1
|
Sharma V, Sharma P, Singh B. Functionalization of almond gum through covalent and non-covalent interactions for biomedical applications. Int J Biol Macromol 2025; 292:139364. [PMID: 39743093 DOI: 10.1016/j.ijbiomac.2024.139364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The versatile properties of carbohydrate polymers make them a relevant, promising precursor to design innovative materials for use in biomedical applications. Recent research mainly focuses on the development of the polysaccharide based functional materials. Hydrogel derived materials are a source of great motivation for the development of drug delivery (DD) carriers with inherent therapeutic potential. Herein, almond gum-based hydrogels were synthesized for the delivery of the anticancer drug methotrexate after impregnation to improve the DD profile. Hydrogels were characterized by FESEM, EDS, AFM, 13C NMR, FTIR, TGA, DSC, XRD, mechanical strength & biomedical assay. The optimized network hydrogel exhibited a mesh size of 19.764 mm and a cross-linking density of 5.002 × 10-5 mol/cm3 of the hydrogels. Morphological features revealed irregular, uneven internal morphology of hydrogels in FE-SEM. The inclusion of sulphated and amide polymers in hydrogels was found in elemental composition (C = 60.72 %, O = 29.79 %, N = 6.63 % and S = 2.86 %) of hydrogels inferred from EDS. Spectroscopic characterization by FT-IR and 13C NMR confirmed the inclusion of PVP and PVSA through grafting reaction. The crosslinked product formed was found thermally stable and amorphous in nature through TGA and XRD analysis. The sustained release was found through supramolecular interactions and release complied a non-Fickian mechanism for drug diffusion (n = 0.73) and the release profile was best described by the Hixson-Crowell kinetic model in colonic pH. The hydrogels were mucoadhesive in nature and required 144 ± 10.54 mN force for the separation of hydrogels from the mucosal surface during the adhesion test. Hydrogel illustrated antioxidant activity (32.68 ± 0.83 μg GAE) during their radical scavenging test by FC reagent assay. Drug encapsulated hydrogels demonstrated antimicrobial efficacy against microbes. The results of physico-chemical and biomedical properties of hydrogels suggested their suitability for biomedical uses.
Collapse
Affiliation(s)
- Vikrant Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| | - Priyanka Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
2
|
Naskar P, Chakraborty D, Mondal A, Das B, Samanta A. Immobilization of α-amylase in calcium alginate-gum odina (CA-GO) beads: An easily recoverable and reusable support. Int J Biol Macromol 2024; 258:129062. [PMID: 38159691 DOI: 10.1016/j.ijbiomac.2023.129062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
A natural polysacharide, gum odina was collected from Odina wodier tree and purified. Purified gum odina was used with sodium alginate for immobilization of α-amylase. Calcium alginate-gum odina (CA-GO) beads were prepared by ionotropic gelation method to find the improvement of immobilization efficiency and reusability of α-amylase over calcium alginate (CA) beads. XRD, SEM, FTIR, beads diameter, enzyme leaching from beads, moisture content, total soluble matter and swelling study have been carried out to understand the physical morphology and mechanism of immobilization of enzyme in beads matrix. It has been observed that if the polymer ratio changes (keeping enzyme conc. & calcium Chloride conc. constant) then the size and shape of the beads will vary and at a particular range of polymer ratio, the optimal beads forms. At a certain conc.(4%w/v of SA and 1%w/v GO), the immobilization efficiency of CA-GO and CA beads were 92.71 ± 0.85 % (w/w) and 89.19 ± 0.35 %(w/w) respectively. After 8th time use, the CA-GO beads remain (~4 fold) more active than that of CA beads. The FTIR confirms that GO does not interfere with α-Amylase and alginate. Here, it can be concluded that CA-GO beads show better efficiency in respect to immobilization, reusability than CA beads only.
Collapse
Affiliation(s)
- Pranab Naskar
- Division of Microbiology and Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S C Mullick Road, Kolkata 700032, India
| | - Debpratim Chakraborty
- Division of Microbiology and Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S C Mullick Road, Kolkata 700032, India
| | - Anurup Mondal
- Division of Microbiology and Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S C Mullick Road, Kolkata 700032, India
| | - Bhaskar Das
- Division of Microbiology and Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S C Mullick Road, Kolkata 700032, India
| | - Amalesh Samanta
- Division of Microbiology and Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S C Mullick Road, Kolkata 700032, India.
| |
Collapse
|
3
|
Bai L, Xu D, Zhou YM, Zhang YB, Zhang H, Chen YB, Cui YL. Antioxidant Activities of Natural Polysaccharides and Their Derivatives for Biomedical and Medicinal Applications. Antioxidants (Basel) 2022; 11:2491. [PMID: 36552700 PMCID: PMC9774958 DOI: 10.3390/antiox11122491] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Many chronic diseases such as Alzheimer's disease, diabetes, and cardiovascular diseases are closely related to in vivo oxidative stress caused by excessive reactive oxygen species (ROS). Natural polysaccharides, as a kind of biomacromolecule with good biocompatibility, have been widely used in biomedical and medicinal applications due to their superior antioxidant properties. In this review, scientometric analysis of the highly cited papers in the Web of Science (WOS) database finds that antioxidant activity is the most widely studied and popular among pharmacological effects of natural polysaccharides. The antioxidant mechanisms of natural polysaccharides mainly contain the regulation of signal transduction pathways, the activation of enzymes, and the scavenging of free radicals. We continuously discuss the antioxidant activities of natural polysaccharides and their derivatives. At the same time, we summarize their applications in the field of pharmaceutics/drug delivery, tissue engineering, and antimicrobial food additives/packaging materials. Overall, this review provides up-to-date information for the further development and application of natural polysaccharides with antioxidant activities.
Collapse
Affiliation(s)
- Lu Bai
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan-Ming Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yong-Bo Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yi-Bing Chen
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Tapdiqov S, Taghiyev D, Zeynalov N, Safaraliyeva S, Fatullayeva S, Hummetov A, Raucci M, Mustafayev M, Jafarova R, Shirinova K. Cumulative release kinetics of levothyroxine-Na pentahydrate from chitosan/arabinogalactane based pH sensitive hydrogel and it's toxicology. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Li H, Wang Y, Chen Y, Wang S, Zhao Y, Sun J. Arabinogalactan from Ixeris chinensis (Thunb.) Nakai as a stabilizer to decorate SeNPs and enhance their anti-hepatocellular carcinoma activity via the mitochondrial pathway. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yifan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yan Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Shuxin Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yifan Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Caldera-Villalobos M, Álvarez-Venicio V, Arenas-Sáenz M, Leal-Acevedo B, Carreón-Castro MDP. Radiochemical transformation of mucilage extracted from Opuntia ficus-índica using gamma radiation. Appl Radiat Isot 2022; 190:110430. [DOI: 10.1016/j.apradiso.2022.110430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
|
8
|
The effect of treatment with HEMA and gamma irradiation on the starch:PVA films studied by differential scanning calorimetry and thermogravimetry. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Chitra R, Krishna MV, Selvasekarapandian S. Study on novel biopolymer electrolyte Moringa oleifera gum with ammonium nitrate. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Wei H, Li S, Liu Z, Chen H, Liu Y, Li W, Wang G. Preparation and characterization of starch-cellulose interpenetrating network hydrogels based on sequential Diels-Alder click reaction and photopolymerization. Int J Biol Macromol 2022; 194:962-973. [PMID: 34848242 DOI: 10.1016/j.ijbiomac.2021.11.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022]
Abstract
Herein, starch-cellulose interpenetrating network (IPN) hydrogels were fabricated by sequential Diels-Alder click reaction and photopolymerization in water. Moreover, β-cyclodextrin, a commonly used host molecule in supramolecular chemistry, was also introduced to improve the performance of the IPN hydrogel. Firstly, the starch-based dienes were synthesized by modifying starch with N-maleoyl-β-alanine, and the cellulose-based dienophiles were obtained by the reaction of cellulose and furfurylamide succinate; Secondly, the as-synthesized starch-based dienes, cellulose-based dienophiles, polymerizable β-cyclodextrin, crosslinker, and acrylamide were dissolved in water and obtained a transparent solution. The solution was maintained in a water bath of 50 °C for 3 h, forming the first network via catalyst-free click Diels-Alder reaction, subsequently, the second network was formed by photopolymerization. Their preparation conditions were optimized via one-factor experiments and their properties and structures were characterized. Finally, 5- fluorouracil (5-Fu) was used as a model drug to study the sustained release behavior of the drug-loaded hydrogels. Release profile was found to fit in Ritger-Peppas kinetic model and polymer relaxation and drug diffusion made a valuable contribution to drug release. Taking into account the virtues of easily controllable photopolymerization and catalyst-free Diels-Alder reaction, the strategy described here has a potential application in the preparation of IPN hydrogels.
Collapse
Affiliation(s)
- Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Songmao Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Zijun Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongli Chen
- The Third Hospital of Xinxiang Medical University, Xinxiang, PR China.
| | - Yuhua Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Weikun Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
11
|
Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics 2020; 12:pharmaceutics12121188. [PMID: 33297493 PMCID: PMC7762425 DOI: 10.3390/pharmaceutics12121188] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
Owing to their tunable properties, controllable degradation, and ability to protect labile drugs, hydrogels are increasingly investigated as local drug delivery systems. However, a lack of standardized methodologies used to characterize and evaluate drug release poses significant difficulties when comparing findings from different investigations, preventing an accurate assessment of systems. Here, we review the commonly used analytical techniques for drug detection and quantification from hydrogel delivery systems. The experimental conditions of drug release in saline solutions and their impact are discussed, along with the main mathematical and statistical approaches to characterize drug release profiles. We also review methods to determine drug diffusion coefficients and in vitro and in vivo models used to assess drug release and efficacy with the goal to provide guidelines and harmonized practices when investigating novel hydrogel drug delivery systems.
Collapse
|
12
|
Badwaik HR, Hoque AA, Kumari L, Sakure K, Baghel M, Giri TK. Moringa gum and its modified form as a potential green polymer used in biomedical field. Carbohydr Polym 2020; 249:116893. [PMID: 32933701 DOI: 10.1016/j.carbpol.2020.116893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
Over the past few decades, natural gums are extensively investigated by the researchers due to their beneficial physicochemical properties. Among them, the polysaccharide exudates obtained from the stem of the plant Moringa oleifera, known as moringa gum, is investigated widely in the food, pharmaceutical, and other areas. The moringa gum is used in the form of dried powder as a pharmaceutical excipient in various formulations. It is also derivatized either by grafting or by other chemical modifications for enhancing its properties. The research on moringa gum and modified moringa gum has diversified in numerous biomedical fields. However, summarization of these progress are not available in the literature. This article gives an overview of the collection, purification, structural elucidation, and modification of moringa gum. Moreover, the present review furnishes complete information on the various aspects of moringa gum and its applications in various industrial and biomedical fields.
Collapse
Affiliation(s)
- Hemant Ramachandra Badwaik
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai, 490023, Chhattisgarh, India.
| | - Ashique Al Hoque
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Kalyani Sakure
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai, 490023, Chhattisgarh, India
| | - Madhuri Baghel
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai, 490023, Chhattisgarh, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| |
Collapse
|
13
|
Gupta S, Kachhwaha S, Kothari SL, Bohra MK, Jain R. Surface Morphology and Physicochemical Characterization of Thermostable Moringa Gum: A Potential Pharmaceutical Excipient. ACS OMEGA 2020; 5:29189-29198. [PMID: 33225150 PMCID: PMC7675538 DOI: 10.1021/acsomega.0c03966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
An efficient protocol for physico-chemical characterization of gum exudates collected from the drumstick tree (Moringa oleifera Lam.) has been reported in the present study. Extraction of gum metabolites was done using a series of water, alcohol, acid, and alkali solvent systems. The gum was sparingly soluble in water at room temperature and formed a colloidal solution. Solubility of the gum gradually increased in the solvent gradient (80% ethanol, deionized water, 0.05 M HCl, and 0.05 M NaOH) at 90 °C. Further, electron microscopy revealed that the acetyl group is essential in maintaining the structural integrity, and deacetylation of gum resulted in formation of a mesh of scattered and fibrous particles. Treatment of gum with deionized water resulted in development of a hydrocolloidal matrix with a pore size of 0.5 μm, which upon deacetylation was reduced up to 0.2 μm. The polymer was amorphous in nature and showed maximum thermal stability in ethanol. Gas chromatography-mass spectrometry of the gum polymer revealed that carbohydrate derivatives constituted its major part (>75%). Maximum carbohydrate concentration was obtained in the ethanol soluble fraction, along with fatty acids (10%) and secondary metabolites (9%). The results provided very first confirmation of the hydrocolloidal properties and thermostability of the gum exudates obtained from the drumstick tree, which can further be used to develop an eco-friendly and nontoxic bioligand.
Collapse
Affiliation(s)
- Swati Gupta
- Department
of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Sumita Kachhwaha
- Department
of Botany, University of Rajasthan, Jaipur 302004, India
| | - SL Kothari
- Amity
University Rajasthan, Jaipur, Rajasthan 303007, India
| | - Manoj Kumar Bohra
- Department
of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India
| | - Rohit Jain
- Department
of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| |
Collapse
|
14
|
Preparation and release properties of arbutin imprinted inulin/polyvinyl alcohol biomaterials. Int J Biol Macromol 2020; 161:763-770. [DOI: 10.1016/j.ijbiomac.2020.06.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
|
15
|
Preparation of atenolol imprinted polysaccharide based biomaterials for a transdermal drug delivery system. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|