1
|
Yuan Y, Nasri M, Manayi A, Zhang J, Wu C, Jeon TJ, Kang L. Sericin coats of silk fibres, a degumming waste or future material? Mater Today Bio 2024; 29:101306. [PMID: 39534681 PMCID: PMC11554926 DOI: 10.1016/j.mtbio.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Silk is a fibrous biopolymer with a recorded history in the textile industries for centuries. This fibre is constituted of two different proteins: fibroin and sericin, of which the latter accounting for approximately 20-30 % of the silk mass. Silk sericin (SSER) was previously considered as a waste by-product in silk fibroin extraction. SSER has recently garnered significant scientific interest due to its extensive biological and pharmacological properties. These include antioxidant effects, biocompatibility, low immunogenicity, controlled biodegradability, and the ability to induce cell proliferation. This review covers studies about various aspects of this emerging material, namely, its general morphology, specific structure, molecular weight, features of different layers, and gene sequences. The impact of different extraction methods and the application of extracted SSER based on molecular weight are discussed. Additionally, the characteristic functional groups in the amino acids of sericin facilitate its applications in regenerative medicine, wound healing, drug delivery, textile, environment, and energy, in various forms like hydrogels, films, scaffolds, and conduits. SSER-based materials offer great potentials for multi-functional applications in the upcoming decades, showcasing adaptability for various functional uses and promising future technological advancements.
Collapse
Affiliation(s)
- Yunong Yuan
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
- Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| | - Mohammad Nasri
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
| | - Azadeh Manayi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
- Medicinal Plants Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Junying Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
- Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Yamdech R, Terahsongkran V, Terahsongkran V, Cherdchom S, Aramwit P. Development of Antioxidant-Active Sericin-Curcumin-Loaded Sodium Alginate/Polyvinyl Alcohol Films Crosslinked with Calcium Chloride as a Promising Wound Dressing Application. Polymers (Basel) 2024; 16:3197. [PMID: 39599288 PMCID: PMC11598768 DOI: 10.3390/polym16223197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Silk sericin (SS) and curcumin (Cur) possess significant antioxidant properties, making them highly beneficial for wound healing applications. This study aimed to develop SS-Cur-loaded sodium alginate/polyvinyl alcohol (SA/PVA) films crosslinked with calcium chloride, creating a biomaterial with enhanced stability and antioxidant properties. Wound dressings containing SS-Cur were fabricated by mixing SA and PVA at different ratios of 1:1, 1:2, 1:4, and 1:6. The resulting films were then crosslinked with calcium chloride in an ethanol solution to enhance film integrity. These films were characterized using several techniques, revealing that the presence of ethanol in calcium chloride affected film properties, including the gel fraction, swelling, film thickness, and FTIR analysis. The presence of ethanol in calcium chloride revealed the highest drug content in the SA/PVA films. In vitro release studies demonstrated sustained release of SS-Cur from all formulations. Cytotoxicity and antioxidant activity tests showed that SS-Cur-loaded SA/PVA films with ethanol in calcium chloride increased cell viability and enhanced antioxidant effects in L929 cells. In conclusion, this study demonstrates that the presence of ethanol in the crosslinking solution improved the functionality of SS-Cur-loaded SA/PVA films, making them promising candidates for wound healing and soft tissue regeneration.
Collapse
Affiliation(s)
- Rungnapha Yamdech
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Vareesa Terahsongkran
- Mater Dei School, 534 Phloen Chit Rd., Lumphini, Pathum Wan, Bangkok 10330, Thailand;
| | - Varis Terahsongkran
- Patumwan Demonstration School, Srinakharinwirot University, Henri Dunant Rd., Pathum Wan, Bangkok 10330, Thailand;
| | - Sarocha Cherdchom
- Department of Preventive and Social Medicine and Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10330, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
3
|
Prakash M, Mathikere Naganna C, Radhakrishnan V, Somayaji P, Sabu L. Therapeutic potential of silkworm sericin in wound healing applications. Wound Repair Regen 2024; 32:916-940. [PMID: 39225112 DOI: 10.1111/wrr.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic wounds are characterised by an imbalance between pro and anti-inflammatory signals, which result in permanent inflammation and delayed re-epithelialization, consequently hindering wound healing. They are associated with bacterial infections, tissue hypoxia, local ischemia, reduced vascularization and MMP-9 upregulation. The global prevalence of chronic wounds has been estimated at 40 million in the adult population, with an alarming annual growth rate of 6.6%, making it an increasingly significant clinical problem. Sericin is a natural hydrophilic protein obtained from the silkworm cocoon. Due to its biocompatibility, biodegradability, non-immunogenicity and oxidation resistance, coupled with its excellent affinity for target biomolecules, it holds great potential in wound healing applications. The silk industry discards 50,000 tonnes of sericin annually, making it a readily available material. Sericin increases cell union sites and promotes cell proliferation in fibroblasts and keratinocytes, thanks to its cytoprotective and mitogenic effects. Additionally, it stimulates macrophages to release more therapeutic cytokines, thus improving vascularization. This review focuses on the biological properties of sericin that contribute towards enhanced wound healing process and its mechanism of interaction with important biological targets involved in wound healing. Emphasis is placed on diverse wound dressing products that are sericin based and the utilisation of nanotechnology to design sericin nanoparticles that aid in chronic wound management.
Collapse
Affiliation(s)
- Monika Prakash
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | | | - Vivek Radhakrishnan
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Prathik Somayaji
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Leah Sabu
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
4
|
Aad R, Dragojlov I, Vesentini S. Sericin Protein: Structure, Properties, and Applications. J Funct Biomater 2024; 15:322. [PMID: 39590526 PMCID: PMC11595228 DOI: 10.3390/jfb15110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Silk sericin, the glue protein binding fibroin fibers together, is present in the Bombyx mori silkworms' cocoons. In recent years, sericin has gained attention for its wide range of properties and possible opportunities for various applications, as evidenced by the meta-analysis conducted in this review. Sericin extraction methods have evolved over the years to become more efficient and environmentally friendly, preserving its structure. Due to its biocompatibility, biodegradability, anti-inflammatory, antibacterial, antioxidant, UV-protective, anti-tyrosinase, anti-aging, and anti-cancer properties, sericin is increasingly used in biomedical fields like drug delivery, tissue engineering, and serum-free cell culture media. Beyond healthcare, sericin shows promise in industries such as textiles, cosmetics, and food packaging. This review aims to highlight recent advancements in sericin extraction, research, and applications, while also summarizing key findings from earlier studies.
Collapse
Affiliation(s)
| | | | - Simone Vesentini
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (R.A.); (I.D.)
| |
Collapse
|
5
|
Kumar Parida V, Kavita, Arora R, Sharma T. Unleashing the power of silk-based proteins as biomaterials for cutting-edge drug delivery: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-25. [PMID: 39230985 DOI: 10.1080/09205063.2024.2397215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Silk proteins, viz., sericin, fibroin and their modified forms etc., have been thoroughly researched as natural biopolymers for the development of varied nanomaterials exhibiting diverse biomedical applications. The silk proteins are extracted from the cocoons by degumming and treatment with soaps, followed by dissolution and dialysis against water. These proteins exhibit distinct mechanical and physicochemical characteristics including biocompatibility, controlled biodegradability, self-assembling traits, chemical modifiability, and adaptability, thus making it an ideal drug delivery vehicle. In this regard, silk protein-derived drug delivery systems have been reported as efficient carrier to encapsulate and stabilize the wide variety of pharmacological molecules, enzymes, proteins, vaccines, and even DNA, allowing them to remain active for a longer period of time. Further, different delivery carriers researched employing these proteins for multitude of applications include hydrogels, sponges, fibres, scaffolds and particulate delivery systems. Additionally, the chemical modification of silk proteins has further opened avenues for development of other modified silk proteins with improved physicochemical traits and hence exhibiting enormous potential in development of varied bioenhanced carrier systems. The current article thus provides the holistic information of characteristics, types of silk protein-based delivery carriers, and their fabrication techniques, while emphasizing the applications of different silk proteins in biomedicine and drug delivery.
Collapse
Affiliation(s)
| | - Kavita
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| | - Teenu Sharma
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| |
Collapse
|
6
|
Borges A, Calvo MLM, Vaz JA, Calhelha RC. Enhancing Wound Healing: A Comprehensive Review of Sericin and Chelidonium majus L. as Potential Dressings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4199. [PMID: 39274589 PMCID: PMC11395905 DOI: 10.3390/ma17174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
Wound healing, a complex physiological process orchestrating intricate cellular and molecular events, seeks to restore tissue integrity. The burgeoning interest in leveraging the therapeutic potential of natural substances for advanced wound dressings is a recent phenomenon. Notably, Sericin, a silk-derived protein, and Chelidonium majus L. (C. majus), a botanical agent, have emerged as compelling candidates, providing a unique combination of natural elements that may revolutionize conventional wound care approaches. Sericin, renowned for its diverse properties, displays unique properties that accelerate the wound healing process. Simultaneously, C. majus, with its diverse pharmacological compounds, shows promise in reducing inflammation and promoting tissue regeneration. As the demand for innovative wound care solutions increases, understanding the therapeutic potential of natural products becomes imperative. This review synthesizes current knowledge on Sericin and C. majus, envisioning their future roles in advancing wound management strategies. The exploration of these natural substances as constituents of wound dressings provides a promising avenue for developing sustainable, effective, and biocompatible materials that could significantly impact the field of wound healing.
Collapse
Affiliation(s)
- Ana Borges
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Desarrollo y Evaluación de Formas Farmacéuticas y Sistemas de Liberación Controlada, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - María Luisa Martín Calvo
- Grupo de Investigación en Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Josiana A Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
7
|
Arango MC, Jaramillo-Quiceno N, Badia JD, Cháfer A, Cerisuelo JP, Álvarez-López C. The Impact of Green Physical Crosslinking Methods on the Development of Sericin-Based Biohydrogels for Wound Healing. Biomimetics (Basel) 2024; 9:497. [PMID: 39194476 DOI: 10.3390/biomimetics9080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Silk sericin (SS)-based hydrogels show promise for wound healing due to their biocompatibility, moisture regulation, and cell proliferation properties. However, there is still a need to develop green crosslinking methods to obtain non-toxic, absorbent, and mechanically strong SS hydrogels. This study investigated the effects of three green crosslinking methods, annealing treatment (T), exposure to an absolute ethanol vapor atmosphere (V.E), and water vapor (V.A), on the physicochemical and mechanical properties of SS and poly (vinyl alcohol) (PVA) biohydrogels. X-ray diffraction and Fourier-transform infrared spectroscopy were used to determine chemical structures. Thermal properties and morphological changes were studied through thermogravimetric analysis and scanning electron microscopy, respectively. The water absorption capacity, mass loss, sericin release in phosphate-buffered saline (PBS), and compressive strength were also evaluated. The results showed that physical crosslinking methods induced different structural transitions in the biohydrogels, impacting their mechanical properties. In particular, V.A hydrogen presented the highest compressive strength at 80% deformation owing to its compact and porous structure with crystallization and bonding sites. Moreover, both the V.A and T hydrogels exhibited improved absorption capacity, stability, and slow SS release in PBS. These results demonstrate the potential of green physical crosslinking techniques for producing SS/PVA biomaterials for wound healing applications.
Collapse
Affiliation(s)
- Maria C Arango
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Natalia Jaramillo-Quiceno
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
| | - José David Badia
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Amparo Cháfer
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Josep Pasqual Cerisuelo
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Catalina Álvarez-López
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
| |
Collapse
|
8
|
Veiga A, Foster O, Kaplan DL, Oliveira AL. Expanding the boundaries of silk sericin biomaterials in biomedical applications. J Mater Chem B 2024; 12:7020-7040. [PMID: 38935038 DOI: 10.1039/d4tb00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Silk sericin (SS) has a long history as a by-product of the textile industry. SS has emerged as a sustainable material for biomedical engineering due to its material properties including water solubility, diverse impact on biological activities including antibacterial and antioxidant properties, and ability to promote cell adhesion and proliferation. This review addresses the origin, structure, properties, extraction, and underlying functions of this protein. An overview of the growing research studies and market evolution is presented, along with highlights of the most common fabrication matrices (hydrogels, bioinks, porous and fibrous scaffolds) and tissue engineering applications. Finally, the future trends with this protein as a multifaceted toolbox for bioengineering are explored, along with the challenges with SS. Overall, the present review can serve as a foundation for the creation of innovative biomaterials utilizing SS as a fundamental building block that hold market potential.
Collapse
Affiliation(s)
- Anabela Veiga
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Olivia Foster
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Ana Leite Oliveira
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
9
|
Wang SL, Zhuo JJ, Fang SM, Xu W, Yu QY. Silk Sericin and Its Composite Materials with Antibacterial Properties to Enhance Wound Healing: A Review. Biomolecules 2024; 14:723. [PMID: 38927126 PMCID: PMC11201629 DOI: 10.3390/biom14060723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Wound infections may disrupt the normal wound-healing process. Large amounts of antibiotics are frequently used to prevent pathogenic infections; however, this can lead to resistance development. Biomaterials possessing antimicrobial properties have promising applications for reducing antibiotic usage and promoting wound healing. Silk sericin (SS) has been increasingly explored for skin wound healing applications owing to its excellent biocompatibility and antioxidant, antimicrobial, and ultraviolet-resistant properties. In recent years, SS-based composite biomaterials with a broader antimicrobial spectrum have been extensively investigated and demonstrated favorable efficacy in promoting wound healing. This review summarizes various antimicrobial agents, including metal nanoparticles, natural extracts, and antibiotics, that have been incorporated into SS composites for wound healing and elucidates their mechanisms of action. It has been revealed that SS-based biomaterials can achieve sustained antimicrobial activity by slow-release-loaded antimicrobial agents. The antimicrobial-loaded SS composites may promote wound healing through anti-infection, anti-inflammation, hemostasis, angiogenesis, and collagen deposition. The manufacturing methods, benefits, and limitations of antimicrobial-loaded SS materials are briefly discussed. This review aims to enhance the understanding of new advances and directions in SS-based antimicrobial composites and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, China;
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Jia-Jun Zhuo
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China;
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| |
Collapse
|
10
|
Sleiman L, Lazăr (Popa) AD, Albu-Kaya M, Marin MM, Kaya DA, Vasile OR, Dinescu S. Development and Investigation of an Innovative 3D Biohybrid Based on Collagen and Silk Sericin Enriched with Flavonoids for Potential Wound Healing Applications. Polymers (Basel) 2024; 16:1627. [PMID: 38931977 PMCID: PMC11207284 DOI: 10.3390/polym16121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Skin tissue injuries necessitate particular care due to associated complex healing mechanisms. Current investigations in the domain of tissue engineering and regenerative medicine are focused on obtaining novel scaffolds adapted as potential delivery systems to restore lost tissue functions and properties. In this study, we describe the fabrication and evaluation of a novel 3D scaffold structure based on collagen and silk sericin (CollSS) enriched with microcapsules containing natural compounds, curcumin (C), and/or quercetin (Q). These 3D composites were characterized by FT-IR spectroscopy, water uptake, in vitro collagenase degradation, and SEM microscopy. Furthermore, they were biologically evaluated in terms of biocompatibility, cell adhesion, anti-inflammatory, and antioxidant properties. All tested materials indicated an overall suitable biocompatibility, with the best results obtained for the one containing both flavonoids. This study suggests the cumulative beneficial effect of C and Q, encapsulated in the same composite, as a potential non-invasive therapeutic strategy for skin tissue regeneration in patients suffering from chronic wounds.
Collapse
Affiliation(s)
- Lea Sleiman
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.S.); (A.-D.L.)
| | - Andreea-Daniela Lazăr (Popa)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.S.); (A.-D.L.)
| | - Mădălina Albu-Kaya
- The National Research and Development Institute for Textiles and Leather (INCDTP)-Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania;
| | - Minodora Maria Marin
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania;
| | - Durmuș Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, Antakya-Hatay 31034, Turkey;
| | - Otilia-Ruxandra Vasile
- Science and Engineering of Oxide Materials and Nanomaterials Department, Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania;
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.S.); (A.-D.L.)
- Research Institute of the University of Bucharest (ICUB), 050663 Bucharest, Romania
| |
Collapse
|
11
|
Wang J, Liu H, Shi X, Qin S, Liu J, Lv Q, Liu J, Li Q, Wang Z, Wang L. Development and Application of an Advanced Biomedical Material-Silk Sericin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311593. [PMID: 38386199 DOI: 10.1002/adma.202311593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Sericin, a protein derived from silkworm cocoons, is considered a waste product derived from the silk industry for thousands of years due to a lack of understanding of its properties. However, in recent decades, a range of exciting properties of sericin are studied and uncovered, including cytocompatibility, low-immunogenicity, photo-luminescence, antioxidant properties, as well as cell-function regulating activities. These properties make sericin-based biomaterials promising candidates for biomedical applications. This review summarizes the properties and bioactivities of silk sericin and highlights the latest developments in sericin in tissue engineering and regenerative medicine. Furthermore, the extended application of sericin in developing flexible electronic devices and 3D bioprinting is also discussed. It is believed that sericin-based biomaterials have great potential of being developed into novel tissue engineering products and smart implantable devices for various medical applications toward improving clinical outcomes.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huan Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaolei Shi
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sumei Qin
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwei Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiying Lv
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin's Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
12
|
Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int J Mol Sci 2024; 25:4858. [PMID: 38732075 PMCID: PMC11084828 DOI: 10.3390/ijms25094858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Vivian A. Gaida
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Jasmin Schäfer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Lina Bosse
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Clara Diemer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| |
Collapse
|
13
|
Habibi S, Mohammadi T, Asadi AA. Tailoring polyethylene oxide-modified cross-linked chitosan/PVA nanofibrous membranes: Burn dressing scaffold developed for mupirocin release. Int J Biol Macromol 2024; 258:128983. [PMID: 38159709 DOI: 10.1016/j.ijbiomac.2023.128983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
In emergency treatment research, the focus on chitosan-based products for wound healing has been consistent. This study specifically explores a dressing made by mixing chitosan (CS) and poly (vinyl alcohol) PVA. Using electrospinning technology, nanofiber membranes of CS and PVA are created with the assistance of non-toxic and hydrophilic polyethylene oxide (PEO). The outcome is a new nanofibrous membrane loaded with mupirocin, designed for healing burn wounds. The study delves into the influence of PVA, CS, and PEO concentrations on the structural and chemical characteristics of the mats. This comprehensive exploration involves techniques such as Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM) imaging, Fourier Transform Infrared Spectrometry (FTIR analysis), and Contact angle measurements. Additionally, the research evaluates the antibacterial performance and biomedical behavior of the developed scaffolds. PEO proves beneficial in the electrospinning process, contributing to smoother fibers. Meanwhile, the addition of CS and mupirocin leads to formation of the thinner nanofibers (251 ± 5 μm and 263 ± 4 μm, respectively) and scaffolds with higher swelling (up to ∼3.5 times at 90 min). Notably, the (MTT) assay confirms the non-cytotoxicity of the fabricated nanofibers, with proliferations exceeding ∼85% for all samples. The crosslinked samples released the drug more slowly than the non-crosslinked dressings, with 80% of the scaffolds releasing the drug within 24 h. The in-vivo investigations suggested that the drug-containing scaffolds performed reliably and showed promise as a medical dressing for treating burn wounds.
Collapse
Affiliation(s)
- Soha Habibi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| | - Amir Atabak Asadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry (RIPI), Tehran, 14857-33111, Iran
| |
Collapse
|
14
|
Liu X, Wang S, Ding C, Zhao Y, Zhang S, Sun S, Zhang L, Ma S, Ding Q, Liu W. Polyvinylpyrrolidone/chitosan-loaded dihydromyricetin-based nanofiber membrane promotes diabetic wound healing by anti-inflammatory and regulating autophagy-associated protein expression. Int J Biol Macromol 2024; 259:129160. [PMID: 38181908 DOI: 10.1016/j.ijbiomac.2023.129160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The healing of wounds in diabetics is commonly delayed by recurring infections and persistent inflammation at the wound site. For this reason, we conducted a study using the electrospinning technique to create nanofiber membranes consisting of polyvinylpyrrolidone/chitosan (PVP/CS) and incorporated dihydromyricetin (DHM) into them. Infrared Fourier transform spectroscopy and scanning electron microscopy were used to analyze the nanofiber membrane. Experimental results in vitro have shown that PVP/CS/DHM has exceptional properties such as hydrophilicity, porosity, water vapor transport rate, antioxidant capacity, and antibacterial activity. Moreover, our study has demonstrated that the application of PVP/CS/DHM can significantly improve wound healing in diabetic mice. After an 18-day treatment period, a remarkable wound closure rate of 88.63 ± 1.37 % was achieved. The in vivo experiments revealed that PVP/CS/DHM can promote diabetic wound healing by suppressing the activation of TLR4/MyD88/NF-κB signaling pathway and enhancing autophagy-related protein as well as CD31 and HIF-1α expression in skin tissues. This study showed that PVP/CS/DHM is a promising wound dressing.
Collapse
Affiliation(s)
- Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Jilin Provincial Health Products and Medical Materials Technology Innovation Center, Changchun 130118, China
| | - Shijie Wang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yingchun Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
15
|
Dong Y, Wang Z, Wang J, Sun X, Yang X, Liu G. Mussel-inspired electroactive, antibacterial and antioxidative composite membranes with incorporation of gold nanoparticles and antibacterial peptides for enhancing skin wound healing. J Biol Eng 2024; 18:3. [PMID: 38212854 PMCID: PMC10785445 DOI: 10.1186/s13036-023-00402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
Large skin wounds are one of the most important health problems in the world. Skin wound repair and tissue regeneration are complex processes involving many physiological signals, and effective wound healing remains an enormous clinical challenge. Therefore, there is an urgent need for a strategy to rapidly kill bacteria, promote cell proliferation and accelerate wound healing. At present, electrical stimulation (ES) is often used in the clinical treatment of skin wounds and can simulate the endogenous biological current of the body and accelerate the repair process of skin wounds. However, a single ES strategy has difficulty covering the entire wound area, which may lead to unsatisfactory therapeutic effects. To overcome this deficiency, it is essential to develop a collaborative treatment strategy that combines ES with other treatments. In this study, gold nanoparticles and antibacterial peptides (Os) were loaded on the surface of poly(lactic-co-glycolic acid) (PLGA) material through the reducibility and adhesion of polydopamine (PDA) and improved the electrical activity, anti-inflammatory, antibacterial and biocompatibility properties of the polymer material. At the same time, this composite membrane material (Os/Au-PDA@PLGA) combined with ES was used in wound therapy to improve the wound healing rate. The results show that the new wound repair material has good biocompatibility and can effectively promote cell proliferation and migration. Through the combined application of gold nanoparticles and antibacterial peptides Os, the polymer materials have more efficient bactericidal and antioxidant effects. The antibacterial experiment results showed that gold nanoparticles could further enhance the antibacterial activity of antibacterial peptides. Furthermore, the Os/Au-PDA@PLGA composite membrane has good hydrophilicity and electrical activity, which can provide a more favorable cell microenvironment for wound healing. In vivo studies using a full-thickness skin defect model in rats showed that the Os/Au-PDA@PLGA composite membrane had a better therapeutic effect than the pure PLGA material. More importantly, the combination of the Os/Au-PDA@PLGA composite with ES significantly accelerated the rate of vascularization and collagen deposition and promoted wound healing compared with non-ES controls. Therefore, the combination of the Au/Os-PDA@PLGA composite membrane with ES may provide a new strategy for the effective treatment of skin wounds.
Collapse
Affiliation(s)
- Yongkang Dong
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zheng Wang
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jiapeng Wang
- Department of Orthopaedic Surgery, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Xuedi Sun
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xiaoyu Yang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Guomin Liu
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
16
|
Feng Q, Fan B, He YC, Ma C. Antibacterial, antioxidant and fruit packaging ability of biochar-based silver nanoparticles-polyvinyl alcohol-chitosan composite film. Int J Biol Macromol 2024; 256:128297. [PMID: 38007019 DOI: 10.1016/j.ijbiomac.2023.128297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/22/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Silver nanoparticles were prepared by loading Ag+ into biochar of waste barley distillers' grains shell by reduction with trisodium citrate, and this silver-loaded biochar was introduced into polyvinyl alcohol-chitosan. Various analysis with Fourier Transform Infrared spectroscopy, X-ray diffraction, Thermogravimetric analysis, and water contact angle revealed that biochar-based silver nanoparticle was incorporated into the polyvinyl alcohol-chitosan film, the biochar-based silver nanoparticles-polyvinyl alcohol-chitosan (C-Ag-loaded PVA/CS) composite film had good thermostability and hydrophobicity. Through the analysis via disk diffusion method, the composite containing 3 % of biochar-based silver nanoparticles-polyvinyl alcohol-chitosan had high antibacterial activity (inhibition zone: 18 mm against E. coli and 15 mm against S. aureus), and the bacterial membrane permeability was measured, indicating that C-Ag-loaded PVA/CS composite film could destroy the cell membrane, release intracellular substances, and have high antioxidant activity. During the storage, the weight loss rate of the biochar-based silver nanoparticles-polyvinyl alcohol-chitosan plastic wrap group was 0.14 %, and the titratable acid content only decreased by 0.061 %, which had a good effect on extending the shelf life of blueberries. The C-Ag-loaded PVA/CS composite film could also delay deterioration of blueberries and prolong storage time. Overall, this composite film had potential in food packaging and extending food shelf-life aspects.
Collapse
Affiliation(s)
- Qian Feng
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
17
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. Current issues and potential solutions for the electrospinning of major polysaccharides and proteins: A review. Int J Biol Macromol 2023; 253:126735. [PMID: 37690643 DOI: 10.1016/j.ijbiomac.2023.126735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Biopolymers, especially polysaccharides and proteins, are the promising green replacement for petroleum based polymers. Due to their innate properties, they are effectively used in biomedical applications, especially tissue engineering, wound healing, and drug delivery. The fibrous morphology of biopolymers is essentially required for the effectiveness in these biomedical applications. Electrospinning (ES) is the most advanced and robust method to fabricate nanofibers (NFs) and provides a complete solution to the conventional methods issues. However, the major issues regarding fabricating polysaccharides and protein nanofibers using ES include poor electrospinnability, lack of desired fundamental properties for a specific application by a single biopolymer, and insolubility among common solvents. The current review provides the main strategies for effective electrospinning of the major biopolymers. The key strategies include blending major biopolymers with suitable biopolymers and optimizing the solvent system. A systematic literature review was done to provide the optimized solvent system of the major biopolymers along with their best possible biopolymeric blend for ES. The review also highlights the fundamental issues with the commercialization of ES based biomedical products and provides future directions to improve the fabrication of biopolymeric nanofibers.
Collapse
Affiliation(s)
- Murtaza Haider Syed
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia
| | - Md Maksudur Rahman Khan
- Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
| | - Mior Ahmad Khushairi Mohd Zahari
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| | | | - Norhayati Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| |
Collapse
|
18
|
Zhang N, Zhang X, Zhu Y, Wang D, Li R, Li S, Meng R, Liu Z, Chen D. Bimetal-Organic Framework-Loaded PVA/Chitosan Composite Hydrogel with Interfacial Antibacterial and Adhesive Hemostatic Features for Wound Dressings. Polymers (Basel) 2023; 15:4362. [PMID: 38006086 PMCID: PMC10674882 DOI: 10.3390/polym15224362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Silver-containing wound dressings have shown attractive advantages in the treatment of wound infection due to their excellent antibacterial activity. However, the introduction of silver ions or AgNPs directly into the wound can cause deposition in the body as particles. Here, with the aim of designing low-silver wound dressings, a bimetallic-MOF antibacterial material called AgCu@MOF was developed using 3, 5-pyridine dicarboxylic acid as the ligand and Ag+ and Cu2+ as metal ion sites. PCbM (PVA/chitosan/AgCu@MOF) hydrogel was successfully constructed in PVA/chitosan wound dressing loaded with AgCu@MOF. The active sites on the surface of AgCu@MOF increased the lipophilicity to bacteria and caused the bacterial membrane to undergo lipid peroxidation, which resulted in the strong bactericidal properties of AgCu@MOF, and the antimicrobial activity of the dressing PCbM was as high as 99.9%. The chelation of silver ions in AgCu@MOF with chitosan occupied the surface functional groups of chitosan and reduced the crosslinking density of chitosan. PCbM changes the hydrogel crosslinking network, thus improving the water retention and water permeability of PCbM hydrogel so that the hydrogel has the function of binding wet tissue. As a wound adhesive, PCbM hydrogel reduces the amount of wound bleeding and has good biocompatibility. PCbM hydrogel-treated mice achieved 96% wound recovery on day 14. The strong antibacterial, tissue adhesion, and hemostatic ability of PCbM make it a potential wound dressing.
Collapse
Affiliation(s)
- Nan Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiuwen Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yueyuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ren Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuangying Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruizhi Meng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihui Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dan Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao High-Tech Industry Promotion Centre (Qingdao Technology Market Service Centre), Qingdao 266112, China
| |
Collapse
|
19
|
Sun X, Liang H, Wang H, Meng N, Jin S, Zhou N. Silk fibroin/polyvinyl alcohol composite film loaded with antibacterial AgNP/polydopamine-modified montmorillonite; characterization and antibacterial properties. Int J Biol Macromol 2023; 251:126368. [PMID: 37591434 DOI: 10.1016/j.ijbiomac.2023.126368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
In this study, a kind of nanocomposite film was fabricated via combining silk fibroin, polyvinyl alcohol (SF/PVA) and AgNP/polydopamine-modified Montmorillonite (AgNP/PDA-Mt). The structural characteristics and properties of the SF/PVA/AgNP/PDA-Mt nanocomposites films were identified using X-ray diffraction (XRD), Thermal gravimetric analyzer (TGA), Fourier transform infrared spectroscopy (FTIR), EDS-mapping analyses and Scanning electron microscope (SEM). The results indicated enhanced thermal performance of SF/PVA/AgNP/PDA-Mt nanocomposites with increased AgNP/PDA-Mt weight. The nanocomposite film exhibited excellent antibacterial activity against E. coli and S. aureus. The 2 % SF/PVA/AgNP/PDA-Mt film showed the highest zone of inhibition with an average inhibition circle diameter of 26.1 mm against E. coli and 20.61 mm against S. aureus. Cytotoxicity test results indicated that the nanocomposites films were biocompatible with L929 cells with a 100 % survival rate, which can be considered as one of the advantages of new nanocomposites films. These findings suggest that SF/PVA/AgNP/PDA-Mt films have potential clinical applications in wound dressing and antibacterial biomedical applications.
Collapse
Affiliation(s)
- Xuemei Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china
| | - Han Liang
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china
| | - Huiyan Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china
| | - Na Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china.
| | - Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china.
| | - Ninglin Zhou
- Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210046, China; Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China.
| |
Collapse
|
20
|
Gruppuso M, Turco G, Marsich E, Porrelli D. Antibacterial and bioactive multilayer electrospun wound dressings based on hyaluronic acid and lactose-modified chitosan. BIOMATERIALS ADVANCES 2023; 154:213613. [PMID: 37666062 DOI: 10.1016/j.bioadv.2023.213613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Antibacterial multilayer electrospun matrices based on hyaluronic acid (HA) and a lactose-modified chitosan (CTL) were synthetized (i) by combining electrospun polycaprolactone (PCL) and polysaccharidic matrices in a bilayer device and (ii) by sequentially coating the PCL mat with CTL and HA. In both cases, the antibacterial activity was provided by loading rifampicin within the PCL support. All matrices disclosed suitable morphology and physicochemical properties to be employed as wound dressings. Indeed, both the bilayer and coated fibers showed an optimal swelling capacity (3426 ± 492 % and 1435 ± 251 % after 7 days, respectively) and water vapor permeability (160 ± 0.78 g/m2h and 170 ± 12 g/m2h at 7 days, respectively). On the other hand, the polysaccharidic dressings were completely wettable in the presence of various types of fluids. Depending on the preparation method, a different release of both polysaccharides and rifampicin was detected, and the immediate polysaccharide dissolution from the bilayer structure impacted the antibiotic release (42 ± 4 % from the bilayer structure against 25 ± 2 % from the coated fibers in 4 h). All the multilayer matrices, regardless of their production strategy and composition, revealed optimal biocompatibility and bioactivity with human dermal fibroblasts, as the released bioactive polysaccharides induced a faster wound closure in the cell monolayer (100 % in 24 h) compared to the controls (78 ± 8 % for untreated cells and 89 ± 5 % for cells treated with PCL alone, after 24 h). The inhibitory and bactericidal effects of the rifampicin loaded matrices were assessed on S. aureus, S. epidermidis, E. coli, and P. aeruginosa. The antibacterial matrices were found to be highly effective except for E. coli, which was more resistant even at higher amounts of rifampicin, with a bacterial concentration of 6.4 ± 0.4 log CFU/mL and 6.8 ± 0.3 log CFU/mL after 4 h in the presence of the rifampicin-loaded bilayer and coated matrices, respectively.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| |
Collapse
|
21
|
Sun Y, Zhang H, Zhang Y, Liu Z, He D, Xu W, Li S, Zhang C, Zhang Z. Li-Mg-Si bioceramics provide a dynamic immuno-modulatory and repair-supportive microenvironment for peripheral nerve regeneration. Bioact Mater 2023; 28:227-242. [PMID: 37292230 PMCID: PMC10245070 DOI: 10.1016/j.bioactmat.2023.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023] Open
Abstract
Biomaterials can modulate the local immune and repair-supportive microenvironments to promote peripheral nerve regeneration. Inorganic bioceramics have been widely used for regulating tissue regeneration and local immune response. However, little is known on whether inorganic bioceramics can have potential for enhancing peripheral nerve regeneration and what are the mechanisms underlying their actions. Here, the inorganic lithium-magnesium-silicon (Li-Mg-Si, LMS) bioceramics containing scaffolds are fabricated and characterized. The LMS-containing scaffolds had no cytotoxicity against rat Schwann cells (SCs), but promoted their migration and differentiation towards a remyelination state by up-regulating the expression of neurotrophic factors in a β-catenin-dependent manner. Furthermore, using single cell-sequencing, we showed that LMS-containing scaffolds promoted macrophage polarization towards the pro-regenerative M2-like cells, which subsequently facilitated the migration and differentiation of SCs. Moreover, implantation with the LMS-containing nerve guidance conduits (NGCs) increased the frequency of M2-like macrophage infiltration and enhanced nerve regeneration and motor functional recovery in a rat model of sciatic nerve injury. Collectively, these findings indicated that the inorganic LMS bioceramics offered a potential strategy for enhancing peripheral nerve regeneration by modulating the immune microenvironment and promoting SCs remyelination.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zheqi Liu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Dongming He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wanlin Xu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Siyi Li
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zhen Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| |
Collapse
|
22
|
Sajjad A, Ali H, Zia M. Fabrication and evaluation of vitamin doped Zno/AgNPs nanocomposite based wheat gluten films: a promising findings for burn wound treatment. Sci Rep 2023; 13:16072. [PMID: 37752271 PMCID: PMC10522583 DOI: 10.1038/s41598-023-43413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023] Open
Abstract
Burn wound treatment remains a significant issue in wound care management especially when multidrug resistant bacterial infection and accumulation are present. Delayed wound healing is mostly due to ineffectiveness of commercially available wound dressings that protects the wound but less efficient in healing perspective. Therefore, nano-based wound dressing might be efficient solution for wound healing management. The present study reports the fabrication and evaluation of zinc oxide (ZnO) or silver nanoparticles (Ag NPs) capped with vitamin A or E nanocomposite that were incorporated in wheat gluten (WG) films. The chemical structure, phase purity, and morphological features confirmed the successful coating of NPs by vitamins A and E and their interaction with WG during film casting. The maximum swelling response was observed by NPs vitamin composite WG films than control films while slow release of vitamins and NPs from films was observed up to 24 h. WG films either carrying ZnO or Ag NPs, and vitamin A or E demonstrated significant antioxidant and antibacterial potential. The NPs-vitamin composite loaded WG films showed wound contraction within 14 days during in vivo burn wound healing experiments on mice model. The rates of wound healing, re-epithelialization, collagen deposition with fibroblast regeneration, adipocytes, and hair follicle development were observed through visual and histopathological examination. The study reveals that vitamin A or E doped ZnO or Ag NPs fabricated in WG can be efficiently used against burn wounds due to their physiochemical and biological properties. Furthermore the biocompatible nature and biodegradable potential make the films more prone to mankind maneuver for initial protection and healing remedy.
Collapse
Affiliation(s)
- Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hussain Ali
- Veterinary Farms Management Sub-Division, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
23
|
Li JX, Zhang YQ. Mechanically Robust Poly(vinyl alcohol)-Egg White Composite Hydrogel with Enhancing Biocompatibility by Unidirectional Nanopore Dehydration. ACS OMEGA 2023; 8:33763-33773. [PMID: 37744826 PMCID: PMC10515601 DOI: 10.1021/acsomega.3c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
A simple and green method, unidirectional nanopore dehydration (UND), directly processes 10% poly(vinyl alcohol) (PVA) aqueous solution containing 20% egg white (EW) into a composite hydrogel membrane (PVA-EW). The tensile strength and elongation of the UND-based PVA-EW at 25 °C were 0.91 MPa and 534.17%, respectively, while the two values at 70 °C were increased by 700 and 38%, respectively. The PVA-EW (70 °C) was still dominated by random coils and α-helical structures. The hydroxyl groups of intramolecules and intermolecules of both PVA and EW could be able to combine and form either more hydrogen bonds or stronger hydrogen bonds. PVA-EW is soft and translucent, has good mechanical properties, and has a porous networked structure with pores that have a diameter of 1-10 μm. L-929 mouse fibroblasts were found to be able to adhere, grow, and proliferate well on the hydrogel composite membrane. This novel PVA-EW biomaterial has potential applications in biomaterials especially medical tissue engineering.
Collapse
Affiliation(s)
- Ji-Xin Li
- School of Biology and Basic
Medical Sciences, Medical College, Soochow
University, RM702-2303, No. 199, Renai Road, Industrial Park, Suzhou 215123, P. R. China
| | - Yu-Qing Zhang
- School of Biology and Basic
Medical Sciences, Medical College, Soochow
University, RM702-2303, No. 199, Renai Road, Industrial Park, Suzhou 215123, P. R. China
| |
Collapse
|
24
|
Mishra P, Gupta P, Srivastava R, Srivastava AK, Poluri KM, Prasad R. Exploration of Antibiofilm and In Vivo Wound Healing Activity of p-Cymene-Loaded Gellan/PVA Nanofibers. ACS APPLIED BIO MATERIALS 2023; 6:1816-1831. [PMID: 37075306 DOI: 10.1021/acsabm.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Wound dressings with outstanding biocompatibility, antimicrobial, and tissue regeneration activities are essential to manage emerging recalcitrant antifungal infections to speed up healing. In this study, we have engineered p-cymene-loaded gellan/PVA nanofibers using electrospinning. Morphological and physicochemical properties of the nanofibers were characterized using a multitude of techniques to validate the successful integration of p-cymene (p-cym). The fabricated nanomaterials exhibited strong antibiofilm activity against Candida albicans and Candida glabrata compared to pure p-cymene. In vitro biocompatibility assay demonstrated that nanofibers did not possess any cytotoxicity to the NIH3T3 cell lines. In vivo, full-thickness excision wound healing study showed that the nanofibers were able to heal skin lesions faster than the conventional clotrimazole gel in 24 days without forming any scar. These findings unraveled p-cymene-loaded gellan gum (GA)/poly(vinyl alcohol) (PVA) nanofibers as an effective biomaterial for cutaneous tissue regeneration.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Department of Biotechnology, Graphic Era University, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions, Faculty of Pharmacy, Moradabad 244001, Uttar Pradesh, India
| | - Amit Kumar Srivastava
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
25
|
Reisi-Vanani V, Hosseini S, Soleiman-Dehkordi E, Sahand Noaien B, Farzan M, Ebani VV, Gholipourmalekabadi M, Lozano K, Lorigooini Z. Engineering of a core-shell polyvinyl alcohol/gelatin fibrous scaffold for dual delivery of Thymus daenensis essential oil and Glycyrrhiza glabra L. extract as an antibacterial and functional wound dressing. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
26
|
Wang Z, Hu W, Wang W, Xiao Y, Chen Y, Wang X. Antibacterial Electrospun Nanofibrous Materials for Wound Healing. ADVANCED FIBER MATERIALS 2023; 5:107-129. [DOI: 10.1007/s42765-022-00223-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 08/25/2024]
|
27
|
Mathieu P, Bascou R, Navarro Oliva FS, Nesterenko A, Ngo A, Lisiecki I, Guénin E, Bedoui F. Electrospinning of ultrafine non‐hydrolyzed silk sericin/
PEO
fibers on
PLA
: A bilayer scaffold fabrication. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Paul Mathieu
- Alliance Sorbonne Université, Roberval Laboratory Université de Technologie de Compiègne Compiègne France
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu‐CS 60 319‐60 203 Compiègne Cedex France
| | - Rémi Bascou
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu‐CS 60 319‐60 203 Compiègne Cedex France
| | | | - Alla Nesterenko
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu‐CS 60 319‐60 203 Compiègne Cedex France
| | - Anh‐Tu Ngo
- Sorbonne Université, CNRS, De la Molécule Aux Nano‐Objets: Réactivité, Interactions Spectroscopies, MONARIS Paris France
| | - Isabelle Lisiecki
- Sorbonne Université, CNRS, De la Molécule Aux Nano‐Objets: Réactivité, Interactions Spectroscopies, MONARIS Paris France
| | - Erwann Guénin
- Alliance Sorbonne Université, Roberval Laboratory Université de Technologie de Compiègne Compiègne France
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu‐CS 60 319‐60 203 Compiègne Cedex France
| | - Fahmi Bedoui
- Alliance Sorbonne Université, Roberval Laboratory Université de Technologie de Compiègne Compiègne France
| |
Collapse
|
28
|
Schäfer S, Aavani F, Köpf M, Drinic A, Stürmer EK, Fuest S, Grust ALC, Gosau M, Smeets R. Silk proteins in reconstructive surgery: Do they possess an inherent antibacterial activity? A systematic review. Wound Repair Regen 2023; 31:99-110. [PMID: 36106818 DOI: 10.1111/wrr.13049] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/27/2023]
Abstract
The field of reconstructive surgery encompasses a wide range of surgical procedures and regenerative approaches to treat various tissue types. Every surgical procedure is associated with the risk of surgical site infections, which are not only a financial burden but also increase patient morbidity. The surgical armamentarium in this area are biomaterials, particularly natural, biodegradable, biocompatible polymers, including the silk proteins fibroin (SF) and sericin (SS). Silk is known to be derived from silkworms and is mainly composed of 60-80% fibroin, which provides the structural form, and 15-35% sericin, which acts as a glue-like substance for the SF threads. Silk proteins possess most of the desired properties for biomedical applications, including biocompatibility, biodegradability, minimal immunogenicity, and tunable biomechanical behaviour. In an effort to alleviate or even prevent infections associated with the use of biomaterials in surgery, antibacterial/antimicrobial properties have been investigated in numerous studies. In this systematic review, the following question was addressed: Do silk proteins, SF and SS, possess an intrinsic antibacterial property and how could these materials be tailored to achieve such a property?
Collapse
Affiliation(s)
- Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Centre, Translational Wound Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Audrey Laure Céline Grust
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Hu D, Li T, Liang W, Wang Y, Feng M, Sun J. Silk sericin as building blocks of bioactive materials for advanced therapeutics. J Control Release 2023; 353:303-316. [PMID: 36402235 DOI: 10.1016/j.jconrel.2022.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Silk sericin is a class of protein biopolymers produced by silkworms. Increasing attention has been paid to silk sericin for biomedical applications in the last decade, not only because of its excellent biocompatibility and biodegradability but also due to the pharmacological activities stemming from its unique amino acid compositions. In this review, the biological properties of silk sericin, including curing specific diseases and promoting tissue regeneration, as well as underlying mechanisms are summarized. We consider the antioxidant activity of silk sericin as a fundamental property, which could account for partial biological activities, despite the exact mechanisms of silk sericin's effect remaining unknown. Based on the reactive groups on silk sericin, approaches of bottom-up fabrication of silk sericin-based biomaterials are highlighted, including non-covalent interactions and chemical reactions (reduction, crosslinking, bioconjugation, and polymerization). We then briefly present the cutting-edge advances of silk sericin-based biomaterials applied in tissue engineering and drug delivery. The challenges of silk sericin-based biomaterials are proposed. With more bioactivities and underlying mechanisms of silk sericin uncovered, it is going to boost the therapeutic potential of silk sericin-based biomaterials.
Collapse
Affiliation(s)
- Doudou Hu
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Tiandong Li
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen'an Liang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yeyuan Wang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Min Feng
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
30
|
Liu Y, Su G, Zhang R, Dai R, Li Z. Nanomaterials-Functionalized Hydrogels for the Treatment of Cutaneous Wounds. Int J Mol Sci 2022; 24:336. [PMID: 36613778 PMCID: PMC9820076 DOI: 10.3390/ijms24010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels have been utilized extensively in the field of cutaneous wound treatment. The introduction of nanomaterials (NMs), which are a big category of materials with diverse functionalities, can endow the hydrogels with additional and multiple functions to meet the demand for a comprehensive performance in wound dressings. Therefore, NMs-functionalized hydrogels (NMFHs) as wound dressings have drawn intensive attention recently. Herein, an overview of reports about NMFHs for the treatment of cutaneous wounds in the past five years is provided. Firstly, fabrication strategies, which are mainly divided into physical embedding and chemical synthesis of the NMFHs, are summarized and illustrated. Then, functions of the NMFHs brought by the NMs are reviewed, including hemostasis, antimicrobial activity, conductivity, regulation of reactive oxygen species (ROS) level, and stimulus responsiveness (pH responsiveness, photo-responsiveness, and magnetic responsiveness). Finally, current challenges and future perspectives in this field are discussed with the hope of inspiring additional ideas.
Collapse
Affiliation(s)
- Yangkun Liu
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Gongmeiyue Su
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Ruoyao Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
31
|
Bayati S, Harirchi P, Zahedi P, Bayandori Moghaddam A. Lawsonia inermis-loaded poly (L-lactide-co-D, L-lactide) nanofibers for healing acceleration of burn wounds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 34:1019-1035. [PMID: 36469758 DOI: 10.1080/09205063.2022.2155779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study aimed to develop a new bioactive wound dressing based on electrospun poly (L-lactide-co-D, L-lactide) (PLDLLA) nanofibers containing Lawsonia inermis (LI) for burn wounds. The SEM results showed that loading LI increased the average diameter of PLDLLA nanofibers to 528 nm with smooth and beadless morphology. The analysis of LI release from PLDLLA nanofibers and film samples was measured by UV-vis spectrophotometry, and the obtained results revealed that LI molecules could diffuse from the nanofibrous sample with higher rate than film during 48 h. In this regard, the PLDLLA nanofibrous sample as a drug carrier has advantages compared to the film. Moreover, the antibacterial results confirmed the positive influence of LI related to the bacteria which in turn the growth inhibition zones were increased from 6 to 22 mm for P. aeruginosa, and from 3 to 16 mm for S. aureus while the LI concentration was set at 1.4% (w/v). Finally, animal model studies demonstrated that PLDLLA-LI nanofibers accelerated burn wound closure remarkably; thereby decreasing the wound area approximately 90% during the treatment period of 19 days. The histological observations dedicated that the appearance of the epithelial layer was increased dramatically alongside the thickness of around 40% for the wound treated with PLDLLA-LI nanofibrous sample rather than that without LI. Besides the epithelialization, it has been found that the wound covered by PLDLLA-LI wound dressing has condensed collagen fibers with no necrosis.
Collapse
Affiliation(s)
- Susan Bayati
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Parmida Harirchi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|
32
|
Liu Z, Wei W, Tremblay PL, Zhang T. Electrostimulation of fibroblast proliferation by an electrospun poly (lactide-co-glycolide)/polydopamine/chitosan membrane in a humid environment. Colloids Surf B Biointerfaces 2022; 220:112902. [DOI: 10.1016/j.colsurfb.2022.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/29/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022]
|
33
|
Li Y, Liu Y, Peng B, Li X, Fang T, Liu S, Liu J, Li B, Li F. Stretchable, conductive, breathable and moisture-sensitive e-skin based on CNTs/graphene/GelMA mat for wound monitoring. BIOMATERIALS ADVANCES 2022; 143:213172. [PMID: 36343392 DOI: 10.1016/j.bioadv.2022.213172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Deep skin wound needs a long wound healing process, in which external force on skin around wound can result in a sharp pain, wound re-damage and interstitial fluid flowing out, increasing the risk of deterioration and even amputation. While the conventional wound dressings cannot provide timely feedback of abnormal wound status and lose best time for wound treatment, real-time monitoring wound status is thus urgently needed for wound management. In this work, a breathable and stretchable electronic skin (i.e., e-skin) named CNTs/graphene/GelMA mat has been developed through electrospinning, ice-templating and in-situ loading method for evaluating wound status. The obtained porosity, swelling ratio and vapor transmission rate of the CNTs/graphene/GelMA mat are 55 %, 180 % and 3378.2 h-1 day-1, respectively. And owing to the good porous, nanofibrous architecture and excellent breathability of the mat, L929 cells grow and well spread on the CNTs/graphene/GelMA mat. In addition, the gauge factors of the prepared conductive CNTs/graphene/GelMA mat as a strain sensor are 15.4 and 72.9 in the strain ranges of 0-70 % and 70-85 %, respectively, matching the mechanical performance of human skin. The sensitivity coefficient of the mat for moisture sensing is 12.05, indicating its high efficiency for monitoring and warning interstitial fluid outflow from wound. Furthermore, the integration of CNTs/graphene/GelMA mat with a portable device is feasible to monitor strain and moisture on a rat model with abdominal wound. The healing process of the wounds treated with CNTs/graphene/GelMA mat is similar to that of GelMA mat, indicating that the dosage of CNTs and graphene in the CNTs/graphene/GelMA mat has negligible effect on the mat histocompatibility. The CNTs/graphene/GelMA mat demonstrates the application potential in wound management, home medical diagnosis and human-machine interactions.
Collapse
Affiliation(s)
- Yingchun Li
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China; Advanced Interdisciplinary Research Center for Flexible Electronics, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, P. R. China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, P. R. China
| | - Bo Peng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| | - Xinyue Li
- Advanced Interdisciplinary Research Center for Flexible Electronics, School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, P. R. China
| | - Tianshu Fang
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shuai Liu
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiachen Liu
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bo Li
- State key Laboratory for Manufacturing Engineering System, Shaanxi Province Key Laboratory for Intelligent Robots, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
34
|
Xu R, Zhang M, Yao J, Wang Y, Ge Y, Kremenakova D, Militky J, Zhu G. Highly Antibacterial Electrospun Double-Layer Mats for Preventing Secondary Wound Damage and Promoting Unidirectional Water Conduction in Wound Dressings. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Heydari Foroushani P, Rahmani E, Alemzadeh I, Vossoughi M, Pourmadadi M, Rahdar A, Díez-Pascual AM. Curcumin Sustained Release with a Hybrid Chitosan-Silk Fibroin Nanofiber Containing Silver Nanoparticles as a Novel Highly Efficient Antibacterial Wound Dressing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3426. [PMID: 36234554 PMCID: PMC9565735 DOI: 10.3390/nano12193426] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 05/15/2023]
Abstract
Drug loading in electrospun nanofibers has gained a lot of attention as a novel method for direct drug release in an injury site to accelerate wound healing. The present study deals with the fabrication of silk fibroin (SF)-chitosan (CS)-silver (Ag)-curcumin (CUR) nanofibers using the electrospinning method, which facilitates the pH-responsive release of CUR, accelerates wound healing, and improves mechanical properties. Response surface methodology (RSM) was used to investigate the effect of the solution parameters on the nanofiber diameter and morphology. The nanofibers were characterized via Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), zeta potential, and Dynamic Light Scattering (DLS). CS concentration plays a crucial role in the physical and mechanical properties of the nanofibers. Drug loading and entrapment efficiencies improved from 13 to 44% and 43 to 82%, respectively, after the incorporation of Ag nanoparticles. The application of CS hydrogel enabled a pH-responsive release of CUR under acid conditions. The Minimum Inhibitory Concentration (MIC) assay on E. coli and S. aureus bacteria showed that nanofibers with lower CS concentration cause stronger inhibitory effects on bacterial growth. The nanofibers do not have any toxic effect on cell culture, as revealed by in vitro wound healing test on NIH 3T3 fibroblasts.
Collapse
Affiliation(s)
- Parisa Heydari Foroushani
- Department of Chemical Engineering, Biomedical and Bioenvironmental Research Center (BBRC), Sharif University of Technology, Tehran 14179-35840, Iran
| | - Erfan Rahmani
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA
| | - Iran Alemzadeh
- Department of Chemical Engineering, Biomedical and Bioenvironmental Research Center (BBRC), Sharif University of Technology, Tehran 14179-35840, Iran
| | - Manouchehr Vossoughi
- Department of Chemical Engineering, Biomedical and Bioenvironmental Research Center (BBRC), Sharif University of Technology, Tehran 14179-35840, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
36
|
Synthesis and characterization of polyvinyl alcohol–silk sericin nanofibers containing gelatin-capped silver nanoparticles for antibacterial applications. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Jin SG. Production and application of biomaterials based on polyvinyl alcohol (PVA) as wound dressing: A mini review. Chem Asian J 2022; 17:e202200595. [PMID: 36066570 DOI: 10.1002/asia.202200595] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/31/2022] [Indexed: 11/11/2022]
Abstract
The development of ideal wound dressing with excellent properties, such as exudate absorption capacity, drug release control ability, and increased wound healing, is currently a major requirement for wound healing. Polyvinyl alcohol (PVA) is a biodegradable semi-crystalline synthetic polymer that has been used in the field of biotechnology such as tissue regeneration, wound dressing, and drug delivery systems. In recent years, PVA-based wound dressing materials have received considerable attention due to their excellent properties such as biodegradability, biocompatibility, non-toxicity and low cost. PVA can be used as a wound dressing material to create the necessary moist wound environment, improve the physical properties of the dressing, and increase the wound healing rates. In addition, PVA can also be mixed with other organic and inorganic materials and can be used for drug delivery and wound healing. This review article addresses the role of biomaterials based on PVA mixed with other ingredients for wound dressing. It also focuses on its recent use in wound dressings as carriers of active substances.
Collapse
Affiliation(s)
- Sung Giu Jin
- Dankook University - Cheonan Campus, Department of Pharmaceutical Engineering, 119 Dandae-ro, Dongnam-gu, 31116, Cheonan, KOREA, REPUBLIC OF
| |
Collapse
|
38
|
Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022; 14:pharmaceutics14091773. [PMID: 36145522 PMCID: PMC9505808 DOI: 10.3390/pharmaceutics14091773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, cancer represents a major public health issue, a substantial economic issue, and a burden for society. Limited by numerous disadvantages, conventional chemotherapy is being replaced by new strategies targeting tumor cells. In this context, therapies based on biopolymer prodrug systems represent a promising alternative for improving the pharmacokinetic and pharmacologic properties of drugs and reducing their toxicity. The polymer-directed enzyme prodrug therapy is based on tumor cell targeting and release of the drug using polymer–drug and polymer–enzyme conjugates. In addition, current trends are oriented towards natural sources. They are biocompatible, biodegradable, and represent a valuable and renewable source. Therefore, numerous antitumor molecules have been conjugated with natural polymers. The present manuscript highlights the latest research focused on polymer–drug conjugates containing natural polymers such as chitosan, hyaluronic acid, dextran, pullulan, silk fibroin, heparin, and polysaccharides from Auricularia auricula.
Collapse
|
39
|
Ali Zahid A, Chakraborty A, Shamiya Y, Ravi SP, Paul A. Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications. MATERIALS HORIZONS 2022; 9:1850-1865. [PMID: 35485266 DOI: 10.1039/d2mh00115b] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploring new avenues for clinical management of chronic wounds holds the key to eliminating socioeconomic burdens and health-related concerns associated with this silent killer. Engineered biomaterials offer great promise for repair and regeneration of chronic wounds because of their ability to deliver therapeutics, protect the wound environment, and support the skin matrices to facilitate tissue growth. This mini review presents recent advances in biomaterial functionalities for enhancing wound healing and demonstrates a move from sub-optimal methods to multi-functionalized treatment approaches. In this context, we discuss the recently reported biomaterial characteristics such as bioadhesiveness, antimicrobial properties, proangiogenic attributes, and anti-inflammatory properties that promote chronic wound healing. In addition, we highlight the necessary mechanical and mass transport properties of such biomaterials. Then, we discuss the characteristic properties of various biomaterial templates, including hydrogels, cryogels, nanomaterials, and biomolecule-functionalized materials. These biomaterials can be microfabricated into various structures, including smart patches, microneedles, electrospun scaffolds, and 3D-bioprinted structures, to advance the field of biomaterial scaffolds for effective wound healing. Finally, we provide an outlook on the future while emphasizing the need for their detailed functional behaviour and inflammatory response studies in a complex in vivo environment for superior clinical outcomes and reduced regulatory hurdles.
Collapse
Affiliation(s)
- Alap Ali Zahid
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
40
|
Eco-Friendly Bio-Hydrogels Based on Antheraea Pernyi Silk Gland Protein for Cell and Drug Delivery. Gels 2022; 8:gels8070398. [PMID: 35877483 PMCID: PMC9321860 DOI: 10.3390/gels8070398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The Antheraea Pernyi silk gland protein originates from natural organisms and synthesized by tussah silk glands and has widely potential biomaterial applications due to the superior biocompatibility. This study investigates the Antheraea Pernyi silk gland protein-based drug-loaded bio-hydrogels for bioengineered tissue fabricated by using an eco-friendly method without the harsh extracting process and the usage of toxic chemicals. The drug-loaded bio-hydrogels exhibited a porous structure and interconnected pore walls. The swelling ratio and water absorption of drug-loaded bio-hydrogels were, respectively, above 95% and 1.5 × 103%. The cumulative release of drug loaded hydrogels all reached more than 90% within 4 h, and this indicates the potential of drug-loaded hydrogels as future drug-carrying biomaterials. RSC96 Schwann cells cultured on drug-loaded hydrogels for 72 h under cell culture medium show no toxic effects and more pro-proliferative effects. The results suggest the suitability of drug-loaded bio-hydrogels as natural biopolymer for the potential in vitro RSC96 cell culture platform and other biomaterial applications.
Collapse
|
41
|
Chu Y, Chai S, Li F, Han C, Sui X, Liu T. Combined Strategy of Wound Healing Using Thermo-Sensitive PNIPAAm Hydrogel and CS/PVA Membranes: Development and In-Vivo Evaluation. Polymers (Basel) 2022; 14:polym14122454. [PMID: 35746028 PMCID: PMC9230777 DOI: 10.3390/polym14122454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
Past studies have shown that the hot spring effect can promote wound healing. Mild thermal stimulation and metal ions can promote angiogenesis. In this study, the hot spring effect was simulated by thermosensitive PNIPAAm hydrogel loaded with copper sulfide nanoparticles. Heat stimulation could be generated through near-infrared irradiation, and copper ions solution could be pulsed. On the other hand, the CS/PVA nanofiber membrane was attached to the bottom of the hydrogel to simulate the extracellular matrix structure, thus improving the wound healing ability. The CS/PVA nanofiber membrane was prepared by electrospinning, and the appropriate prescription and process parameters were determined. The nanofiber membrane has uniform pore size, good water absorption and permeability. The poor mechanical properties of PNIPAAm hydrogel were improved by adding inorganic clay. The temperature of the hydrogel loaded with CuS nanoparticles reached 40 °C under near-infrared light irradiation for 20 min, and the release rate of Cu2+ reached 26.89%. The wound-healing rate of the rats in the combined application group reached 79.17% at 13 days, demonstrating superior results over the other control groups. Histological analyses show improved inflammatory response at the healed wound area. These results indicate that this combined application approach represents a promising wound treatment strategy.
Collapse
|
42
|
Mohabatpour F, Yazdanpanah Z, Papagerakis S, Chen X, Papagerakis P. Self-Crosslinkable Oxidized Alginate-Carboxymethyl Chitosan Hydrogels as an Injectable Cell Carrier for In Vitro Dental Enamel Regeneration. J Funct Biomater 2022; 13:jfb13020071. [PMID: 35735926 PMCID: PMC9225469 DOI: 10.3390/jfb13020071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Injectable hydrogels, as carriers, offer great potential to incorporate cells or growth factors for dental tissue regeneration. Notably, the development of injectable hydrogels with appropriate structures and properties has been a challenging task, leaving much to be desired in terms of cytocompatibility, antibacterial and self-healing properties, as well as the ability to support dental stem cell functions. This paper presents our study on the development of a novel self-cross-linkable hydrogel composed of oxidized alginate and carboxymethyl chitosan and its characterization as a cell carrier for dental enamel regeneration in vitro. Oxidized alginate was synthesized with 60% theoretical oxidation degree using periodate oxidation and characterized by Fourier Transform Infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and Ultraviolet-visible absorption spectroscopy. Then, hydrogels were prepared at three varying weight ratios of oxidized alginate to carboxymethyl chitosan (4:1, 3:1, and 2:1) through Schiff base reactions, which was confirmed by Fourier Transform Infrared spectroscopy. The hydrogels were characterized in terms of gelation time, swelling ratio, structure, injectability, self-healing, antibacterial properties, and in vitro characterization for enamel regeneration. The results demonstrated that, among the three hydrogels examined, the one with the highest ratio of oxidized alginate (i.e., 4:1) had the fastest gelation time and the lowest swelling ability, and that all hydrogels were formed with highly porous structures and were able to be injected through a 20-gauge needle without clogging. The injected hydrogels could be rapidly reformed with the self-healing property. The hydrogels also showed antibacterial properties against two cariogenic bacteria: Streptococcus mutans and Streptococcus sobrinus. For in vitro enamel regeneration, a dental epithelial cell line, HAT-7, was examined, demonstrating a high cell viability in the hydrogels during injection. Furthermore, HAT-7 cells encapsulated in the hydrogels showed alkaline phosphatase production and mineral deposition, as well as maintaining their round morphology, after 14 days of in vitro culture. Taken together, this study has provided evidence that the oxidized alginate-carboxymethyl chitosan hydrogels could be used as an injectable cell carrier for dental enamel tissue engineering applications.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada; (F.M.); (Z.Y.)
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5A9, Canada
- Correspondence: (S.P.); (X.C.); (P.P.)
| |
Collapse
|
43
|
Zhang S, Shah SAUM, Basharat K, Qamar SA, Raza A, Mohamed A, Bilal M, Iqbal HM. Silk-based nano-hydrogels for futuristic biomedical applications. J Drug Deliv Sci Technol 2022; 72:103385. [DOI: 10.1016/j.jddst.2022.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
A Review on Antibacterial Biomaterials in Biomedical Applications: From Materials Perspective to Bioinks Design. Polymers (Basel) 2022; 14:polym14112238. [PMID: 35683916 PMCID: PMC9182805 DOI: 10.3390/polym14112238] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
In tissue engineering, three-dimensional (3D) printing is an emerging approach to producing functioning tissue constructs to repair wounds and repair or replace sick tissue/organs. It allows for precise control of materials and other components in the tissue constructs in an automated way, potentially permitting great throughput production. An ink made using one or multiple biomaterials can be 3D printed into tissue constructs by the printing process; though promising in tissue engineering, the printed constructs have also been reported to have the ability to lead to the emergence of unforeseen illnesses and failure due to biomaterial-related infections. Numerous approaches and/or strategies have been developed to combat biomaterial-related infections, and among them, natural biomaterials, surface treatment of biomaterials, and incorporating inorganic agents have been widely employed for the construct fabrication by 3D printing. Despite various attempts to synthesize and/or optimize the inks for 3D printing, the incidence of infection in the implanted tissue constructs remains one of the most significant issues. For the first time, here we present an overview of inks with antibacterial properties for 3D printing, focusing on the principles and strategies to accomplish biomaterials with anti-infective properties, and the synthesis of metallic ion-containing ink, chitosan-containing inks, and other antibacterial inks. Related discussions regarding the mechanics of biofilm formation and antibacterial performance are also presented, along with future perspectives of the importance of developing printable inks.
Collapse
|
45
|
Kumar V, Kumar A, Chauhan NS, Yadav G, Goswami M, Packirisamy G. Design and Fabrication of a Dual Protein-Based Trilayered Nanofibrous Scaffold for Efficient Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2726-2740. [PMID: 35594572 DOI: 10.1021/acsabm.2c00200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic wound healing is a major threat all over the world. There are currently a plethora of biomaterials-based wound dressings available for wound healing applications. In this study, a dual protein-based (silk fibroin and sericin) nanofibrous scaffold from a natural source (B.mori silkworm cocoons) with antibacterial and antioxidative properties for wound healing was investigated. An electrospun layer-by-layer silk protein-based nanofibrous scaffold was fabricated with a top layer of hydrophobic silk fibroin protein blended with polyvinyl alcohol (PVA), a middle layer of waste protein silk sericin loaded with silver(I) sulfadiazine as an antibacterial agent, and a bottom layer using silk fibroin blended with polycaprolactone (PCL). The trilayered nanofibrous scaffold with a smooth and bead-free morphology demonstrated excellent wettability, slow in vitro degradation, controlled drug release, and potent antibacterial and antioxidant properties. In vitro, the scaffold also demonstrated excellent hemocompatibility and biocompatibility. Furthermore, in vivo wound contraction, histological, and micro-CT investigations show complete wound healing and the formation of new skin tissue in a male Balb/c mouse model treated with the scaffold. The antioxidant properties of the sericin protein and SSD-based triple-layered nanofibrous scaffold protect the wound from bacterial infection and improve wound healing in a mouse model. The current study develops a dual protein-based nanofibrous scaffold with antibacterial and antioxidant properties as a promising wound dressing material.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee 247667, Uttarakhand, India
| | - Amit Kumar
- Laboratory Animal Facility, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Narendra Singh Chauhan
- Laboratory Animal Facility, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Govind Yadav
- Laboratory Animal Facility, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Mayank Goswami
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee 247667, Uttarakhand, India.,Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
46
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
47
|
Allafchian A, Fathi M, Jalali SAH. Design of polysaccharidic Aloe veragel incorporated PVA/tetracycline electrospun cell culture scaffolds for biomedical applications. NANOTECHNOLOGY 2022; 33:295101. [PMID: 35313292 DOI: 10.1088/1361-6528/ac5f97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
In this study, hybrid nanofibrous 3D scaffolds containingAloe vera(AV), polyvinyl alcohol (PVA) and tetracycline hydrochloride (TCH) are fabricated by electrospinning for cell culture applications. The role of polysaccharides present in AV gel is found to enhance the biocompatibility of the nanofibrous scaffolds. Different combinations of the polymers were selected to produce homogenous nanofibers with favorable mean fiber diameter and tensile strength. The surface morphology of the products was studied by SEM and it is found that the mean fiber diameter is decreased to about 188 nm upon addition of the AV component. The electrospun scaffolds were investigated by FT-IR spectroscopy to reveal the chemical structure of the samples and their crystallinity was studied by XRD. The hydrophilicity of the scaffolds was tested by optical contact angle measurements and their mechanical strength was examined by tensile strength tests. It is found that PVA is the main component contributing the mechanical stability of the scaffold structure. The fabricated scaffolds presented a more pronounced inhibitory effect against Gram-positive bacterial strains ofS. aureusandB. cereus. Cell culture experiments using fibroblast L929 murine cells reveals that the AV/PVA/TCH scaffolds are promising for cell growth and the cells are capable of achieving a proper cell adhesion and proliferation. The cell viability experiment by MTT assay exhibits the contributing role of AV gel to L929 cell viability on the AV/PVA/TCH scaffolds.
Collapse
Affiliation(s)
- Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Fathi
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Seyed Amir Hossein Jalali
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
48
|
Hou L, Wang W, Wang MK, Song XS. Acceleration of Healing in Full-Thickness Wound by Chitosan-Binding bFGF and Antimicrobial Peptide Modification Chitosan Membrane. Front Bioeng Biotechnol 2022; 10:878588. [PMID: 35547167 PMCID: PMC9081572 DOI: 10.3389/fbioe.2022.878588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Skin wound healing is an important clinical challenge, and the main treatment points are accelerating epidermal regeneration and preventing infection. Therefore, it is necessary to develop a wound dressing that can simultaneously cure bacterial infections and accelerate wound healing. Here, we report a multifunctional composite wound dressing loaded with chitosan (CS)-binding bFGF (CSBD-bFGF) and antimicrobial peptides (P5S9K). First, CS was used as the dressing matrix material, and P5S9K was encapsulated in CS. Then, CSBD-bFGF was designed by combining recombinant DNA technology and tyrosinase treatment and modified on the dressing material surface. The results show that the binding ability of CSBD-bFGF and CS was significantly improved compared with that of commercial bFGF, and CSBD-bFGF could be controllably released from the CS dressing. More importantly, the prepared dressing material showed excellent antibacterial activity in vivo and in vitro and could effectively inhibit the growth of E. coli and S. aureus. Using NIH3T3 cells as cellular models, the results showed that the CSBD-bFGF@CS/P5S9K composite dressing was a friendly material for cell growth. After cells were seeded on the composite dressing surface, collagen-1 (COL-1) and vascular endothelial growth factor (VEGF) genes expression in cells were significantly upregulated. Finally, the full-thickness wound of the rat dorsal model was applied to analyse the tissue repair ability of the composite dressing. The results showed that the composite dressing containing CSBD-bFGF and P5S9K had the strongest ability to repair skin wounds. Therefore, the CSBD-bFGF@CS/P5S9K composite dressing has good antibacterial and accelerated wound healing abilities and has good application prospects in the treatment of skin wounds.
Collapse
Affiliation(s)
| | | | | | - Xue-Song Song
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
49
|
Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, Gomha SM, Aly AA, Bräse S. Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers (Basel) 2022; 14:polym14081508. [PMID: 35458258 PMCID: PMC9029721 DOI: 10.3390/polym14081508] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
Electrospun techniques are promising and flexible technologies to fabricate ultrafine fiber/nanofiber materials from diverse materials with unique characteristics under optimum conditions. These fabricated fibers/nanofibers via electrospinning can be easily assembled into several shapes of three-dimensional (3D) structures and can be combined with other nanomaterials. Therefore, electrospun nanofibers, with their structural and functional advantages, have gained considerable attention from scientific communities as suitable candidates in biomedical fields, such as the regeneration of tissues and organs, where they can mimic the network structure of collagen fiber in its natural extracellular matrix(es). Due to these special features, electrospinning has been revolutionized as a successful technique to fabricate such nanomaterials from polymer media. Therefore, this review reports on recent progress in electrospun nanofibers and their applications in various biomedical fields, such as bone cell proliferation, nerve regeneration, and vascular tissue, and skin tissue, engineering. The functionalization of the fabricated electrospun nanofibers with different materials furnishes them with promising properties to enhance their employment in various fields of biomedical applications. Finally, we highlight the challenges and outlooks to improve and enhance the application of electrospun nanofibers in these applications.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72341, Al Jouf, Saudi Arabia
- Correspondence: or (A.A.N.); (S.B.)
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt;
| | - Nasser S. Awwad
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry, Organic Chemistry I, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: or (A.A.N.); (S.B.)
| |
Collapse
|
50
|
Schäfer S, Smeets R, Köpf M, Drinic A, Kopp A, Kröger N, Hartjen P, Assaf AT, Aavani F, Beikler T, Peters U, Fiedler I, Busse B, Stürmer EK, Vollkommer T, Gosau M, Fuest S. Antibacterial properties of functionalized silk fibroin and sericin membranes for wound healing applications in oral and maxillofacial surgery. BIOMATERIALS ADVANCES 2022; 135:212740. [PMID: 35929202 DOI: 10.1016/j.bioadv.2022.212740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
Oral wounds are among the most troublesome injuries which easily affect the patients' quality of life. To date, the development of functional antibacterial dressings for oral wound healing remains a challenge. In this regard, we investigated antibacterial silk protein-based membranes for the application as wound dressings in oral and maxillofacial surgery. The present study includes five variants of casted membranes, i.e., i) membranes-silver nanoparticles (CM-Ag), ii) membranes-gentamicin (CM-G), iii) membranes-control (without functionalization) (CM-C), iv) membranes-silk sericin control (CM-SSC), and v) membranes-silk fibroin/silk sericin (CM-SF/SS), and three variants of nonwovens, i.e., i) silver nanoparticles (NW-Ag), ii) gentamicin (NW-G), iii) control (without functionalization) (NW-C). The surface structure of the samples was visualized with scanning electron microscopy. In addition, antibacterial testing was accomplished using agar diffusion assay, colony forming unit (CFU) analysis, and qrt-PCR. Following antibacterial assays, biocompatibility was evaluated by cell proliferation assay (XTT), cytotoxicity assay (LDH), and live-dead assay on L929 mouse fibroblasts. Findings indicated significantly lower bacterial colony growth and DNA counts for CM-Ag with a reduction of bacterial counts by 3log levels (99.9% reduction) in CFU and qrt-PCR assay compared to untreated control membranes (CM-C and CM-SSC) and membranes functionalized with gentamicin (CM-G and NW-G) (p < 0.001). Similarly, NW-G yielded significantly lower DNA and colony growth counts compared to NW-Ag and NW-C (p < 0.001). In conclusion, CM-Ag represented 1log level better antibacterial activity compared to NW-G, whereas NW-G showed better cytocompatibility for L929 cells. As data suggest, these two membranes have the potential of application in the field of bacteria-free oral wound healing. However, provided that loading strategy and cytocompatibility are adjusted according to the antibacterial agents' characteristic and fabrication technique of the membranes.
Collapse
Affiliation(s)
- Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | | | | | | | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Alexandre Thomas Assaf
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Center, Translational Wound Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|