Center of Chemistry Biochemistry& Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
3
|
Mirzaei SM, Oskuee RK, Sadri K, Sabouri Z, Far BF, Abdulabbas HS, Darroudi M. Development of a Novel Sulfur Quantum Dots: Synthesis, 99mTc Radiolabeling, and Biodistribution. Appl Biochem Biotechnol 2024; 196:3356-3373. [PMID: 37650949 DOI: 10.1007/s12010-023-04703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Sulfur quantum dots (SQDs) as free heavy metal element quantum dots have promising applications in diagnosis and therapy; however, SQDs' in vivo biodistribution has not been studied. In the current study, SQDs were synthesized directly from cheap sublimated sulfur powder via a one-pot solvothermal method, and sucrose was used as a stabilizer to enhance stability and biocompatibility. The as-obtained SQDs with an average size of 4.6 nm exhibited great water dispersity, highly favorable quantum yield (21.5%), and uniformly spherical shape which were confirmed by UV-Vis, fluorescence spectrophotometer, TEM, and FESEM/EDX/PSA analyses. Moreover, the as-synthesized SQDs had very low cytotoxicity based on cancer (C26) and normal (L929) cell lines via MTT assay. And also, SQDs were radio-labeled directly by Technetium-99m (99mTc), which had good stability ranging from 86 to 99% in PBS and human serum. The SQDs' cell uptake on C26 and L929 cell lines demonstrated that cancer cells had more uptake than normal cells by increasing concentrations. Moreover, SQDs' in vivo biodistribution results displayed high kidney dose accumulation and rapid renal clearance, making them suitable for imaging and therapeutic applications.
Collapse
Affiliation(s)
- Seyedeh Mozhdeh Mirzaei
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kayvan Sadri
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabouri
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Majid Darroudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
4
|
Chowdhury SR, Mondal G, Ratnayake P, Basu B. Three-Dimensional Extrusion Printed Urinary Specific Grafts: Mechanistic Insights into Buildability and Biophysical Properties. ACS Biomater Sci Eng 2024; 10:1040-1061. [PMID: 38294204 DOI: 10.1021/acsbiomaterials.3c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The compositional formulations and the optimization of process parameters to fabricate hydrogel scaffolds with urological tissue-mimicking biophysical properties are not yet extensively explored, including a comprehensive assessment of a spectrum of properties, such as mechanical strength, viscoelasticity, antimicrobial property, and cytocompatibility. While addressing this aspect, the present work provides mechanistic insights into process science, to produce shape-fidelity compliant alginate-based biomaterial ink blended with gelatin and synthetic nanocellulose. The composition-dependent pseudoplasticity, viscoelasticity, thixotropy, and gel stability over a longer duration in physiological context have been rationalized in terms of intermolecular hydrogen bonding interactions among the biomaterial ink constituents. By varying the hybrid hydrogel ink composition within a narrow compositional window, the resulting hydrogel closely mimics the natural urological tissue-like properties, including tensile stretchability, compressive strength, and biophysical properties. Based on the printability assessment using a critical analysis of gel strength, we have established the buildability of the acellular hydrogel ink and have been successful in fabricating shape-fidelity compliant urological patches or hollow cylindrical grafts using 3D extrusion printing. Importantly, the new hydrogel formulations with good hydrophilicity, support fibroblast cell proliferation and inhibit the growth of Gram-negative E. coli bacteria. These attributes were rationalized in terms of nanocellulose-induced physicochemical changes on the scaffold surface. Taken together, the present study uncovers the process-science-based understanding of the 3D extrudability of the newly formulated alginate-gelatin-nanocellulose-based hydrogels with urological tissue-specific biophysical, cytocompatibility, and antibacterial properties.
Collapse
Affiliation(s)
- Sulob Roy Chowdhury
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Garga Mondal
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Praneeth Ratnayake
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Kamelnia R, Goliaei B, Peyman Shariatpanahi S, Mehrnejad F, Ghasemi A, Zare Karizak A, Ebrahim-Habibi A. Chemical Modification of the Amino Groups of Human Insulin: Investigating Structural Properties and Amorphous Aggregation of Acetylated Species. Protein J 2023:10.1007/s10930-023-10131-7. [PMID: 37395911 DOI: 10.1007/s10930-023-10131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/04/2023]
Abstract
The efficacy of human recombinant insulin can be affected by its aggregation. Effects of acetylation were observed on insulin structure, stability, and aggregation at 37 and 50 °C and pH of 5.0 and 7.4 with the use of spectroscopy, circular dichroism (CD), dynamic light scattering (DLS), and atomic force microscopy (AFM). Raman and FTIR results were indicative of structural changes in AC-INS, and CD analyses showed a slight increase in β-sheet content in AC-INS. Melting temperature (Tm) measurements indicated an overall more stable structure and spectroscopic assessment showed a more compact one. Formation of amorphous aggregates was followed over time and kinetics parameters showed a longer nucleation phase (higher t* amount) and lower aggregates amount (lower Alim) for acetylated insulin (AC-INS) compared to native (N-INS) in all tested conditions. The results of amyloid-specific probes approved the formation of amorphous aggregates. Size particle and microscopic analysis suggested that AC-INS was less prone to form aggregates, which were smaller if formed. In conclusion, this study has demonstrated that controlled acetylation of insulin may lead to its higher stability and lower propensity toward amorphous aggregation and has provided insight into the result of this type of post-translational protein modification.
Collapse
Affiliation(s)
- Reyhane Kamelnia
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., P.O. Box 13145-1384, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., P.O. Box 13145-1384, Tehran, Iran.
| | - Seyed Peyman Shariatpanahi
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., P.O. Box 13145-1384, Tehran, Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ashkan Zare Karizak
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Jalal Al Ahmad Highway, Tehran, 1411713137, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Singh S, Bhardwaj S, Meda RS, Verma C, Chhajed M, Ghosh K, Maji PK. Insights into thermal degradation kinetics and liquid crystalline behavior of cellulose nanocrystals from the waste of Cajanus cajan (pigeon pea). Int J Biol Macromol 2023; 242:124507. [PMID: 37100324 DOI: 10.1016/j.ijbiomac.2023.124507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/25/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Cellulose nanocrystals (CNCs) are essential for advancing nanotechnology and modern science. This work used the Cajanus cajan stem, an agricultural waste, as a lignocellulosic mass, which can serve as a supply of CNCs. After extraction from the Cajanus cajan stem, CNCs have been thoroughly characterized. FTIR (Infrared Spectroscopy) and ssNMR (solid-state Nuclear Magnetic Resonance) successfully validated eliminating additional components from the waste stem. The ssNMR and XRD (X-ray diffraction) were utilized to compare the crystallinity index. For structural analysis, the XRD of cellulose Iβ was simulated to compare with the extracted CNCs. Various mathematical models inferred thermal stability and its degradation kinetics to ensure its high-end applications. Surface analysis established the rod-like shape of the CNCs. Rheological measurements were performed to gauge the liquid crystalline properties of CNC. The anisotropic liquid crystalline CNCs' birefringence proves that the Cajanus cajan stem is a promising resource for making CNCs for cutting-edge applications.
Collapse
Affiliation(s)
- Shiva Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Shakshi Bhardwaj
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Radheesh Sharma Meda
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India; Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Chhavi Verma
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Monika Chhajed
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India.
| |
Collapse
|
7
|
Kalhori F, Yazdyani H, Khademorezaeian F, Hamzkanloo N, Mokaberi P, Hosseini S, Chamani J. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. Pericarp: A perspective of cholesterol lowering. LUMINESCENCE 2022; 37:1836-1845. [PMID: 35946171 DOI: 10.1002/bio.4360] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 08/07/2022] [Indexed: 11/08/2022]
Abstract
As a waste material, the amazing potential of CNCs isolated from Citrus medica L. pericarp in being the natural resource of lingo-cellulosic products was never investigated before. In the present study, an alkaline pretreatment and a two-step bleaching procedure were applied to conduct the desired acid hydrolysis by the usage of 64% sulfuric acid at 50 °C for 105 minutes. The extracted CNCs were distinguished through the means of transmission electron microscopy (TEM), Field Emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), zeta potential, and Energy-dispersive X-ray spectroscopy (EDX). The elimination of peaks, which were accountable for the inducement of hemicelluloses and lignin, was confirmed by the FTIR results and were also validated by the outcomes of XRD that proved the gentle removal of non-cellulosic components. The morphology and size of CNCs were indicated through the FESEM and TEM results. In addition, the spherical forms of synthesized CNCs were observed with a diameter of 46 nm throughout the FESEM images, while displaying a value of 42.54 nm as well due to TEM micrographs. The obtained Zeta potential displayed a reasonable negative surface charge for CNCs. Furthermore, the cytotoxicity assessment of this product on fibroblast cells was performed to study their susceptibility for bio-medical and cosmetic industrial applications, which resulted in the lack of exhibiting any cytotoxic effects. In conformity to the outcomes of TEM and FESEM, the results of AFM revealed the fine dispersion and spherical form of cellulose nano-particles. The interaction between HMG-CoA reductase and CNC was studied by the usage of multi-spectroscopic methods and enzyme kinetics to explore the binding mechanism of HMG-CoA reductase-CNC system. Reduced catalytic activity of the occurrence of changes in the secondary structure of HMG-CoA reductase was as a result of interacting with CNC caused a reduction in its catalytic activity.
Collapse
Affiliation(s)
- Fateme Kalhori
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Helya Yazdyani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Fatemeh Khademorezaeian
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Negar Hamzkanloo
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sare Hosseini
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
8
|
Construction of superhydrophilic and underwater superoleophobic corn stalk/konjac glucomannan aerogel for high-efficiency oil/water emulsion separation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zamel D, Khan AU. Bacterial immobilization on cellulose acetate based nanofibers for methylene blue removal from wastewater: Mini-review. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Roeinfard M, Zahedifar M, Darroudi M, Sadri K, Khorsand Zak A. Preparation of Technetium Labeled-Graphene Quantum Dots and Investigation of Their Bio Distribution. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|