1
|
Zhang X, Gao M, Zhang C, Peng B. Enzymatic processes for animal hide/skin collagen fiber purification processing: Recent progress, challenges and recommendations. BIORESOURCE TECHNOLOGY 2024; 418:131955. [PMID: 39643060 DOI: 10.1016/j.biortech.2024.131955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/15/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Collagen fiber purification is the most important pretreatment process in the recycling of animal hide/skin, by-products of meat production, and can be utilized to produce value-added materials. Traditional animal hide/skin resource utilization technologies face serious challenges in the aspect of production efficiency and environmental sustainability. Enzymatic collagen fiber purification processing is thought to be one of the most promising technologies that can minimize the use of chemicals and energy, reduce CO2-eq emissions, and achieve sustainable development of animal hide/skin reutilization. However, enzymatic processes have not been well accepted for industrial-scale applications in factories so far. In this review, recent progress and challenges of enzymatic collagen fiber purification processing were comprehensively overviewed in the aspect of the key mechanisms and technologies of enzyme application. Recommendations for the direction of enzyme selection and development were put forward, which is expected to pave the way for the industrial-scale application of enzymes in animal hide/skin collagen fiber purification processing.
Collapse
Affiliation(s)
- Xu Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Mengchu Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Shandong Lonct Enzymes Co., Ltd., Linyi 276400, PR China
| | - Chunxiao Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Biyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Lin Y, Dong Y, Li X, Cai J, Cai L, Zhang G. Enzymatic production of xylooligosaccharide from lignocellulosic and marine biomass: A review of current progress, challenges, and its applications in food sectors. Int J Biol Macromol 2024; 277:134014. [PMID: 39047995 DOI: 10.1016/j.ijbiomac.2024.134014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, xylooligosaccharides (XOS) have attracted great attentions because of their unique chemical properties and excellent prebiotic effects. Among the current strategies for XOS production, enzymatic hydrolysis is preferred due to its green and safe process, simplicity in equipment, and high control of the degrees of polymerization. This paper comprehensively summarizes various lignocellulosic biomass and marine biomass employed in enzymatic production of XOS. The importance and advantages of enzyme immobilization in XOS production are also discussed. Many novel immobilization techniques for xylanase are presented. In addition, bioinformatics techniques for the mining and designing of new xylanase are also described. Moreover, XOS has exhibited great potential applications in the food industry as diverse roles, such as a sugar replacer, a fat replacer, and cryoprotectant. This review systematically summarizes the current research progress on the applications of XOS in food sectors, including beverages, bakery products, dairy products, meat products, aquatic products, food packaging film, wall materials, and others. It is anticipated that this paper will act as a reference for the further development and application of XOS in food sectors and other fields.
Collapse
Affiliation(s)
- Yuanqing Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Yuting Dong
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xiangling Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Jinzhong Cai
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China; College of Basic Medicine, Putian University, Putian 351100, Fujian, China.
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
3
|
Patel DK, Rawat R, Sharma S, Shah K, Borsadiya N, Dave G. Linker-assisted engineering of chimeric xylanase-phytase for improved thermal tolerance of feed enzymes. J Biomol Struct Dyn 2024; 42:8114-8124. [PMID: 37545145 DOI: 10.1080/07391102.2023.2243338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Biological enzymes are multifunctional macromolecules that can perform hundreds of reactions simultaneously. An enzyme must possess specific characteristics to meet industrial needs, such as stability over a wide pH and temperature range and high specific activity. A phytase and xylanase mixture is generally added to poultry feed to improve the bird's health and productivity. Despite this, animal farmers have noticed no difference in productivity, and a leading cause is the high temperature at which feed is pulverized, which inactivates enzymes. A thermo-stable enzyme system can overcome these hitches. Commonly, coatings and immobilization reduce losses caused by physical-chemical factors in feed processing and digestion. To this end, we engineered the multifunctional xylanase-phytase domains on a single polypeptide fused by a helical linker. First, the ideal linker sequence was chosen by computing each selected linker's root mean square deviation (RMSD). The selected helical linker provides sufficient structural flexibility for substrate binding and product release evaluated by molecular docking and molecular dynamic simulation studies. Furthermore, a domain-domain interaction has stabilized the bridging partners, attaining the thermal optima for xylanase and phytase at 90 °C. Even at the above-optimal temperature (100 °C), the recombinant PLX was relatively stable and retained 64.2% and 59.2% activity for xylanase and phytase, respectively, when surveyed for ten hours. So far, to this date, this is the highest degree of thermostability achieved by any recombinant phytase or xylanase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dharti K Patel
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| | - Ravi Rawat
- School of Health Sciences & Technology, UPES University, Dehradun, India
| | - Shilpa Sharma
- Department of Biotechnology, Bennett University, Greater Nioda, India
| | - Kruti Shah
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| | - Nayan Borsadiya
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| | - Gayatri Dave
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| |
Collapse
|
4
|
Mu D, Li P, Ma T, Wei D, Montalbán-López M, Ai Y, Wu X, Wang Y, Li X, Li X. Advances in the understanding of the production, modification and applications of xylanases in the food industry. Enzyme Microb Technol 2024; 179:110473. [PMID: 38917734 DOI: 10.1016/j.enzmictec.2024.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Xylanases have broad applications in the food industry to decompose the complex carbohydrate xylan. This is applicable to enhance juice clarity, improve dough softness, or reduce beer turbidity. It can also be used to produce prebiotics and increase the nutritional value in foodstuff. However, the low yield and poor stability of most natural xylanases hinders their further applications. Therefore, it is imperative to explore higher-quality xylanases to address the potential challenges that appear in the food industry and to comprehensively improve the production, modification, and utilization of xylanases. Xylanases, due to their various sources, exhibit diverse characteristics that affect production and activity. Most fungi are suitable for solid-state fermentation to produce xylanases, but in liquid fermentation, microbial metabolism is more vigorous, resulting in higher yield. Fungi produce higher xylanase activity, but bacterial xylanases perform better than fungal ones under certain extreme conditions (high temperature, extreme pH). Gene and protein engineering technology helps to improve the production efficiency of xylanases and enhances their thermal stability and catalytic properties.
Collapse
Affiliation(s)
- Dongdong Mu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China.
| | - Penglong Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Tiange Ma
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Dehua Wei
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Manuel Montalbán-López
- Institute of Biotechnology and Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Yaqian Ai
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xuefeng Wu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yifeng Wang
- Anhui Yunshang Cultural Tourism Development Group, Anqing 246600, China
| | - Xu Li
- Anhui Wanyue Xinhe Project Management Company Limited, Anqing 246600, China
| | - Xingjiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China.
| |
Collapse
|
5
|
Doan CT, Tran TN, Pham TP, Tran TTT, Truong BP, Nguyen TT, Nguyen TM, Bui TQH, Nguyen AD, Wang SL. Production, Purification, and Characterization of a Cellulase from Paenibacillus elgii. Polymers (Basel) 2024; 16:2037. [PMID: 39065354 PMCID: PMC11280930 DOI: 10.3390/polym16142037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Cellulases are one of the most essential natural factors for cellulose degradation and, thus, have attracted significant interest for various applications. In this study, a cellulase from Paenibacillus elgii TKU051 was produced, purified, and characterized. The ideal fermentation conditions for cellulase productivity were 2% carboxymethyl cellulose (CMC) as the growth substrate, pH = 8, temperature of 31 °C, and 4 days of culturing. Accordingly, a 45 kDa cellulase (PeCel) was successfully purified in a single step using a High Q column with a recovery yield of 35% and purification of 42.2-fold. PeCel has an optimal activity at pH 6 and a temperature of 60 °C. The activity of cellulase was significantly inhibited by Cu2+ and enhanced by Mn2+. The PeCel-catalyzed products of the CMC hydrolysis were analyzed by high-performance liquid chromatography, which revealed chitobiose and chitotriose as the major products. Finally, the clarity of apple juice was enhanced when treated with PeCel.
Collapse
Affiliation(s)
- Chien Thang Doan
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.P.); (T.T.T.T.); (B.P.T.); (T.T.N.); (T.M.N.); (T.Q.H.B.)
| | - Thi Ngoc Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.P.); (T.T.T.T.); (B.P.T.); (T.T.N.); (T.M.N.); (T.Q.H.B.)
| | - Thi Phuong Pham
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.P.); (T.T.T.T.); (B.P.T.); (T.T.N.); (T.M.N.); (T.Q.H.B.)
| | - Thi Thanh Thao Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.P.); (T.T.T.T.); (B.P.T.); (T.T.N.); (T.M.N.); (T.Q.H.B.)
| | - Ba Phong Truong
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.P.); (T.T.T.T.); (B.P.T.); (T.T.N.); (T.M.N.); (T.Q.H.B.)
| | - Thi Tinh Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.P.); (T.T.T.T.); (B.P.T.); (T.T.N.); (T.M.N.); (T.Q.H.B.)
| | - The Manh Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.P.); (T.T.T.T.); (B.P.T.); (T.T.N.); (T.M.N.); (T.Q.H.B.)
| | - Thi Quynh Hoa Bui
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.P.); (T.T.T.T.); (B.P.T.); (T.T.N.); (T.M.N.); (T.Q.H.B.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
6
|
Rodríguez-Sanz A, Fuciños C, Soares C, Torrado AM, Lima N, Rúa ML. A comprehensive method for the sequential separation of extracellular xylanases and β-xylosidases/arabinofuranosidases from a new Fusarium species. Int J Biol Macromol 2024; 272:132722. [PMID: 38821304 DOI: 10.1016/j.ijbiomac.2024.132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Several fungal species produce diverse carbohydrate-active enzymes useful for the xylooligosaccharide biorefinery. These enzymes can be isolated by different purification methods, but fungi usually produce other several compounds which interfere in the purification process. So, the present work has three interconnected aims: (i) compare β-xylosidase production by Fusarium pernambucanum MUM 18.62 with other crop pathogens; (ii) optimise F. pernambucanum xylanolytic enzymes expression focusing on the pre-inoculum media composition; and (iii) design a downstream strategy to eliminate interfering substances and sequentially isolate β-xylosidases, arabinofuranosidases and endo-xylanases from the extracellular media. F. pernambucanum showed the highest β-xylosidase activity among all the evaluated species. It also produced endo-xylanase and arabinofuranosidase. The growth and β-xylosidase expression were not influenced by the pre-inoculum source, contrary to endo-xylanase activity, which was higher with xylan-enriched agar. Using a sequential strategy involving ammonium sulfate precipitation of the extracellular interferences, and several chromatographic steps of the supernatant (hydrophobic chromatography, size exclusion chromatography, and anion exchange chromatography), we were able to isolate different enzyme pools: four partially purified β-xylosidase/arabinofuranoside; FpXylEAB trifunctional GH10 endo-xylanase/β-xylosidase/arabinofuranoside enzyme (39.8 kDa) and FpXynE GH11 endo-xylanase with molecular mass (18.0 kDa). FpXylEAB and FpXynE enzymes were highly active at pH 5-6 and 60-50 °C.
Collapse
Affiliation(s)
- Andrea Rodríguez-Sanz
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Clara Fuciños
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Célia Soares
- CEB-Biological Engineering Centre, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana M Torrado
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Nelson Lima
- CEB-Biological Engineering Centre, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - María L Rúa
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain.
| |
Collapse
|
7
|
Bhattacharya R, Arora S, Ghosh S. Bioprocess optimization for food-grade cellulolytic enzyme production from sorghum waste in a novel solid-state fermentation bioreactor for enhanced apple juice clarification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120781. [PMID: 38608570 DOI: 10.1016/j.jenvman.2024.120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Transforming global agricultural waste into eco-friendly products like industrial enzymes through bioconversion can help address sustainability challenges aligning with the United Nations' Sustainable Development Goals. Present study explored the production of high-yield food-grade cellulolytic enzymes from Trichoderma reesei MTCC 4876, using a novel media formulation with a combination of waste sorghum grass and cottonseed oil cake (3:1). Optimization of physical and environmental parameters, along with the screening and optimization of media components, led to an upscaled process in a novel 6-L solid-state fermentation (SSF)-packed bed reactor (PBR) with a substrate loading of 200 g. Saturated forced aeration proved crucial, resulting in high fungal biomass (31.15 ± 0.63 mg glucosamine/gm dry fermented substrate) and high yield cellulase (20.64 ± 0.36 FPU/g-ds) and xylanase (16,186 ± 912 IU/g-ds) production at an optimal airflow rate of 0.75 LPM. The PBR exhibited higher productivity than shake flasks for all the enzyme systems. Microfiltration and ultrafiltration of the crude cellulolytic extract achieved 94% and 71% recovery, respectively, with 13.54 FPU/mL activity in the cellulolytic enzyme concentrate. The concentrate displayed stability across wide pH and temperature ranges, with a half-life of 24.5-h at 50 °C. The cellulase concentrate, validated for food-grade safety, complies with permissible limits for potential pathogens, heavy metals, mycotoxins, and pesticide residue. It significantly improved apple juice clarity (94.37 T%) by reducing turbidity (21%) and viscosity (99%) while increasing total reducing sugar release by 63% compared with untreated juice. The study also highlighted the potential use of lignin-rich fermented end residue for fuel pellets within permissible SOx emission limits, offering sustainable biorefinery prospects. Utilizing agro wastes in a controlled bioreactor environment underscores the potential for efficient large-scale cellulase production, enabling integration into food-grade applications and presenting economic benefits to fruit juice industries.
Collapse
Affiliation(s)
- Raikamal Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Sidharth Arora
- Fermentech Labs Pvt. Ltd, TIDES Business Incubator, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Sanjoy Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
8
|
Li Q, Qin C, Chen X, Hu K, Li J, Liu A, Liu S. Enhancing the acid stability of the recombinant GH11 xylanase xynA through N-terminal substitution to facilitate its application in apple juice clarification. Int J Biol Macromol 2024; 268:131857. [PMID: 38670187 DOI: 10.1016/j.ijbiomac.2024.131857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The utilization of xylanase in juice clarification is contingent upon its stability within acidic environments. We generated a mutant xynA-1 by substituting the N-terminal segment of the recombinant xylanase xynA to investigate the correlation between the N-terminal region of xylanase and its acid stability. The enzymatic activity of xynA-1 was found to be superior under acidic conditions (pH 5.0). It exhibited enhanced acid stability, surpassing the residual enzyme activity values of xynA at pH 4.0 (53.07 %), pH 4.5 (69.8 %), and pH 5.0 (82.4 %), with values of 60.16 %, 77.74 %, and 87.3 %, respectively. Additionally, the catalytic efficiency of xynA was concurrently improved. Through molecular dynamics simulation, we observed that N-terminal shortening induced a reduction in motility across most regions of the protein structure while enhancing its stability, particularly Lys131-Phe146 and Leu176-Gly206. Furthermore, the application of treated xynA-1 in the process of apple juice clarification led to a significant increase in clarity within a short duration of 20 min at 35 °C while ensuring the quality of the apple juice. This study not only enhances the understanding of the N-terminal region of xylanase but also establishes a theoretical basis for augmenting xylanase resources employed in fruit juice clarification.
Collapse
Affiliation(s)
- Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| | - Chi Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xingziyi Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
9
|
Tian W, Zhang Z, Yang C, Li P, Xiao J, Wang R, Du P, Li N, Wang J. Engineering mesophilic GH11 xylanase from Cellulomonas flavigena by rational design of N-terminus substitution. Front Bioeng Biotechnol 2022; 10:1044291. [DOI: 10.3389/fbioe.2022.1044291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Xylanase, a glycoside hydrolase, is widely used in the food, papermaking, and textile industries; however, most xylanases are inactive at high temperatures. In this study, a xylanase gene, CFXyl3, was cloned from Cellulomonas flavigena and expressed in Escherichia coli BL21 (DE3). To improve the thermostability of xylanase, four hybrid xylanases with enhanced thermostability (designated EcsXyl1–4) were engineered from CFXyl3, guided by primary and 3D structure analyses. The optimal temperature of CFXyl3 was improved by replacing its N-terminus with the corresponding area of SyXyn11P, a xylanase that belongs to the hyperthermostable GH11 family. The optimal temperatures of the hybrid xylanases EcsXyl1–4 were 60, 60, 65, and 85°C, respectively. The optimal temperature of EcsXyl4 was 30 C higher than that of CFXyl3 (55°C) and its melting temperature was 34.5°C higher than that of CFXyl3. After the hydrolysis of beechwood xylan, the main hydrolysates were xylotetraose, xylotriose, and xylobiose; thus, these hybrid xylanases could be applied to prebiotic xylooligosaccharide manufacturing.
Collapse
|
10
|
Fernandes de Souza H, Aguiar Borges L, Dédalo Di Próspero Gonçalves V, Vitor dos Santos J, Sousa Bessa M, Fronja Carosia M, Vieira de Carvalho M, Viana Brandi I, Setsuko Kamimura E. Recent advances in the application of xylanases in the food industry and production by actinobacteria: a review. Food Res Int 2022; 162:112103. [DOI: 10.1016/j.foodres.2022.112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
|
11
|
Sharma T, Xia C, Sharma A, Raizada P, Singh P, Sharma S, Sharma P, Kumar S, Lam S, Nadda AK. Mechano-chemical and biological energetics of immobilized enzymes onto functionalized polymers and their applications. Bioengineered 2022; 13:10518-10539. [PMID: 35443858 PMCID: PMC9208500 DOI: 10.1080/21655979.2022.2062526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial conditions has some limitations, such as poor stability. These drawbacks can be overcome by immobilizing the enzyme in order to boost the operational stability, catalytic activity along with facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have gained increasing attention as an innovative material for immobilizing the industrially important enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading capacity of the enzyme by providing more functional groups to the polymeric material and hence enhancing the enzyme immobilization efficiency. However, appropriate coordination among the functionalized polymeric materials and enzymes of interest plays an important role in producing emerging biocatalysts with improved properties. The optimal coordination at a biological, physical, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The present review describes the current advances in enzyme immobilization on functionalized polymers and composites. Furthermore, the applications of immobilized enzymes in various sectors including bioremediation, biosensor and biodiesel are also discussed.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Changlei Xia
- Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry UniversityCo-Innovation, Nanjing,Jiangsu, China
| | - Abhishek Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - SuShiung Lam
- Higher Institution Centre of Excellence (Hicoe), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
12
|
Invitro bioprocessing of corn as poultry feed additive by the influence of carbohydrate hydrolyzing metagenome derived enzyme cocktail. Sci Rep 2022; 12:405. [PMID: 35013392 PMCID: PMC8749004 DOI: 10.1038/s41598-021-04103-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
The carbohydrate-hydrolyzing enzymes play a crucial role in increasing the phenolic content and nutritional properties of polysaccharides substrate, essential for cost-effective industrial applications. Also, improving the feed efficiency of poultry is essential to achieve significant economic benefits. The current study introduced a novel thermostable metagenome-derived xylanase named PersiXyn8 and investigated its synergistic effect with previously reported α-amylase (PersiAmy3) to enhance poultry feed utilization. The potential of the enzyme cocktail in the degradation of poultry feed was analyzed and showed 346.73 mg/g poultry feed reducing sugar after 72 h of hydrolysis. Next, the impact of solid-state fermentation on corn quality was investigated in the presence and absence of enzymes. The phenolic content increased from 36.60 mg/g GAE in control sample to 68.23 mg/g in the presence of enzymes. In addition, the enzyme-treated sample showed the highest reducing power OD 700 of 0.217 and the most potent radical scavenging activity against ABTS (40.36%) and DPPH (45.21%) radicals. Moreover, the protein and ash contents of the fermented corn increased by 4.88% and 6.46%, respectively. These results confirmed the potential of the carbohydrate-hydrolyzing enzymes cocktail as a low-cost treatment for improving the phenolic content, antioxidant activity, and nutritional values of corn for supplementation of corn-based poultry feed.
Collapse
|
13
|
Kaushal J, Khatri M, Singh G, Arya SK. A multifaceted enzyme conspicuous in fruit juice clarification: An elaborate review on xylanase. Int J Biol Macromol 2021; 193:1350-1361. [PMID: 34740694 DOI: 10.1016/j.ijbiomac.2021.10.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Xylanase enzyme has been classified as an enzyme belonging to the glycoside hydrolase family. The catalytic action of xylanase is focused on the degradation of xylan, a substrate for this enzyme comprising of a complex arrangement of monosaccharides interlinked with the help of ester and glycosidic bonds. Xylan represents the second most profuse renewable polysaccharide present on earth. Breakage of the β- 1, 4-glycoside linkage in the xylan polymer is what makes xylanase enzyme an important biocatalyst favoring various applications including treatment of pulp for improving paper quality, improvement of bread quality, treatment of lignocelluloses waste, production of xylose sugar and production of biological fuels. Most recently, xylanase has been exploited in the food industry for the purpose of fruit juice clarification. Turbidity caused by the colloidal polysaccharides present in the freshly squeezed fruit juice poses a setback to the fruit juice industry since the commercial product must be clear and free of excess polysaccharides to improve juice quality and storage life. This review gives an overview of the recent advancements made in regards to xylanase enzyme being used commercially with main focus on its role in fruit juice clarification.
Collapse
Affiliation(s)
- Jyoti Kaushal
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
14
|
Liu T, Yuan L, Deng S, Zhang X, Cai H, Ding G, Xu F, Shi L, Wu G, Wang C. Improved the Activity of Phosphite Dehydrogenase and its Application in Plant Biotechnology. Front Bioeng Biotechnol 2021; 9:764188. [PMID: 34900961 PMCID: PMC8655118 DOI: 10.3389/fbioe.2021.764188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022] Open
Abstract
Phosphorus (P) is a nonrenewable resource, which is one of the major challenges for sustainable agriculture. Although phosphite (Phi) can be absorbed by the plant cells through the Pi transporters, it cannot be metabolized by plant and unable to use as P fertilizers for crops. However, transgenic plants that overexpressed phosphite dehydrogenase (PtxD) from bacteria can utilize phosphite as the sole P source. In this study, we aimed to improve the catalytic efficiency of PtxD from Ralstonia sp.4506 (PtxDR4506), by directed evolution. Five mutations were generated by saturation mutagenesis at the 139th site of PtxD R4506 and showed higher catalytic efficiency than native PtxDR4506. The PtxDQ showed the highest catalytic efficiency (5.83-fold as compared to PtxDR4506) contributed by the 41.1% decrease in the K m and 2.5-fold increase in the k cat values. Overexpression of PtxDQ in Arabidopsis and rice showed increased efficiency of phosphite utilization and excellent development when phosphite was used as the primary source of P. High-efficiency PtxD transgenic plant is an essential prerequisite for future agricultural production using phosphite as P fertilizers.
Collapse
Affiliation(s)
- Tongtong Liu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Lili Yuan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Suren Deng
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiangxian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| | - Gaobing Wu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), MOA, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Aiewviriyasakul K, Bunterngsook B, Lekakarn H, Sritusnee W, Kanokratana P, Champreda V. Biochemical characterization of xylanase GH11 isolated from Aspergillus niger BCC14405 (XylB) and its application in xylooligosaccharide production. Biotechnol Lett 2021; 43:2299-2310. [PMID: 34718907 DOI: 10.1007/s10529-021-03202-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To develop an endo-β-1,4-xylanase with high specificity for production of prebiotic xylooligosaccharides that optimally works at moderate temperature desirable to reduce the energy cost in the production process. RESULTS The xylB gene, encoding for a glycosyl hydrolase family 11 xylanase from a thermoresistant fungus, Aspergillus niger BCC14405 was expressed in a methylotrophic yeast P. pastoris KM71 in a secreted form. The recombinant XylB showed a high specific activity of 3852 and 169 U mg-1 protein on beechwood xylan and arabinoxylan, respectively with no detectable side activities against different forms of cellulose (Avicel Ò PH101 microcrystalline cellulose, phosphoric acid swollen cellulose and carboxymethylcellulose). The enzyme worked optimally at 45 °C, pH 6.0. It showed a specific cleavage pattern by releasing xylobiose (X2) as the major product from xylooligosaccharides (X3 to X6) substrates. The highest XOS yield of 708 mg g-1 substrate comprising X2, X3 and X6 was obtained from beechwood xylan hydrolysis. CONCLUSION The enzyme is potent for XOS production and for saccharification of lignocellulosic biomass.
Collapse
Affiliation(s)
- Katesuda Aiewviriyasakul
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand.
| | - Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Wipawee Sritusnee
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Pattanop Kanokratana
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
16
|
Qian Y, Gao Z, Wang J, Wang C, Li G, Fu F, Guo J, Shan Y. Safety Evaluation and Whole Genome Sequencing of Aspergillus japonicas PJ01 Reveal Its Potential to Degrade Citrus Segments in Juice Processing. Foods 2021; 10:foods10081736. [PMID: 34441514 PMCID: PMC8391945 DOI: 10.3390/foods10081736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Aspergillus japonicas PJ01 (A. japonicas PJ01) is a strain isolated from the rotten branches. In previ-ous studies, it was shown that it can produce complex enzymes to degrade polysaccharide com-ponents. In this study, we evaluated the safety of its crude enzyme solution. Acute oral toxicity, subchronic toxicity, micronucleus and sperm malformation tests all validated the high biologi-cal safety for the crude enzymes. Secondly, we carried out the citrus segment degradation ex-periment of crude enzyme solution. Compared with the control group, the crude enzyme solu-tion of A. japonicas PJ01 can completely degrade the segments in 50 min, which provides the basis for enzymatic peeling during juice processing. The whole genome sequencing showed that the genome of A. japonicus PJ01 has a GC content of 51.37% with a size of 36204647 bp, and encoded 10070 genes. GO, COG, KEGG and CAZy databases were used in gene annotation analyses. Pathway enrichment showed many genes related to carbohydrate metabolism, rich in genes re-lated to pectinase, xylanase and carboxylcellulase. Therefore, the complex enzyme produced by A. japonicus PJ01 can be used in gizzard juice processing to achieve efficient enzymatic decapsu-lation.
Collapse
Affiliation(s)
- Yujiao Qian
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Jieyi Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
| | - Chen Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
| | - Gaoyang Li
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (Y.S.); (J.G.)
| | - Yang Shan
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (Y.Q.); (J.W.); (C.W.); (G.L.); (F.F.)
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (Y.S.); (J.G.)
| |
Collapse
|
17
|
Ivaldi C, Daou M, Vallon L, Bisotto A, Haon M, Garajova S, Bertrand E, Faulds CB, Sciara G, Jacotot A, Marchand C, Hugoni M, Rakotoarivonina H, Rosso MN, Rémond C, Luis P, Record E. Screening New Xylanase Biocatalysts from the Mangrove Soil Diversity. Microorganisms 2021; 9:microorganisms9071484. [PMID: 34361919 PMCID: PMC8306085 DOI: 10.3390/microorganisms9071484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Mangrove sediments from New Caledonia were screened for xylanase sequences. One enzyme was selected and characterized both biochemically and for its industrial potential. Using a specific cDNA amplification method coupled with a MiSeq sequencing approach, the diversity of expressed genes encoding GH11 xylanases was investigated beneath Avicenia marina and Rhizophora stylosa trees during the wet and dry seasons and at two different sediment depths. GH11 xylanase diversity varied more according to tree species and season, than with respect to depth. One complete cDNA was selected (OFU29) and expressed in Pichia pastoris. The corresponding enzyme (called Xyn11-29) was biochemically characterized, revealing an optimal activity at 40–50 °C and at a pH of 5.5. Xyn11-29 was stable for 48 h at 35 °C, with a half-life of 1 h at 40 °C and in the pH range of 5.5–6. Xyn11-29 exhibited a high hydrolysis capacity on destarched wheat bran, with 40% and 16% of xylose and arabinose released after 24 h hydrolysis. Its activity on wheat straw was lower, with a release of 2.8% and 6.9% of xylose and arabinose, respectively. As the protein was isolated from mangrove sediments, the effect of sea salt on its activity was studied and discussed.
Collapse
Affiliation(s)
- Corinne Ivaldi
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097 Reims, France; (C.I.); (H.R.); (C.R.)
| | - Mariane Daou
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
- Department of Chemistry, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Laurent Vallon
- CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Université Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; (L.V.); (M.H.); (P.L.)
| | - Alexandra Bisotto
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Mireille Haon
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Sona Garajova
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Emmanuel Bertrand
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Craig B. Faulds
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Giuliano Sciara
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Adrien Jacotot
- Institut de Recherche pour le Développement (IRD), IMPMC, UPMC, CNRS, MNHN, 98851 Noumea, New Caledonia, France; (A.J.); (C.M.)
- ISEA, Université de la Nouvelle-Calédonie, EA 7484, 8 BPR4, 98851 Noumea, New Caledonia, France
- CNRS, BRGM, ISTO, UMR 7327, Université d’Orléans, 45071 Orléans, France
| | - Cyril Marchand
- Institut de Recherche pour le Développement (IRD), IMPMC, UPMC, CNRS, MNHN, 98851 Noumea, New Caledonia, France; (A.J.); (C.M.)
- ISEA, Université de la Nouvelle-Calédonie, EA 7484, 8 BPR4, 98851 Noumea, New Caledonia, France
| | - Mylène Hugoni
- CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Université Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; (L.V.); (M.H.); (P.L.)
| | - Harivony Rakotoarivonina
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097 Reims, France; (C.I.); (H.R.); (C.R.)
| | - Marie-Noëlle Rosso
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Caroline Rémond
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097 Reims, France; (C.I.); (H.R.); (C.R.)
| | - Patricia Luis
- CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Université Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; (L.V.); (M.H.); (P.L.)
| | - Eric Record
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
- Correspondence:
| |
Collapse
|
18
|
Meng Y, Zhao F, Jin X, Feng Y, Sun G, Lin J, Jia B, Li P. Performance Evaluation of Enzyme Breaker for Fracturing Applications under Simulated Reservoir Conditions. Molecules 2021; 26:molecules26113133. [PMID: 34073941 PMCID: PMC8197314 DOI: 10.3390/molecules26113133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/04/2023] Open
Abstract
Fracturing fluids are being increasingly used for viscosity development and proppant transport during hydraulic fracturing operations. Furthermore, the breaker is an important additive in fracturing fluid to extensively degrade the polymer mass after fracturing operations, thereby maximizing fracture conductivity and minimizing residual damaging materials. In this study, the efficacy of different enzyme breakers was examined in alkaline and medium-temperature reservoirs. The parameters considered were the effect of the breaker on shear resistance performance and sand-suspending performance of the fracturing fluid, its damage to the reservoir after gel breaking, and its gel-breaking efficiency. The experimental results verified that mannanase II is an enzyme breaker with excellent gel-breaking performance at medium temperatures and alkaline conditions. In addition, mannanase II did not adversely affect the shear resistance performance and sand-suspending performance of the fracturing fluid during hydraulic fracturing. For the same gel-breaking result, the concentration of mannanase II used was only one fifth of other enzyme breakers (e.g., mannanase I, galactosidase, and amylase). Moreover, the amount of residue and the particle size of the residues generated were also significantly lower than those of the ammonium persulfate breaker. Finally, we also examined the viscosity-reducing capability of mannanase II under a wide range of temperatures (104–158 °F) and pH values (7–8.5) to recommend its best-use concentrations under different fracturing conditions. The mannanase has potential for applications in low-permeability oilfield development and to maximize long-term productivity from unconventional oilwells.
Collapse
Affiliation(s)
- Yuling Meng
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
| | - Fei Zhao
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
| | - Xianwei Jin
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
| | - Yun Feng
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257029, China; (Y.F.); (G.S.); (J.L.)
| | - Gangzheng Sun
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257029, China; (Y.F.); (G.S.); (J.L.)
| | - Junzhang Lin
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257029, China; (Y.F.); (G.S.); (J.L.)
| | - Baolei Jia
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Piwu Li
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China; (Y.M.); (F.Z.); (X.J.); (B.J.)
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
- Correspondence: ; Tel.: +86-156-1571-5965
| |
Collapse
|
19
|
Algan M, Sürmeli Y, Şanlı-Mohamed G. A novel thermostable xylanase from Geobacillus vulcani GS90: Production, biochemical characterization, and its comparative application in fruit juice enrichment. J Food Biochem 2021; 45:e13716. [PMID: 33788288 DOI: 10.1111/jfbc.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Xylanases have great attention to act as a potential role in agro-industrial processes. In this study, production, characterization, and fruit juice application of novel xylanase from thermophilic Geobacillus vulcani GS90 (GvXyl) were performed. GvXyl was purified via acetone precipitation and gel-filtration chromatography. The results showed that GvXyl had 1,671.4 U/mg of specific activity and optimally worked at pH 8 and 55°C. It was also active in a wide pH (3-9) and temperature (30-90ºC) ranges. GvXyl was highly stable at 90ºC and relatively stable at pH 3-9. The kinetic parameters of GvXyl were obtained as Km , Vmax , and kcat ; 10.2 mg/ml, 4,104 µmol min-1 mg-1 , and 3,542.6 s-1 , respectively. GvXyl had higher action than commercial xylanase in fruit juice enrichment. These results revealed that GvXyl might possess a potential influence in fruit juice processing because of its high specific activity and great thermal stability. PRACTICAL APPLICATIONS: Polysaccharides include starch, pectin, and hemicellulose create problems by lowering fruit juice quality in beverages. To overcome this problem, various clarification processes might be applied to natural fruit juices. Even though chemicals are widely used for this purpose, recently enzymes including xylanases are preferred for obtaining high-quality products. In this study, we reported the production and biochemical characterization of novel thermostable xylanase from thermophilic G. vulcani GS90 (GvXyl). Also, apple and orange juice enrichment were performed with the novel xylanase to increase the quality in terms of yield, clarity, and reducing sugar substance. The improved quality features of apple and orange juices with GvXyl was then compared to commercially available β-1,4-xylanase. The results revealed that GvXyl might possess a potential influence in fruit juice processing because of its high specific activity and great thermal stability.
Collapse
Affiliation(s)
- Müge Algan
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Sürmeli
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey.,Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey.,Science Faculty, Department of Chemistry, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
20
|
Industrially Important Fungal Enzymes: Productions and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|