1
|
Rajan SK, Arya SS. Valorization of Cassia tora Seeds: Extraction and Biofunctional Characterization of Cassia tora Seed Gum. Biopolymers 2025; 116:e70011. [PMID: 40103345 DOI: 10.1002/bip.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Cassia tora, an annual shrub, is a promising but underexplored source of galactomannan, comparable to widely used sources, such as fenugreek, guar, and locust bean. Galactomannans are heteropolysaccharides composed of galactose and mannose, valued for their role as dietary fibers and texture modifiers in food applications. This study aimed to optimize Cassia tora gum's extraction process, characterize its physiochemical properties, and quantify its galactomannan content to assess its potential as a gelling agent. The extraction process was optimized by varying key parameters, including the water-to-seed powder ratio, boiling time, and mucilage-to-ethanol ratio, achieving a 96% recovery of gum, higher than the reported yield with high purity. Physiochemical analysis revealed that the extracted gum contained 84.12% carbohydrate with a galactose-to-mannose ratio of 1:5. Galactomannan content was determined to be 55% in raw Cassia seeds. Rheological studies demonstrated a minimum gelation concentration of 75%, highlighting the gum's potential as an efficient gelling agent. These findings underscore the feasibility of utilizing Cassia tora as a sustainable and cost-effective source of galactomannan for food and industrial applications, offering a valuable alternative to conventional sources.
Collapse
Affiliation(s)
- Sandhya Konnadath Rajan
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Shalini Subash Arya
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
2
|
Ektiren D, Güneş S, Vardin H. Determination of physicochemical, functional,and morphological properties of Prosopis farcta (Çeti̇) seed galactomannan as a new hydrocolloid source: Comparison with locust bean gum. Carbohydr Polym 2025; 352:123157. [PMID: 39843062 DOI: 10.1016/j.carbpol.2024.123157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 01/24/2025]
Abstract
The present study investigated the properties of galactomannan, a water-soluble polysaccharide extracted from the Prosopis farcta (Çeti) plant. These properties encompassed its functional characteristics, chemical composition, rheological behavior, and morphological structure. The results were systematically compared with those of the commercially utilized locust bean gum (LBG). Following ethanol precipitation, the yield of Prosopis farcta galactomannan (PFG) was determined to be 22.4 ± 0.5 %. The mannose-to-galactose (M: G) ratios of PFG and LBG were calculated as 1.7:1 and 3.3:1, respectively. The solubility of PFG exhibited a temperature-dependent increase akin to that of LBG. Notably, PFG demonstrated superior emulsion capacity and stability even at low concentrations. Additionally, the X-ray diffraction (XRD) analysis revealed asymmetric broad peaks around the 2θ = 20° diffraction angle, signifying the amorphous nature of PFG. Scanning electron microscopy (SEM) images, obtained after dissolving both PFG and LBG in deionized water and freeze-drying them, displayed a fibrous filament network structure in both samples.
Collapse
Affiliation(s)
- Demet Ektiren
- Dicle University, Diyarbakir Agricultural Vocational School, Food Processing Department, Diyarbakir, Turkey.
| | - Serap Güneş
- Dicle University, Diyarbakir Agricultural Vocational School, Food Processing Department, Diyarbakir, Turkey
| | - Hasan Vardin
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| |
Collapse
|
3
|
Feng C, Cheng X, Na M, Zhang F, Duan J, Ji L, Jiang J. Green preparation of low-molecular-weight galactomannan from Gleditsia sinensis and mechanistic investigation on ameliorating nonalcoholic fatty liver disease. Food Res Int 2025; 201:115647. [PMID: 39849749 DOI: 10.1016/j.foodres.2024.115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Galactomannan comes from a wide range of plant resources and has some biological activities, but its bioavailability is limited due to its large molecular weight and complex structure. In this study, three degradation methods (H2O2, ultrasound, and β-mannanase) combined with ethanol fractional precipitation (25 %, 50 %, and 75 %) were used to degrade and separate Gleditsia sinensis galactomannans (GSG), and the physicochemical properties and biological activities of GSG after degradation were analyzed. Comprehensive comparison indicates that H2O2 exhibits had a better degradation effect. After 4 h of degradation using 4 % H2O2, the yield of GSG precipitated with 50 % ethanol was 37.06 % (the yield of undigested GSG is 1.80 %). Simultaneously, the molecular weight (reduced from 225.25 to 36.87 kDa) and viscosity were significantly reduced under this condition, while the solubility was increased. In addition, the low-molecular-weight GSG (LGSG) obtained by 4 % H2O2/50 % ethanol showed the strongest free radical scavenging activity in vitro. Furthermore, the results of in vivo antioxidant assays showed that LGSG inhibited Aflatoxin B1-induced developmental toxicity by regulating gene expression in the Keap1/Nrf2 pathway. LGSG also promoted Nrf2-mediated expression of the lipid metabolism genes ppar-α and cpt1, while suppressing expression of the fatty acid synthesis genes fas and scd-1. Therefore, the liver recovered from lipid peroxidation induced nonalcoholic fatty liver disease (NAFLD). The present study introduces a method for green and efficient preparation of LGSG, indicates its potential as a nutritional product.
Collapse
Affiliation(s)
- Chi Feng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Xichuang Cheng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Mula Na
- Inner Mongolia Minzu Universities, Coll Anim Sci & Technol, Tongliao, Inner Mongolia 028000, China
| | - Fenglun Zhang
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Jiufang Duan
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Sharahi M, Bahrami SH, Karimi A. A comprehensive review on guar gum and its modified biopolymers: Their potential applications in tissue engineering. Carbohydr Polym 2025; 347:122739. [PMID: 39486968 DOI: 10.1016/j.carbpol.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 11/04/2024]
Abstract
Guar gum (GG), as a non-exudate gum, is extracted from the seed's embryos of Cyamopsis tetragonoloba (a member of Leguminosae family). Recently, this biopolymer has received extensive attention due to its low cost, notable properties, non-toxic biodegradation, ease of availability, and biocompatibility. However, disadvantages such as uncontrolled hydration rate and susceptibility to microbial attack have led many researchers to further modification of guar gum. Further modifications of guar gum heteropolysaccharide have been performed to improve properties and explore and expand its potential. The favorable biostability, improved solubility, and swelling, increased pH sensitivity, and good antibacterial and antioxidant properties indicate the significant advantages of the modified gum structures with different functional groups. In this review, the rapid growth in research on GG derivatives-based materials has been discovered. Besides, the production methods of GG and its derivatives have been discussed in tissue engineering and regenerative medical. Consequently, this review highlights the advances in the production of guar-based products to outline a promising future for this biopolymer by changing its properties and expanding its applications in potential targets.
Collapse
Affiliation(s)
- Melika Sharahi
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Afzal Karimi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Wang H, Feng Y, Liang Y, Wang K, Yang X, Lai M, Li H, Yang J, Ji X. Effects of Separation and Purification Methods on Antioxidation, Hypoglycemic and DNA Protection Activity of Fenugreek Polysaccharide. Chem Biodivers 2024; 21:e202400190. [PMID: 38860451 DOI: 10.1002/cbdv.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Six low molecular weight fenugreek polysaccharides (FP) were isolated and purified by ethanol stepwise precipitation (EFP-20, EFP-40, and EFP-60) and DEAE-52 cellulose column method (DFP-0, DFP-0.15, and DFP-0.3), respectively. The effects of different separation and purification techniques on the preliminary properties and biological activities of fenugreek polysaccharides were compared. The results showed that the DEAE-52 cellulose-eluted fractions had a higher total sugar content and displayed a looser structure. The molecular weights of all six fractions were in the range of 4-19 kDa, with significant changes in the ratio of galactose to mannose. All six fractions contained α-D-galactopyranose and β-D-mannopyranose structures. Activity tests showed that all six fractions possessed antioxidant, hypoglycemic and DNA-protective activities. Among them, the DFP-0 fraction showed the highest activity. Overall, different isolation and purification methods lead to changes in the properties and bioactivities of FP, which provides a theoretical basis for the development and application of FP in functional foods and drugs.
Collapse
Affiliation(s)
- Haiyang Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Yifan Liang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kun Wang
- Nanchang Cigarette Factory of China Tobacco Jiangxi Industry Co., Ltd., Nanchang, 330000, China
| | - Xiaopeng Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Miao Lai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huayu Li
- Technology Center of Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd., Xuchang, 461000, Henan, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Xiaoming Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Manna S, Karmakar S, Sen O, Sinha P, Jana S, Jana S. Recent updates on guar gum derivatives in colon specific drug delivery. Carbohydr Polym 2024; 334:122009. [PMID: 38553200 DOI: 10.1016/j.carbpol.2024.122009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Colon specific delivery of therapeutics have gained much attention of pharmaceutical researchers in the recent past. Colonic specific targeting of drugs is used not only for facilitating absorption of protein or peptide drugs, but also localization of therapeutic agents in colon to treat several colonic disorders. Among various biopolymers, guar gum (GG) exhibits pH dependent swelling, which allows colon specific release of drug. GG also shows microbial degradation in the colonic environment which makes it a suitable excipient for developing colon specific drug delivery systems. The uncontrolled swelling and hydration of GG can be controlled by structural modification or by grafting with another polymeric moiety. Several graft copolymerized guar gum derivatives are investigated for colon targeting of drugs. The efficacy of various guar gum derivatives are evaluated for colon specific delivery of drugs. The reviewed literature evidenced the potentiality of guar gum in localizing drugs in the colonic environment. This review focuses on the synthesis of several guar gum derivatives and their application in developing various colon specific drug delivery systems including matrix tablets, coated formulations, nano or microparticulate delivery systems and hydrogels.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Sandip Karmakar
- Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Durgapur, West Bengal 713212, India
| | - Olivia Sen
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sougata Jana
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata-700091, West Bengal, India.
| |
Collapse
|
7
|
Sang J, Zhao G, Koidis A, Wei X, Huang W, Guo Z, Wu S, Huang R, Lei H. Isolation, structural, biological activity and application of Gleditsia species seeds galactomannans. Carbohydr Polym 2024; 334:122019. [PMID: 38553218 DOI: 10.1016/j.carbpol.2024.122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Gleditsia fruits have been known as a valuable traditional Chinese herb for tens of centuries. Previous studies showed that the galactomannans are considered as one of the major bioactive components in Gleditsia fruits seeds (GSGs). Here, we systematically review the major studies of GSGs in recent years to promote their better understanding. The extraction methods of GSGs mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, acid extraction, and alkali extraction. The analysis revealed that GGSs exhibited in the form of semi-flexible coils, and its molecular weight ranged from 0.018 × 103 to 2.778 × 103 KDa. GSGs are composed of various monosaccharide constituents such as mannose, galactose, glucose, and arabinose. In terms of pharmacological effects, GSGs exhibit excellent activity in antioxidation, hypoglycemic, hypolipidemic, anti-inflammation. Moreover, GSGs have excellent bioavailability, biocompatibility, and biodegradability, which make them used in food additives, food packaging, pharmaceutical field, industry and agriculture. Of cause, the shortcomings of the current research and the potential development and future research are also highlighted. We believe our work provides comprehensive knowledge and underpinnings for further research and development of GSGs.
Collapse
Affiliation(s)
- Jiaqi Sang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Anastasios Koidis
- Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DJ, UK
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Zonglin Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
8
|
Nevara GA, Muhammad SKS, Zawawi N, Mustapha NA, Karim R. Fractionation and physicochemical characterization of dietary fiber of kenaf (Hibiscus cannabinus L.) seed. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3216-3227. [PMID: 38072678 DOI: 10.1002/jsfa.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Kenaf seeds are underutilized kenaf plant by-products, containing essential nutrients including dietary fiber (DF), which can be potentially utilized as food ingredients. The present study aimed to evaluate the physicochemical characteristics of kenaf seed fiber fractions extracted from kenaf seed. RESULTS Defatted kenaf seed powder yielded four DF fractions: alkali-soluble hemicellulose (146.4 g kg-1 ), calcium-bound pectin (10.3 g kg-1 ) and acid-soluble pectin (25.4 g kg-1 ) made up the soluble fibre fraction, whereas cellulose (202.2 g kg-1 ) comprised the insoluble fraction. All fractions were evaluated for their physicochemical properties. The DF fractions contained glucose, mannose, xylose and arabinose, and a small amount of uronic acid (1.2-2.7 g kg-1 ). The isolated pectin fractions had a low degree of esterification (14-30%). All the isolated DF fractions had high average molecular weights ranging from 0.3 to 4.3 × 106 g mol-1 . X-ray diffractogram analysis revealed that the fractions consisted mainly of an amorphous structure with a relative crystallinity ranging from 31.6% to 44.1%. The Fourier-transform infrared spectroscopy spectrum of kenaf seed and its DF fractions showed typical absorption of polysaccharides, with the presence of hydroxyl, carboxyl, acetyl and methyl groups. Scanning electron microscopy analysis demonstrated that the raw material with the rigid structure resulted in soluble and insoluble DF fractions with more fragile and fibrous appearances, respectively. The soluble DF demonstrated greater flowability and compressibility than the insoluble fractions. CONCLUSION These findings provide novel information on the DF fractions of kenaf seeds, which could be used as a potential new DF for the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gita Addelia Nevara
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Nutrition, Faculty of Health Science, Universitas Mohammad Natsir Bukittinggi, Bukittinggi, Indonesia
| | | | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nor Afizah Mustapha
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Roselina Karim
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
9
|
Zhu Y, Xu W, Feng C, Zhu L, Ji L, Wang K, Jiang J. Study on structure and properties of galactomannan and enzyme changes during fenugreek seeds germination. Carbohydr Polym 2024; 327:121653. [PMID: 38171675 DOI: 10.1016/j.carbpol.2023.121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Fenugreek (Trigonella foenum-graecum L) galactomannan play an important role in the food and pharmaceutical sectors due to its attractive physicochemical properties. In this study, the changes of structure, properties and biological activity of fenugreek galactomannan (FG) during germination are analyzed by the activity and mechanism of endogenous enzymes (α-D-galactosidase and β-D-mannanase). The enzymes generally increased during germination and synergistically altered the structure of GM by cutting down the main chains and removing partial side residues. The mannose to galactose ratio (M/G) increased from 1.11 to 1.59, which is accompanied by a drastic decrease in molecular weight from 3.606 × 106 to 0.832 × 106 g/mol, and the drop of viscosity from 0.27 to 0.06 Pa·sn. The degraded macromolecules are attributed to the increase in solubility (from 64.55 % to 88.62 %). In terms of antioxidation and antidiabetic ability, germinated fenugreek galactomannan has the ability to scavenge 67.17 % ABTS free radicals and inhibit 86.89 % α-glucosidase. This galactomannan with low molecular weight and excellent biological activity precisely satisfies the current demands of pharmaceutical reagents and food industry. Seeds germination holds promise as a means of industrial scale production of low molecular weight galactomannans.
Collapse
Affiliation(s)
- Yana Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Wei Xu
- School of Materials Science and Engineering, Linyi University, Linyi 276005, China
| | - Chi Feng
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Liwei Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Kun Wang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Adhikary ND, Bains A, Sridhar K, Kaushik R, Chawla P, Sharma M. Recent advances in plant-based polysaccharide ternary complexes for biodegradable packaging. Int J Biol Macromol 2023; 253:126725. [PMID: 37678691 DOI: 10.1016/j.ijbiomac.2023.126725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Polysaccharide-based packaging has been directed toward the development of technologies for the generation of packaging with biodegradable materials that can serve as substitutes for conventional packaging. Polysaccharides are reliable sources of edible packaging materials with excellent renewability, biodegradability, and bio-compatibility as well as antioxidant and antimicrobial activities. Apart from these properties, packaging film developed from a single polysaccharide has various disadvantages due to undesirable properties. Thus, to overcome these problems, researchers focused on ternary blend-based bio-packaging instead of the primary and binary complex to improve their characteristics and properties. The review emphasizes the extraction of polysaccharides and their combination with other polymers to provide desirable characteristics and physico-mechanical properties of the biodegradable film which will upgrade the green packaging technology in the future generation This review also explores the advancement of ternary blend-based biodegradable film and their application in foods with different requirements and the future aspects for developing advanced biodegradable film. Moreover, the review concludes that cellulose, modified starch, and another plant-based polysaccharide film mostly provides good gas barrier property and better tensile strength, which can be used as a safeguard of perishable and semi-perishable foods which brings them closer to replacing commercial synthetic packaging.
Collapse
Affiliation(s)
- Nibedita Das Adhikary
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- CARAH ASBL, Rue Paul Pastur, 11, Ath - 7800, Belgium.
| |
Collapse
|
11
|
Dai L, Wang T, Liu Y, Lan Y, Ji L, Jiang J, Li P. Fluorescence probe technique for determining the hydrophobic interactions and critical aggregation concentrations of Gleditsia microphylla gum, circular Gleditsia sinensis gum, and tara gum. Int J Biol Macromol 2023; 247:125707. [PMID: 37423453 DOI: 10.1016/j.ijbiomac.2023.125707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/28/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Circular Gleditsia sinensis gum, Gleditsia microphylla gum, and tara gum are galactomannans (GMs) with similar mannose/galactose (M/G) molar ratios, which complicates the characterization of physicochemical properties using conventional methods. Herein, the hydrophobic interactions and critical aggregation concentrations (CACs) of the GMs were compared using a fluorescence probe technique, in which the I1/I3 ratio of pyrene indicated polarity changes. With increasing GM concentration, the I1/I3 ratio decreased slightly in dilute solutions below the CAC but decreased sharply in semidilute solutions above the CAC, indicating that the GMs formed hydrophobic domains. However, increases in temperature destroyed the hydrophobic microdomains and increased the CACs. Higher concentrations of salts (SO42-, Cl-, SCN-, and Al3+) promoted hydrophobic microdomain formation, and the CACs in Na2SO4 and NaSCN solutions were lower than those in pure water. Hydrophobic microdomain formation also occurred upon Cu2+ complexation. Although urea addition promoted hydrophobic microdomain formation in dilute solutions, the microdomains were destroyed in semidilute solutions and the CACs increased. The formation or destruction of hydrophobic microdomains depended on the molecular weight, M/G ratio and galactose distribution of GMs. Therefore, the fluorescent probe technique enables the characterization of hydrophobic interactions in GM solutions, which can provide valuable insight into molecular chain conformations.
Collapse
Affiliation(s)
- Lanxiang Dai
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Yantao Liu
- Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China.
| | - Yanjiao Lan
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| | - Pengfei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
12
|
Senarathna S, Navaratne S, Wickramasinghe I, Coorey R. Use of fenugreek seed gum in edible film formation: major drawbacks and applicable methods to overcome. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1860-1869. [PMID: 37206420 PMCID: PMC10188714 DOI: 10.1007/s13197-022-05465-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/24/2021] [Accepted: 04/04/2022] [Indexed: 05/21/2023]
Abstract
Researching on potential biopolymer sources with the aim of developing edible films with better mechanical and barrier properties has become innovative as it would be a key factor to minimize the use of synthetic polymers in food packaging. Therefore, different biopolymers such as galactomannan have been gaining attention recently. Fenugreek seed gum is a rich source of galactomannan which is minimally researched on its applicability in edible film making. The degree of galactose substitution and polymerization are the main factors that determine the functional properties of galactomannan. A strong and cohesive film matrix cannot be produced from fenugreek seed gum as its molecular interaction is weakened due to the high galactose substitution with a high galactose/mannose ratio, 1:1. Structural modifications of galactomannan in fenugreek seed gum will lead to films with the required mechanical properties. Hence, this review summarizes recent scientific studies on the limitations of fenugreek seed gum as a film forming agent and the specific modification techniques that can be applied in order to increase its film forming capability and performance.
Collapse
Affiliation(s)
- Sandunika Senarathna
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda Sri Lanka
| | - Senevirathne Navaratne
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda Sri Lanka
| | - Indira Wickramasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda Sri Lanka
| | - Ranil Coorey
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA Australia
| |
Collapse
|
13
|
Xu W, Han M, Liu Y, Zhu Y, Zhang F, Lei F, Wang K, Ji L, Jiang J. Changes in structure and physicochemical properties of Sophora japonica f. pendula galactomannan in late growth stage. Carbohydr Polym 2023; 304:120496. [PMID: 36641164 DOI: 10.1016/j.carbpol.2022.120496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Galactomannan (GM) has been widely applied in food and other fields due to its appealing physicochemical properties. In this work, considering the changes in structural and physicochemical properties of Sophora japonica f. pendula (SJ-GM) with very high mannose to galactose (M/G) ratio in the late deposition stage, extensive exploration is conducted. The core of structural change is the change of M/G ratio (4.94-5.68), which is caused by the loss of galactose side residues modulated by α-d-galactosidase during seed maturation. Afterwards, the more compact conformation, the higher molecular weight, the increased hydrophobicity, and the greater solution viscosity of SJ-GM can be caused. Notably, the gel strength of SJ-GM with the highest M/G surpasses other GMs, including fenugreek gum (M/G = 1.20), guar gum (M/G = 1.80), Gleditsia microphylla gum (M/G = 2.77), and LBG (M/G = 4.00). Finally, SJ-GM is proven to be an attractive alternative to other GMs.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Minghui Han
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Yantao Liu
- Glyn O. Phillips Hydrocolloid Research Centre, Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yana Zhu
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Kun Wang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
14
|
Gonda S, Szűcs Z, Plaszkó T, Cziáky Z, Kiss-Szikszai A, Sinka D, Bácskay I, Vasas G. Quality-controlled LC-ESI-MS food metabolomics of fenugreek (Trigonella foenum-graecum) sprouts: Insights into changes in primary and specialized metabolites. Food Res Int 2023; 164:112347. [PMID: 36737938 DOI: 10.1016/j.foodres.2022.112347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Fenugreek (Trigonella foenum-graecum L.) is an important food and spice with bioactive compounds against diabetes. In this study, fenugreek seeds germinating in darkness for 72 h were studied using quantification of trigonelline and 4-hydroxyisoleucine and an LC-ESI-MS/MS-based metabolomic approach capable of accurately estimating 237 features from various primary and specialized compound classes. During germination, the concentrations of trigonelline and 4-hydroxyisoleucine rose by 33.5% and 33.3%, respectively. At the same time, untargeted metabolomics revealed 9 putative flavonoids increasing 1.19- to 2.77-fold compared to the dormant seeds. A set of 19 steroid saponins rose by 1.08- to 31.86-fold. Primary metabolites however showed much more variability: abundance changes in amino acid derivatives, peptides and saccharides fell in the 0.09- to 22.25-fold, 0.93- to 478.79-fold and 0.36- to 941.58-fold ranges, respectively. To increase biosynthesis of specialized metabolites during germination, sprouts were exposed to 1-100 mM methyl jasmonate (MeJA) and methyl salicylate (MeSA). The hormone treatments affected normal metabolism: 67.1-83.1 % and 64.1-83.5 % of compounds showed a reduction compared to the controls in 100 mM MeJA and MeSA treatments at different sampling time points. Contrary to expectations, the abundance of flavonoids decreased, compared to the control sprouts (0.75- and 0.68-fold change medians, respectively). The same was observed for most, but not all steroid saponins. The quality-controlled untargeted metabolomics approach proved to yield excellent insight into the metabolic changes during germination of fenugreek. The results suggest that although fenugreek germination causes major shifts in plant metabolism, there are no major qualitative changes in bioactive specialized metabolites during the first three days. This stability likely translates into good bioactivity that is similar to that of the seeds. Because the large changes in the primary metabolites likely alter the nutritive value of the seed, further studies are warranted.
Collapse
Affiliation(s)
- Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary.
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Zoltán Cziáky
- University of Nyíregyháza, Agricultural and Molecular Research and Service Institute, 4400 Nyíregyháza, Sóstói út 31/b, Hungary
| | - Attila Kiss-Szikszai
- University of Debrecen, Department of Organic Chemistry, H-4010 Debrecen, Egyetem tér 1, Hungary
| | - Dávid Sinka
- University of Debrecen, Department of Pharmaceutical Technology, H-4032, Nagyerdei körút 98, Hungary
| | - Ildikó Bácskay
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary; University of Debrecen, Department of Pharmaceutical Technology, H-4032, Nagyerdei körút 98, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
15
|
Zhang K, Ge F, Tang F, Tan L, Qiu Y, Zhu X. A structure-property study for konjac glucomannan and guar galactomannan: Selective carboxylation and scale inhibition. Carbohydr Polym 2023; 299:120220. [PMID: 36876821 DOI: 10.1016/j.carbpol.2022.120220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
The effect of structural difference for konjac glucomannan (KGM) and guar galactomannan (GGM) on their physicochemical properties including selective carboxylation, biodegradation and scale inhibition was firstly investigated. Compared with GGM, KGM can be specially modified by amino acid to prepare carboxyl-functionalized polysaccharides. The structure-activity relationship explaining the difference in carboxylation activity and the anti-scaling abilities of polysaccharides and carboxylated derivatives were explored by static anti-scaling, iron oxide dispersion and biodegradation tests coupled with structural and morphological characterizations. KGM with linear structure was preferred for carboxylated modification by glutamic acid (KGMG) and aspartic acid (KGMA) while GGM with branched structure failed to accomplish that due to steric hindrance. GGM and KGM showed limited scale inhibition performance, which was probably attributed to the moderate adsorption and isolation effect of macromolecular stereoscopic structure. While KGMA and KGMG performed as effective and degradable inhibitors for CaCO3 scale with inhibitory efficiencies > 90 %.
Collapse
Affiliation(s)
- Kegui Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Fukai Tang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Lichao Tan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Yue Qiu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xinsheng Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| |
Collapse
|
16
|
Zhang Y, Guo J, Guan F, Tian J, Li Z, Zhang S, Zhao M. Preparation and numerical simulation of food gum electrospun nanofibers. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. Rheological properties of Sesbania cannabina galactomannan as a new source of thickening agent. J Food Sci 2022; 87:1527-1539. [PMID: 35275400 DOI: 10.1111/1750-3841.16094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
The present study evaluated the rheological properties of galactomannan from Sesbania cannabina. The intrinsic viscosity of galactomannan was determined to be 8.63 ± 0.06 dl/g. Moreover, the onset of galactomannan coil overlap occurred at 5.12 ± 0.13 g/L. With increasing concentration, galactomannan showed a more distinct shear-thinning behavior, which was well characterized by the Cross model. Notably, the viscosity of polysaccharide showed a negative relationship with the temperature, while the activation energy decreased with increasing polysaccharide concentration. Furthermore, at high concentrations, the galactomannan solution showed stability after heating or freezing, as well as over the wide pH range of 5.0-9.0. Dynamic viscoelasticity measurements reveal a gradual transition from viscous to elastic behavior of galactomannans with an increasing frequency. It is anticipated that S. cannabina galactomannan will find interesting applications as a natural thickener due to the comprehensive description of its rheological properties presented herein. PRACTICAL APPLICATION: The investigated S. cannabina galactomannan has shown a higher viscosity and heat stability at high concentration, as well as a good stability at the pH range of 5-9. The S. cannabina galactomannan may be employed as stabilizers in the food field.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Guo R, Li X, Sun X, Kou Y, Zhang J, Li D, Liu Y, Zhao T, Zhang H, Song Z, Wu Y. Molecular aggregation via partial Gal removal affects physicochemical and macromolecular properties of tamarind kernel polysaccharides. Carbohydr Polym 2022; 285:119264. [DOI: 10.1016/j.carbpol.2022.119264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/27/2022]
|
19
|
Nevara GA, Syed Muhammad SK, Zawawi N, Mustapha NA, Karim R. Physicochemical and functional properties of carbohydrate–protein gum extracted from kenaf (
Hibiscus cannabinus
L.) seed. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gita Addelia Nevara
- Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 UPM Malaysia
- Department of Nutrition Universitas Mohammad Natsir Bukittinggi Jalan Tan Malaka Bukit Cangang Bukittinggi Sumatera Barat 26136 Indonesia
| | - Sharifah Kharidah Syed Muhammad
- Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 UPM Malaysia
| | - Norhasnida Zawawi
- Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 UPM Malaysia
| | - Nor Afizah Mustapha
- Department of Food Technology Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 UPM Malaysia
| | - Roselina Karim
- Department of Food Technology Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 UPM Malaysia
| |
Collapse
|
20
|
Changes in Structural and Rheological Properties of Guar Gum Particles in Fluidized-Bed Agglomeration: Effect of Sucrose Binder Concentration. Foods 2021; 11:foods11010073. [PMID: 35010199 PMCID: PMC8750080 DOI: 10.3390/foods11010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Fluidized-bed agglomeration (FBA) is known to modify the structure and rheology of food powders. In this study, guar gum (GG) powders with various concentrations of sucrose binder (0%, 10%, 20%, or 30%) were subjected to fluidized-bed agglomeration. Subsequently, changes in the characteristics of the GG powders were evaluated by using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size distribution (PSD) analysis, and rheological and dispersibility measurements. SEM images and FTIR spectra revealed surface morphology changes and structural modification, respectively, in the original GG powder after FBA, although the changes observed in FTIR spectra were only slightly dependent on sucrose concentration at low concentrations (0–20%). XRD patterns confirmed that the crystallinity of the GG powder was affected by FBA, but not greatly so by binder concentration. The PSD results showed that the GG particle size was increased by FBA and there was a clear relationship between sucrose concentration (10–30%) and mean particle size. The rheological behavior and dispersibility of GG (properties that are known to be affected by the structure of a powder) were also influenced by sucrose concentration. To sum up, FBA and the concentration of sucrose binder used can serve as factors for modifying GG powder.
Collapse
|
21
|
Assessing the in vitro digestion of Sesbania gum, a galactomannan from S. cannabina, and subsequent impact on the fecal microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Characterization of hydrophobic interaction of galactomannan in aqueous solutions using fluorescence-based technique. Carbohydr Polym 2021; 267:118183. [PMID: 34119151 DOI: 10.1016/j.carbpol.2021.118183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Fluorescence probing was used to study hydrophobic interactions of galactomannan (GM) obtained from fenugreek gum (FG), guar gum (GG), and locust bean gum (LBG) at different M/G ratios. The I1/I3 ratio of pyrene changed from 1.73 to 1.29, 1.22, and 1.29 for FG, GG and LBG, respectively, as the concentration of GM increased from 0.01 to 8.0 g/L at 30 °C. The critical aggregation concentration of FG, GG, and LBG increased from 1.04 to 3.84 g/L, 1.15 to 3.73 g/L, and 0.94 to 3.63 g/L, respectively, as temperature increased from 10 to 70 °C. Addition of Na2SO4 and NaSCN increased the I1/I3 ratio in dilute solution, but reduced it in semi-dilute solution, whereas adding urea reduced I1/I3 in dilute solution but increased it in semi-dilute solution. These results indicated that the CAC of GM, polarity and number of hydrophobic microdomains were highly dependent on the M/G ratio and galactose distribution.
Collapse
|
23
|
Niknam R, Mousavi M, Kiani H. A new source of galactomannan isolated from
Gleditsia caspica
(Persian honey locust) seeds: Extraction and comprehensive characterization. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rasoul Niknam
- Bioprocessing and Biodetection Lab (BBL) Department of Food Science and Technology College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Mohammad Mousavi
- Department of Food Science and Technology College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Hossein Kiani
- Bioprocessing and Biodetection Lab (BBL) Department of Food Science and Technology College of Agriculture and Natural Resources University of Tehran Karaj Iran
| |
Collapse
|
24
|
Intrinsic viscosity, steady and oscillatory shear rheology of a new source of galactomannan isolated from Gleditsia caspica (Persian honey locust) seeds in aqueous dispersions. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03818-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Guo R, Li X, Ma X, Sun X, Kou Y, Zhang J, Li D, Liu Y, Zhang H, Wu Y. Macromolecular and thermokinetic properties of a galactomannan from Sophora alopecuroides L. seeds: A study of molecular aggregation. Carbohydr Polym 2021; 262:117890. [PMID: 33838792 DOI: 10.1016/j.carbpol.2021.117890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/29/2022]
Abstract
The molecular aggregation of a galactomannan (NSAP-25) from Sophora alopecuroides L. seeds was investigated, where three polydisperse systems were confirmed during particle size analysis, indicating existence of different aggregates composed of random coil chains revealed by circular dichroism. Morphologically, NSAP-25 aggregate of various sizes (200-1200 nm) was possibly multi-stranded and formed by ellipsoid-like particles (20-60 nm) composed of compact coil chain, exhibiting extended amorphous structure with chain-like branches intertwined. Hence, NSAP-25 aggregation was inevitable, which exerted an unignorable effect on augmenting flexibility (β↓, γ↓, α↓ and Lp/ML↓) and compactness (ρ↓, df↑ and C∞↓) of branched random coil chain based on macromolecular analysis, especially when concentration increased. Moreover, it could be relevant to thermokinetic behavior of random nucleation and subsequent growth (A2 model and negative ΔS*) as well as good thermal stability (IPDT, ITS, t0.05, Tm and Tp), thus conferring potential applications for NSAP-25 in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Rui Guo
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xujiao Li
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xianda Ma
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xianbao Sun
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuxing Kou
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jun'ai Zhang
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Deshun Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China.
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China.
| | - Hui Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yan Wu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
26
|
Shahrajabian MH, Sun W, Marmitt DJ, Cheng Q. Diosgenin and galactomannans, natural products in the pharmaceutical sciences. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00288-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diosgenin is an isospirostane derivative, which is a steroidal sapogenin and the product of acids or enzymes hydrolysis process of dioscin and protodioscin. Galactomannans are heteropolysaccharides composed of D-mannose and D-galactose, which are major sources of locust bean, guar, tara and fenugreek.
Methods
Literature survey was accomplished using multiple databases including PubMed, Science Direct, ISI web of knowledge and Google Scholar.
Results
Four major sources of seed galactomannans are locust bean (Ceratonia siliqua), guar (Cyamopsis tetragonoloba), tara (Caesalpinia spinosa Kuntze), and fenugreek (T.foenum-graecum). Diosgenin has effect on immune system, lipid system, inflammatory and reproductive systems, caner, metabolic process, blood system, blood glucose and calcium regulation. The most important pharmacological benefits of galactomannan are antidiabetic, antioxidant, anticancer, anticholinesterase, antiviral activities, and appropriate for dengue virus and gastric diseases.
Conclusions
Considering the importance of diosgenin and galactomannans, the obtained findings suggest potential of diosgenin and galactomannans as natural products in pharmaceutical industries.
Collapse
|
27
|
Selective adsorption behavior and mechanism of a high-performance depressant in the flotation separation of pyrite from talcum. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Hellebois T, Soukoulis C, Xu X, Hausman JF, Shaplov A, Taoukis PS, Gaiani C. Structure conformational and rheological characterisation of alfalfa seed (Medicago sativa L.) galactomannan. Carbohydr Polym 2021; 256:117394. [DOI: 10.1016/j.carbpol.2020.117394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
|