1
|
Haseeb MT, Muhammad G, Hussain MA, Bukhari SNA, Sheikh FA. Flaxseed (Linum usitatissimum) mucilage: A versatile stimuli-responsive functional biomaterial for pharmaceuticals and healthcare. Int J Biol Macromol 2024; 278:134817. [PMID: 39154696 DOI: 10.1016/j.ijbiomac.2024.134817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The present review is novel as it discusses the main findings of researchers on the topic and their implications, as well as highlights the emerging research in this particular area and its future prospective. The seeds of Flax (Linum usitatissimum) extrude mucilage (FSM) that has a diverse and wide range of applications, especially in the food industry and as a pharmaceutical ingredient. FSM has been blended with several food and dairy products to improve gelling ability, optical properties, taste, and user compliance. The FSM is recognized as a foaming, encapsulating, emulsifying, suspending, film-forming, and gelling agent for several pharmaceutical preparations and healthcare materials. Owing to stimuli (pH) -responsive swelling-deswelling characteristics, high swelling indices at different physiological pHs of the human body, and biocompatibility, FSM is considered a smart material for intelligent, targeted, and controlled drug delivery applications through conventional and advanced drug delivery systems. FSM has been modified through carboxymethylation, acetylation, copolymerization, and electrostatic complexation to get the desired properties for pharma, food, and healthcare products. The present review is therefore devoted to the isolation techniques, structural characterization, highly valuable properties for food and pharmaceutical industries, preclinical and clinical trials, pharmacological aspects, biomedical attributes, and patents of FSM.
Collapse
Affiliation(s)
| | - Gulzar Muhammad
- Department of Chemistry, GC University, Lahore 54000, Pakistan
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Fatima Akbar Sheikh
- College of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan
| |
Collapse
|
2
|
Lira MM, Oliveira Filho JGD, Sousa TLD, Costa NMD, Lemes AC, Fernandes SS, Egea MB. Selected plants producing mucilage: Overview, composition, and their potential as functional ingredients in the development of plant-based foods. Food Res Int 2023; 169:112822. [PMID: 37254398 DOI: 10.1016/j.foodres.2023.112822] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
The increase in the preference for vegan and vegetarian diets is directly related to changing eating habits and the need for plant-based alternatives to animal-based products, which are better for health, due to the high content of essential amino acids and lipid profile rich in polyunsaturated fatty acids, and have lower environmental impacts. In this scenario, there is a growing demand for plant-based foods, making it necessary to find new plant-based ingredients for application in foods and beverages. Flaxseed, chia seed, and Barbados gooseberry contain mucilage, a component with potential application in plant-based products. These hydrocolloids can be used as gelling agents, texture modifiers, stabilizers, and emulsifiers in solid and semi-solid foods. This review presents the extraction, characterization, and application of flaxseed, chia seed, and Barbados gooseberry mucilage for use in plant-based foods. It was found that mucilage composition varies due to the extraction method used, extraction conditions, and geographic location of the seed or leaf. However, applications in plant-based foods are currently limited, mainly focused on applying chia mucilage in bakery products and packaging. Research on applying flaxseed and Barbados gooseberry mucilage to plant-based products is limited, though it has been shown to have potential applications in packaging. Mucilage may also increase the nutritional profile of the product and provide better technological, functional, and sensory characteristics. Therefore, because of mucilage's excellent functional and technological properties, it is a promising candidate to act as an ingredient in plant-based food products.
Collapse
Affiliation(s)
- Michelle Monteiro Lira
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil
| | - Josemar Gonçalves de Oliveira Filho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú Km 1, 14800-903 Araraquara, São Paulo, Brazil
| | - Tainara Leal de Sousa
- Federal University of Goiás (UFG), Agronomy Department, Agronomy School, Street 235, s/n - East University Sector, CEP 74605-450 Goiânia/GO, Brazil
| | - Nair Mota da Costa
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil
| | - Ailton Cesar Lemes
- Federal University of Rio de Janeiro (UFRJ), School of Chemistry, Department of Biochemical Engineering, Av. Athos da Silveira Ramos, 149, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sibele Santos Fernandes
- Federal University of Rio Grande, School of Chemistry and Food, Av Italy km 8, Carreiros 96203-900, Rio Grande, Brazil
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil.
| |
Collapse
|
3
|
Liu F, McClements DJ, Ma C, Liu X. Novel Colloidal Food Ingredients: Protein Complexes and Conjugates. Annu Rev Food Sci Technol 2023; 14:35-61. [PMID: 36972160 DOI: 10.1146/annurev-food-060721-023522] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Food proteins, polysaccharides, and polyphenols are natural ingredients with different functional attributes. For instance, many proteins are good emulsifiers and gelling agents, many polysaccharides are good thickening and stabilizing agents, and many polyphenols are good antioxidants and antimicrobials. These three kinds of ingredients can be combined into protein, polysaccharide, and/or polyphenol conjugates or complexes using covalent or noncovalent interactions to create novel multifunctional colloidal ingredients with new or improved properties. In this review, the formation, functionality, and potential applications of protein conjugates and complexes are discussed. In particular, the utilization of these colloidal ingredients to stabilize emulsions, control lipid digestion, encapsulate bioactive ingredients, modify textures, and form films is highlighted. Finally, future research needs in this area are briefly proposed. The rational design of protein complexes and conjugates may lead to the development of new functional ingredients that can be used to create more nutritious, sustainable, and healthy foods.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| |
Collapse
|
4
|
Co-Extraction of Flaxseed Protein and Polysaccharide with a High Emulsifying and Foaming Property: Enrichment through the Sequence Extraction Approach. Foods 2023; 12:foods12061256. [PMID: 36981182 PMCID: PMC10048294 DOI: 10.3390/foods12061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
A new focus with respect to the extraction of plant protein is that ingredient enrichment should target functionality instead of pursuing purity. Herein, the sequence aqueous extraction method was used to co-enrich five protein-polysaccharide natural fractions from flaxseed meal, and their composition, structure, and functional properties were investigated. The total recovery rate of flaxseed protein obtained by the sequence extraction approach was more than 80%, which was far higher than the existing reports. The defatted flaxseed meal was soaked by deionized water to obtain fraction 1 (supernatant), and the residue was further treated to get fraction 2 (supernatant) and 3 (precipitate) through weak alkali solubilization. Part of the fraction 2 was taken out, followed by adjusting its pH to 4.2. After centrifuging, the albumin-rich supernatant and precipitate with protein content of 73.05% were gained and labeled as fraction 4 and fraction 5. The solubility of fraction 2 and 4 exceeded 90%, and the foaming ability and stability of fraction 5 were 12.76 times and 9.89 times higher than commercial flaxseed protein, respectively. The emulsifying properties of fractions 1, 2, and 5 were all greater than that of commercial sodium caseinate, implying that these fractions could be utilized as high-efficiency emulsifiers. Cryo-SEM results showed that polysaccharides in fractions were beneficial to the formation of network structure and induced the formation of tighter and smoother interfacial layers, which could prevent emulsion flocculation, disproportionation, and coalescence. This study provides a reference to promote the high-value utilization of flaxseed meals.
Collapse
|
5
|
Pickering foams stabilized by protein-based particles: A review of characterization, stabilization, and application. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Effects of Different pH on Properties of Heat-induced Auricularia auricula-judae polysaccharide-whey protein isolate Composite Gels. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
7
|
Peng D, Ye J, Jin W, Yang J, Geng F, Deng Q. A review on the utilization of flaxseed protein as interfacial stabilizers for food applications. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
- Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory Hubei Key Laboratory of Lipid Chemistry and Nutrition Wuhan Hubei People's Republic of China
| | - Jieting Ye
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan Hubei People's Republic of China
| | - Weiping Jin
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan Hubei People's Republic of China
| | - Jing Yang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering Chengdu University Chengdu Sichuan China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute Chinese Academy of Agricultural Sciences Wuhan Hubei People's Republic of China
- Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory Hubei Key Laboratory of Lipid Chemistry and Nutrition Wuhan Hubei People's Republic of China
| |
Collapse
|
8
|
The Protein-Rich Powdered Beverages Stabilized with Flax Seeds Gum—Antioxidant and Antiproliferative Properties of the Potentially Bioaccessible Fraction. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The functional beverages market is one of the fastest-growing sectors of functional food production. An innovative recipe for powdered fruit and vegetable drinks fortified with lentil proteins (AGF) and stabilized with flax seed gums (FSG) was developed. The study focused on the analysis of potentially bioaccessible fractions from the produced beverages in terms of their antioxidant, antiproliferative activities and physicochemical properties. The contents of bioactive components were tailored by the incorporation of lyophilized fruits and vegetables, the FSG and the AGF. Digestion in vitro effectively released phenolics from all matrices. The highest contents of potentially bioavailable polyphenols were recorded for the AGF based beverages enriched with 5% of FSG and green-leafy vegetables (58 mg/100 mL) and those with lyophilized fruit (54 mg/100 mL). The reducing power of the beverages was mainly affected by the presence of the AGF, while the FSG and lyophilized fruit improved the chelating power. The digests applied in the concentrations mimicking physiological concentrations showed antiproliferative properties against gastric and colon adenocarcinoma—they seemed to be tailored by bioactive peptides and phenolics, respectively. The addition of the FSG improved the stability of the beverages increasing the time required for a reduction of 20% of the initial optical density by 16- and 28-times in the beverages without additives or enriched with vegetables. Both, the AGF and FSG stabilize the beverages after rehydration and are sources of bioaccessible antioxidant and anticancer components, which create their functionality.
Collapse
|
9
|
Cedeño-Pinos C, Martínez-Tomé M, Mercatante D, Rodríguez-Estrada MT, Bañón S. Assessment of a Diterpene-Rich Rosemary (Rosmarinus officinalis L.) Extract as a Natural Antioxidant for Salmon Pâté Formulated with Linseed. Antioxidants (Basel) 2022; 11:antiox11061057. [PMID: 35739954 PMCID: PMC9219763 DOI: 10.3390/antiox11061057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
The use of natural plant extracts with standardised antioxidant properties is a growing strategy to stabilise food products. The use of a rosemary lipophilic extract (RLE), obtained from the by-product of high-yield selected plants and rich in polyphenols (334 mg/g, with diterpenes such as carnosic acid and carnosol as main compounds), is here proposed. Four RLE doses (0, 0.21, 0.42 and 0.63 g/kg) were tested in a salmon pâté formulated with sunflower oil and linseed, which was pasteurised (70 °C for 30 min) and subjected to storage at 4 °C and 600 lux for 42 days. Rosemary diterpenes resisted pasteurisation without degrading and showed antioxidant activities during the shelf-life of pasteurised pâté. RLE addition led to increased peroxide value (from 3.9 to 5.4 meq O2/kg), but inhibited formation of secondary oxidised lipids such as malondialdehyde (from 1.55 to 0.89 mg/g) and cholesterol oxidation products (from 286 to 102 µg/100 g) and avoided discolouration (slight brownness) in the refrigerated pâté. However, this did not entail relevant changes in fatty acid content or in the abundance of volatile organic compounds from oxidised lipids. Increasing the RLE dose only improved its antioxidant efficacy for some oxidation indexes. Thus, the oxidative deterioration of these types of fish emulsion can be naturally controlled with rosemary extracts rich in diterpenes.
Collapse
Affiliation(s)
- Cristina Cedeño-Pinos
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.-P.); (M.M.-T.)
| | - Magdalena Martínez-Tomé
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.-P.); (M.M.-T.)
- CIBER: CB12/03/30038 Pathophysiology of Obesity and Nutrition, CIBERobn, Carlos III Health Institute (ISCIII), 28013 Madrid, Spain
| | - Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - María Teresa Rodríguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Sancho Bañón
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.-P.); (M.M.-T.)
- Correspondence: ; Tel.: +34-868-888-265
| |
Collapse
|
10
|
Bochnak-Niedźwiecka J, Szymanowska U, Kapusta I, Świeca M. Antioxidant Content and Antioxidant Capacity of the Protein-Rich Powdered Beverages Enriched with Flax Seeds Gum. Antioxidants (Basel) 2022; 11:582. [PMID: 35326232 PMCID: PMC8945751 DOI: 10.3390/antiox11030582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Powdered beverages produced from dried fruit and vegetables are new products whose properties may be tailored by adding efficient nutrients and functional ingredients. The analyses of low-molecular antioxidants and antioxidant properties as well as nutrient content and digestibility were tested in beverages enriched with lentil proteins (AGF) and flaxseed gum (FSG). A replacement of sprouted lentil flour with the AGF deteriorated the phenolic content. As a main source of phenolics and vitamin C, lyophilized parsley leaves and broccoli sprouts were recognized. (There was no clear effect of the FGS.) The highest content of phenolics was determined in the beverages with these additives without the AGS (c.a. 125 μg/g). The AGF significantly improved the ability to quench ABTS radicals and reduce power. The best results were for the beverages without the FSG. (The effect was enhanced by lyophilized fruit and green vegetables.) The lowest chelating power and ability to quench hydroxyl radicals were in the beverages based on the AGF (improvement by the FSG and green vegetables). The tailoring of beverages' recipes significantly increased protein content and did not affect nutrient digestibility. The modifications allow obtaining the beverages exhibiting multidirectional antioxidant properties, being a source of easily bioaccessible starch and proteins.
Collapse
Affiliation(s)
- Justyna Bochnak-Niedźwiecka
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
| | - Urszula Szymanowska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Rzeszów University, Zelwerowicza Str. 4, 35-601 Rzeszow, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
| |
Collapse
|
11
|
Darie-Ion L, Jayathirtha M, Hitruc GE, Zaharia MM, Gradinaru RV, Darie CC, Pui A, Petre BA. A Proteomic Approach to Identify Zein Proteins upon Eco-Friendly Ultrasound-Based Extraction. Biomolecules 2021; 11:1838. [PMID: 34944482 PMCID: PMC8699583 DOI: 10.3390/biom11121838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/23/2022] Open
Abstract
Zein is a type of prolamin storage protein that has a variety of biomedical and industrial applications. Due to the considerable genetic variability and polyploidity of the starting material, as well as the extraction methods used, the characterization of the protein composition of zein requires a combination of different analytical processes. Therefore, we combined modern analytical methods such as mass spectrometry (MS), Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), atomic force microscopy (AFM), or Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) for a better characterization of the extracted zein. In this study, we present an enhanced eco-friendly extraction method, including grinding and sieving corn seeds, for prolamins proteins using an ultrasonic extraction methodology. The use of an ultrasonic homogenizer, 65% ethanol extraction buffer, and 710 µm maize granulation yielded the highest protein extraction from all experimental conditions we employed. An SDS PAGE analysis of the extracted zein protein mainly revealed two intense bands of approximatively 20 and 23 kDa, suggesting that the extracted zein was mostly α-zein monomer. Additionally, MS analysis revealed as a main component the α-zein PMS2 (Uniprot accession no. P24450) type protein in the maize flour extract. Moreover, AFM studies show that extracting zein with a 65% ethanol and a 710 µm granulation yields a homogeneous content that could allow these proteins to be employed in future medical applications. This research leads to a better understanding of zeins content critical for developing new applications of zein in food and pharmaceutical industries, such as biocompatible medical vehicles based on polyplexes complex nanoparticles of zein with antimicrobial or drug delivery properties.
Collapse
Affiliation(s)
- Laura Darie-Ion
- Faculty of Chemistry, Al. I. Cuza University of Iasi, 11, Carol I Boulevard, 700506 Iasi, Romania; (L.D.-I.); (R.V.G.); (A.P.)
| | - Madhuri Jayathirtha
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (C.C.D.)
| | - Gabriela Elena Hitruc
- Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania; (G.E.H.); (M.-M.Z.)
| | - Marius-Mihai Zaharia
- Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania; (G.E.H.); (M.-M.Z.)
| | - Robert Vasile Gradinaru
- Faculty of Chemistry, Al. I. Cuza University of Iasi, 11, Carol I Boulevard, 700506 Iasi, Romania; (L.D.-I.); (R.V.G.); (A.P.)
| | - Costel C. Darie
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (C.C.D.)
| | - Aurel Pui
- Faculty of Chemistry, Al. I. Cuza University of Iasi, 11, Carol I Boulevard, 700506 Iasi, Romania; (L.D.-I.); (R.V.G.); (A.P.)
| | - Brindusa Alina Petre
- Faculty of Chemistry, Al. I. Cuza University of Iasi, 11, Carol I Boulevard, 700506 Iasi, Romania; (L.D.-I.); (R.V.G.); (A.P.)
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (C.C.D.)
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
12
|
López-Castejón ML, Bengoechea C, Alguacil JM, Carrera C. Prebiotic food foams stabilized by inulin and β-lactoglobulin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106789] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Khezerlou A, Zolfaghari H, Banihashemi SA, Forghani S, Ehsani A. Plant gums as the functional compounds for edible films and coatings in the food industry: A review. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5293] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arezou Khezerlou
- Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Hajar Zolfaghari
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Seyed Alireza Banihashemi
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
15
|
Developing and Featuring Matrix Tablets by Using Gross Linseed Mucilage as a Retardant Polymer. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09523-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|